
CSE 421 Section 6

Dynamic Programming



Administrivia



Announcements & Reminders

● HW43/4 was due yesterday, 5/7

● HW5 due next Wednesday



Ideas for dynamic programming



What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic 

programming. What the defining features of each? When might you want to use 

each?

This problem is not on your handout.

Feel free to work with the people around you!



What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic 

programming. What the defining features of each? When might you want to use 

each?

Divide and conquer Dynamic programming

• Subproblems are significantly 

smaller, disjoint pieces (e.g. 
half)

• Memory not needed because 
every subproblem is used once

• Subproblems can be as large 
as “one smaller” and overlap

• Memory is useful because each 
subproblem is used many times

Solutio

n



What is dynamic programming?

Unlike divide and conquer, where subproblems are typically obvious, 

subproblems in dynamic programming have many flavors:

Prefixes Intervals Other

• Fibonacci

• Weighted interval 
scheduling

• Longest increasing 
subsequence

• Edit distance (two 
prefixes)

• RNA secondary 
structure

• Knapsack (prefix of 

items with capacity 
bound)

• Bellman-Ford



Problem solving strategy overview

Read and summarize the 

problem

Decide to use known algorithm or techniques from 

scratch

Solve examples to get 

ideas

Check that idea isn’t 

easily falsified or 

slow

Write pseudocode, 

proof, and running time 

analysis

not covered this 

section

no 

idea

have 

idea



Problem solving strategy overview

Read and summarize the 

problem

Decide to use known algorithm or techniques from 

scratch

Solve examples to get 

ideas

Check that idea isn’t 

easily falsified or 

slow

Write pseudocode, 

proof, and running time 

analysis

not covered this 

section

no 

idea

have 

idea

Dynamic programming is difficult 

because examples rarely help until 

you know your subproblems. You 

need to abstractly analyze the 

problem to determine subproblems 
first.

We’ll go over some strategies today.



●

Problem 1 – Going to parties

Feel free to work with 

the people around 

you!



●

Problem 1 – Going to parties

Solutio

n



When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you 

know your subproblems. 

Without trying any particular class of subproblems, just try to maximize your 

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

Try this for a minute, we’ll see who can get the 

best!



When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you 

know your subproblems. 

Without trying any particular class of subproblems, just try to maximize your 

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

The answer is 36, by taking [9, 2, 8, 6, 4, 7]. 

Solutio

n



●

A common strategy



●

A common strategy



●

A common strategy



●

A common strategy



●

A common strategy



●

Problem 1 – Going to parties



●

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous 

Solution



●

Problem 1 – Going to parties

Solutio

n

If you haven’t gotten part (iv) yet, take a moment to think about 

it!



●

Problem 1 – Going to parties

Solutio

n



c) Now that you know what form you want your subproblems to take, retry this 

example to flesh out the details of your recurrence and convince yourself that 

it works. 

[9, 2, 3, 8, 6, 6, 4, 7, 1]

d) Write the recurrence relation (for either of the two ideas from last slide). Don’t 

forget the base case(s).

Problem 1 – Going to parties

Feel free to work with the people around you!



●

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous 

Solution



●

Problem 1 – Going to parties

9 2 3 8 6 6 4 7 1

0 9 11 12 20 25 26 30 36

9 2 12 19 18 26 29 33 31

9 11 5 20 25 24 30 36 34

9 2 3 8 6 6 4 7 1

9 11 12 20 25 26 30 36 36

Solutio

n



●

Problem 1 – Going to parties

Solutio

n



●

Problem 1 – Going to parties

Solutio

n



●

Problem 1 – Going to parties

Solutio

n



●

Problem 1 – Going to parties

Solutio

n



●

Problem 1 – Going to parties

Solutio

n

Base cases involving 0 are usually easier.

Careful: Not always OPT(0) = 0! But it will usually be 

true whenever optimizing for a sum or total of 

something.



●

Problem 1 – Going to parties

Solutio

n



●

Problem 1 – Going to parties

Solutio

n



Problem 1 – Going to parties

In dynamic programming, the pseudocode will end up being a fairly direct 

translation of the recurrence, so we’ll do the proof first. In this class, we will 

focus on just proving the recursive case. A complete formal proof is, of 

course, induction. 

e) Prove your recurrence to be correct. 

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Previous 

Solution

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

●

Solutio

n



Implementation details



Problem 1 – Going to parties

Even though we’re use a recurrence relation, do not call your function 

recursively! Calling the function recursively can lead to blowing up the running 

time, so we need to consider how to remember the solutions to subproblems. 

There are two steps:

● State the parameters for your subproblems and what kind of structure you 

will use to store them.

● Describe the order for evaluating your subproblems.

f) Give this a try.

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

g) Write the pseudocode for your iterative algorithm.

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Feel free to work with the people around you!

Previous 

Solution



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

h) What is the running time of your algorithm?



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

●

Feel free to work with the people around you!



Problem 1 – Going to parties

●



Thanks for coming to section this week!

●

Summary


	Slide 1: CSE 421 Section 6
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders
	Slide 4: Ideas for dynamic programming
	Slide 5: What is dynamic programming?
	Slide 6: What is dynamic programming?
	Slide 7: What is dynamic programming?
	Slide 8: Problem solving strategy overview
	Slide 9: Problem solving strategy overview
	Slide 10: Problem 1 – Going to parties
	Slide 11: Problem 1 – Going to parties
	Slide 12: When examples don’t help
	Slide 13: When examples don’t help
	Slide 14: A common strategy
	Slide 15: A common strategy
	Slide 16: A common strategy
	Slide 17: A common strategy
	Slide 18: A common strategy
	Slide 19: Problem 1 – Going to parties
	Slide 20: Problem 1 – Going to parties
	Slide 21: Problem 1 – Going to parties
	Slide 22: Problem 1 – Going to parties
	Slide 23: Problem 1 – Going to parties
	Slide 24: Problem 1 – Going to parties
	Slide 25: Problem 1 – Going to parties
	Slide 26: Problem 1 – Going to parties
	Slide 27: Problem 1 – Going to parties
	Slide 28: Problem 1 – Going to parties
	Slide 29: Problem 1 – Going to parties
	Slide 30: Problem 1 – Going to parties
	Slide 31: Problem 1 – Going to parties
	Slide 32: Problem 1 – Going to parties
	Slide 33: Problem 1 – Going to parties
	Slide 34: Problem 1 – Going to parties
	Slide 35: Problem 1 – Going to parties
	Slide 36: Problem 1 – Going to parties
	Slide 37: Implementation details
	Slide 38: Problem 1 – Going to parties
	Slide 39: Problem 1 – Going to parties
	Slide 40: Problem 1 – Going to parties
	Slide 41: Problem 1 – Going to parties
	Slide 42: Problem 1 – Going to parties
	Slide 43: Problem 1 – Going to parties
	Slide 44: Problem 1 – Going to parties
	Slide 45: Problem 1 – Going to parties
	Slide 46: Problem 1 – Going to parties
	Slide 47: Problem 1 – Going to parties
	Slide 48: Summary

