
CSE 421 Section 2

Graph Traversal and Algorithm Proofs

Administrivia

Announcements & Reminders
● HW1

○ Was due yesterday, 1/15

○ Remember the late problems policy (NOT assignments)
○ Total of up to 10 late problem days

○ At most 2 late days per problem

● HW2
○ Due Wednesday 1/22 @ 11:59pm

○ Don’t wait to start

● Pseudocode handout

○ Read it at home

Warmup: BFS/DFS

Problem 1 – BFS/DFS review

a) Run BFS and record the layer of each vertex, starting with 𝑎 in layer 0.

b) Run DFS, record the start/end times, and classify the edges. When there are

multiple choices for the next vertex, pick the alphabetically earliest one.

Feel free to work with
the people around you!

As a reminder...
To track start/end time for a
DFS traversal, start at time
1 and increment by one each
time a node is visited or
finished processing.

Start time: when DFS first
visits a node
End time: when DFS finishes
processing a node entirely

Problem 1 – BFS/DFS review

a) Run BFS and record the layer of each vertex, starting with 𝑎 in layer 0.

Solution

Problem 1 – BFS/DFS review

b) Run DFS, record the start/end times, and classify the edges. When there are

multiple choices for the next vertex, pick the alphabetically earliest one.

Solution

Tree edges:
(𝑎, 𝑏), (𝑎, 𝑐), (𝑐, 𝑑),
(𝑑, 𝑔), (𝑐, 𝑒), (𝑒, 𝑓)

Back edges: (𝑔, 𝑐)

Forward edges: (𝑎, 𝑑), (𝑐, 𝑓)

Cross edges: (𝑓, 𝑔)

Proving algorithms correct

Problem 2 – Investigating algorithm proofs

The purpose of this problem is to help you:

• Figure out how to start a proof about algorithms.

• Check the correctness of proofs.

We will take a proof that you have already seen in lecture and critically analyze it to

check correctness.

Problem 2 – Investigating algorithm proofs

Dive right in, and we’ll summarize the takeaways afterwards.

a) Answer the questions embedded in the proof in your packet as you read. They are

marked with ▷ and italics.

b) Discuss with people near you:

• What is the general structure of a proof that an algorithm is correct?

• How is the proof related to the pseudocode?

Feel free to work with
the people around you!

Problem 2 – Investigating algorithm proofs

1. Claim. The algorithm terminates.

a. ▷ What quantity increases every iteration, but is bounded? Why does it

increase? Refer to particular line(s) in the code.

b. ▷ Conclude that there are a bounded number of iterations.

|𝑅| increases every iteration, and is bounded by |𝑉|.
In every iteration, we add 𝑣 to 𝑅 (line 3) where 𝑣 ∉ 𝑅 (line 2),
and never remove elements from 𝑅.

There can be at most |𝑉| iterations, by above.

Solution

Problem 2 – Investigating algorithm proofs

2. Claim. At termination, 𝑣 ∈ 𝑅 iff there exists a path from 𝑠 to 𝑣.

a. (⇒) Claim. If 𝑣 ∈ 𝑅, then there exists a path from 𝑠 to 𝑣.

▷ Prove this fact. Refer to particular line(s) in the code.

By induction on iterations.
BC: By (line 1), before the first iteration, 𝑅 = {𝑠}, and there is a path from 𝑠 to 𝑠.
IH: Before/after every iteration, if 𝑣 ∈ 𝑅, then there exists a path from 𝑠 to 𝑣.
IS: Assume IH at start of this iteration.
In current iteration, because 𝑢 ∈ 𝑅 (line 2), there is a path from 𝑠 to 𝑢 by IH.
Because {𝑢, 𝑣} ∈ 𝐸 (line 2), we get a path from 𝑠 to 𝑣.
We only add 𝑣 to 𝑅 (line 3), so IH is true at end of this iteration.

Solution

Problem 2 – Investigating algorithm proofs

b. (⇐) Claim. If there exists a path from 𝑠 to 𝑣, then 𝑣 ∈ 𝑅.

i. Suppose for contradiction 𝑤 ∉ 𝑅, but there is a path from 𝑃 from 𝑠 to 𝑤.

ii. In this case, we may take 𝑣 to be the first node on 𝑃 such that 𝑣 ∉ 𝑅.

▷ Why is this allowed?

If there are multiple of any object, we can always look at the first one.

𝑠 𝑣 𝑤

𝑅

Solution

Common technique!

Problem 2 – Investigating algorithm proofs

iii. The predecessor 𝑢 of 𝑣 in 𝑃 satisfies 𝑢 ∈ 𝑅 and {𝑢, 𝑣} ∈ 𝐸.

▷ Why does the predecessor exist? Refer to particular line(s) in the code.

Why is 𝑢 ∈ 𝑅 and {𝑢, 𝑣} ∈ 𝐸?

Predecessor exists because 𝑣 ≠ 𝑠, as 𝑣 ∉ 𝑅 but 𝑠 ∈ 𝑅.
To show 𝑠 ∈ 𝑅 at loop end, formally induction on iterations:
BC: 𝑅 = {𝑠} before first iteration by (line 1).
IH: 𝑠 ∈ 𝑅 before/after every iteration.
IS: We never remove vertices from 𝑅, so IH is true at end of iteration.
Lastly, 𝑢 ∈ 𝑅 because 𝑣 was first vertex not in 𝑅, and {𝑢, 𝑣} ∈ 𝐸
because 𝑢 is the predecessor of 𝑣.

Solution

Problem 2 – Investigating algorithm proofs

iii. This is a contradiction.

▷ What is the contradiction? Refer to particular line(s) in the code.

▷ Is it possible to directly prove this claim by induction on iterations, as you

did for the ⇒ direction, instead of contradiction?

We found 𝑢 and 𝑣 such that 𝑢 ∈ 𝑅, 𝑣 ∉ 𝑅, and {𝑢, 𝑣} ∈ 𝐸.
Contradicts loop exit condition in (line 2).

No, the claim “If there exists a path from 𝑠 to 𝑣, then 𝑣 ∈ 𝑅.” is not true
until the loop exits.

Solution

Problem 2 – Investigating algorithm proofs

A loop invariant is a property that is true before, during, and after the loop.

• They are very useful!

• Formally prove with induction, but you can omit proof on HW/exams if trivial.

Examples:

• If 𝑣 ∈ 𝑅, then there exists a path from 𝑠 to 𝑣.

• 𝑠 ∈ 𝑅.

Non-examples:

• If there exists a path from 𝑠 to 𝑣, then 𝑣 ∈ 𝑅.

• Only true after loop end, so need to use loop exit condition to prove.

Problem 2 – Investigating algorithm proofs

The structure of an algorithm proof

● Validity:

○ Make sure that every line is possible, may require ad-hoc methods.

● Termination (if you have while-loops):

○ Find a measure of progress that increases/decreases every iteration, but is

bounded by the problem setup.

● Correctness:

○ Start with “We will show that the output matches the desired result,” then

unwrap definitions.

○ Combine loop invariants and the loop exit condition to prove results.

■ Prove invariants by induction, if non-obvious.

Problem 2 – Investigating algorithm proofs

existence not obvious!

Validity was obvious in our case, but not all algorithms.

Problem 2 – Investigating algorithm proofs

How to solve HW problems

1. Think of an algorithm (we’ll give more tips for this next section)

2. Prove its validity, termination, and correctness as in the last slide.

○ Write the same level of detail as in sections/lectures.

3. Just for yourself, expand the details like we did today to check that it’s correct.

○ If you can’t, your TAs probably can’t either (and will mark your proof as wrong

or incomplete).

■ Go back to step 1 or step 2 and try again.

Remember, if your algorithm is wrong, it’s impossible to prove it to be correct!

Applications of graph algorithms

Tips for algorithms with graphs

Ask yourself the following questions:

1. What are the vertices?

2. What are the edges?

3. What am I looking for in the graph?

Problem 3 – Water jugs

You have a 5-gallon jug and 3-gallon jug, which start out empty. Your goal is to have

4 gallons of water in the 5-gallon jug and 0 gallons of water in the 3-gallon jug.

Unfortunately, you are only allowed the following operations:

● Fill any of your jugs completely.

● Pour one of your jugs into the other, until the first jug is empty or the second is full.

● Empty out all the water in a jug.

a) Describe a method to reach the goal. (No need to use any general algorithm yet,

just solve the puzzle however you like.)

Feel free to work with the people around you.

Problem 3 – Water jugs

a) Describe a method to reach the goal. (No need to use any general algorithm yet,

just solve the puzzle however you like.)

Let (𝑚, 𝑛) denote 𝑚 gallons in the 5-gallon jug and 𝑛 gallons in the 3-gallon jug.

(0, 0) → (5, 0) → (2, 3) → (2, 0) → (0, 2) → (5, 2) → (4, 3) → (4, 0)

OR

(0, 0) → (0, 3) → (3, 0) → (3, 3) → (5, 1) → (0, 1) → (1, 0) → (1, 3) → (4, 0)

or other solutions.

Solution

Problem 3 – Water jugs

b) Solve with a graph algorithm and state the running time (no proof during section):

Input: Jug sizes 𝑎 and 𝑏, with target amounts 𝑥 and 𝑦, respectively.

Expected output: The minimum number of steps to reach the target amount, or

“unreachable”.

1. What are the vertices?

2. What are the edges?

3. What am I looking for in the graph?

Feel free to work with the people around you.

Problem 3 – Water jugs

b) Solve with a graph algorithm and state the running time (no proof during section):

Input: Jug sizes 𝑎 and 𝑏, with target amounts 𝑥 and 𝑦, respectively.

Expected output: The minimum number of steps to reach the target amount, or

“unreachable”.

1. What are the vertices?

2. What are the edges?

3. What am I looking for in the graph?

pairs (𝑚, 𝑛) of the current amounts in each jug

all allowed steps in the problem

length of shortest path (0, 0) to (𝑥, 𝑦)
or “unreachable”

Solution

Problem 3 – Water jugs

Algorithm:

1. Construct a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a list of all pairs (𝑚, 𝑛) for 0 ≤ 𝑚 ≤ 𝑎 and

0 ≤ 𝑛 ≤ 𝑏, and 𝐸 is all possible transitions according to the rules.

2. Use BFS to compute the shortest path from (0, 0) to (𝑥, 𝑦) and output it, or

“unreachable” if BFS terminates before reaching (𝑥, 𝑦).

Running time:

BFS runs in Θ(|𝑉| + |𝐸|), where |𝑉| = (𝑎 + 1)(𝑏 + 1) and |𝐸| ≤ 6|𝑉| (since there are

3 types of transitions from every state, which you can do with either jug). Thus, Θ(𝑎𝑏).

Solution

Extra: Can you tweak this solution to be a bit faster?

Problem 3 – Water jugs

Algorithm:

1. Construct a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is a list of all pairs (0, 𝑛), (𝑎, 𝑛), (𝑚, 0),

(𝑚, 𝑏) for 0 ≤ 𝑚 ≤ 𝑎 and 0 ≤ 𝑛 ≤ 𝑏, and 𝐸 is all possible transitions according to

the rules.

2. Use BFS to compute the shortest path from (0, 0) to (𝑥, 𝑦) and output it, or

“unreachable” if BFS terminates before reaching (𝑥, 𝑦) or (𝑥, 𝑦) is not in the graph.

Running time:

BFS runs in Θ(|𝑉| + |𝐸|), where 𝑉 = 2 𝑎 + 1 + 2(𝑏 + 1) and |𝐸| ≤ 6|𝑉| (since

there are 3 types of transitions from every state, which you can do with either jug).

Thus, Θ(𝑎 + 𝑏).

Solution
Slight improvement!
Notice that all transitions result in one of
the jugs being full or empty.

Problem 4 – Judging books

You have a large collection of books and want to arrange them by color. You wish to

put only books of a single color on any given shelf. Every pair of books is either “same

color” or “not same color”, and this relation is an equivalence relation (reflexive,

symmetric, and transitive).

Input: A list of books, and a list of pairs that are the same color

Expected output: The best upper bound on the number of shelves you will need

Example input: books 𝑢, 𝑣, 𝑤, 𝑥, and pairs (𝑢, 𝑣), (𝑣, 𝑤)

Output: 2

Problem 4 – Judging books

Input: A list of books, and a list of pairs that are the same color

Expected output: The best upper bound on the number of shelves you will need

1. What are the vertices?

2. What are the edges?

3. What am I looking for in the graph?

Feel free to work with the people around you.

Problem 4 – Judging books

Input: A list of books, and a list of pairs that are the same color

Expected output: The best upper bound on the number of shelves you will need

1. What are the vertices?

2. What are the edges?

3. What am I looking for in the graph?

Solution

books

pairs that are the same color

number of connected components

Problem 4 – Judging books

You have a large collection of books and want to arrange them by color. You wish to

put only books of a single color on any given shelf. Every pair of books is either “same

color” or “not same color”, and this relation is an equivalence relation (reflexive,

symmetric, and transitive).

Input: A list of books, and a list of pairs that are the same color

Expected output: The best upper bound on the number of shelves you will need

Now write the algorithm (two sentences) and think about the proof.

Feel free to work with the people around you.

Problem 4 – Judging books

Algorithm:

1. Construct a graph 𝐺 = (𝑉, 𝐸) where 𝑉 is the list of books and 𝐸 is the list of pairs.

2. Use BFS or DFS to compute the number of connected components and output it.

Proof:

● Termination is clear, and all lines are valid.

● We will show that the number of connected components is the best upper bound

on the number of shelves needed.

Solution

1. Is an upper bound
2. All upper bounds are

at least this big

Purely 311-type claim, no algorithm needed —
can rely on knowledge that B/DFS computes # conn. comp.

Problem 4 – Judging books

1. The number of connected components is an upper bound.

a. Give each connected component its own shelf.

b. Because “same color” is transitive, if there is a path from 𝑢 to 𝑣, then 𝑢 and 𝑣

are the same color (formally by induction).

c. Thus, it was valid to put them on the same shelf.

2. All upper bounds are at least the number of connected components.

a. The input is compatible with the situation where every connected component

has books of different colors.

b. Thus, every upper bound must output at least the number of connected

components.

Solution

Last note on applying graph algorithms

In section today, we saw two examples of directly calling a graph algorithm, as if it

were a library function.

Sometimes, in other problems, you might need to reimplement a graph algorithm

and tweak a line or two to solve the problem.

Summary

• For algorithms, prove validity, termination, and correctness.

• Make sure that you can expand all details in your head.

• Find a measure of progress to prove termination.

• Start with “We will show that the output matches the desired result,” then

expand definitions, use observations that are true in every iteration, and use

the loop exit condition to prove correctness.

• Model problems using graphs, then apply or tweak algorithms like BFS/DFS/etc.

Thanks for coming to section this week!

	Intro
	Slide 1: CSE 421 Section 2

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	BFS/DFS
	Slide 4: Warmup: BFS/DFS
	Slide 5: Problem 1 – BFS/DFS review
	Slide 6: As a reminder...
	Slide 7: Problem 1 – BFS/DFS review
	Slide 8: Problem 1 – BFS/DFS review

	Proving algorithms correct
	Slide 9: Proving algorithms correct
	Slide 10: Problem 2 – Investigating algorithm proofs
	Slide 11: Problem 2 – Investigating algorithm proofs
	Slide 12: Problem 2 – Investigating algorithm proofs
	Slide 13: Problem 2 – Investigating algorithm proofs
	Slide 14: Problem 2 – Investigating algorithm proofs
	Slide 15: Problem 2 – Investigating algorithm proofs
	Slide 16: Problem 2 – Investigating algorithm proofs
	Slide 17: Problem 2 – Investigating algorithm proofs
	Slide 18: Problem 2 – Investigating algorithm proofs
	Slide 19: Problem 2 – Investigating algorithm proofs
	Slide 20: Problem 2 – Investigating algorithm proofs

	Applications of graph algorithms
	Slide 21: Applications of graph algorithms
	Slide 22: Tips for algorithms with graphs
	Slide 23: Problem 3 – Water jugs
	Slide 24: Problem 3 – Water jugs
	Slide 25: Problem 3 – Water jugs
	Slide 26: Problem 3 – Water jugs
	Slide 27: Problem 3 – Water jugs
	Slide 28: Problem 3 – Water jugs
	Slide 29: Problem 4 – Judging books
	Slide 30: Problem 4 – Judging books
	Slide 31: Problem 4 – Judging books
	Slide 32: Problem 4 – Judging books
	Slide 33: Problem 4 – Judging books
	Slide 34: Problem 4 – Judging books
	Slide 35: Last note on applying graph algorithms

	Outro
	Slide 36

