
CSE 421 Section 6

Dynamic Programming



Administrivia



Announcements & Reminders

● HW43/4 was due yesterday, 5/7

● HW5 due next Wednesday



Ideas for dynamic programming



What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic 

programming. What the defining features of each? When might you want to use 

each?

This problem is not on your handout.

Feel free to work with the people around you!



What is dynamic programming?

Warmup! Compare and contrast divide and conquer with dynamic 

programming. What the defining features of each? When might you want to use 

each?

Divide and conquer Dynamic programming

• Subproblems are significantly 

smaller, disjoint pieces (e.g. 
half)

• Memory not needed because 
every subproblem is used once

• Subproblems can be as large 
as “one smaller” and overlap

• Memory is useful because each 
subproblem is used many times

Solutio

n



What is dynamic programming?

Unlike divide and conquer, where subproblems are typically obvious, 

subproblems in dynamic programming have many flavors:

Prefixes Intervals Other

• Fibonacci

• Weighted interval 
scheduling

• Longest increasing 
subsequence

• Edit distance (two 
prefixes)

• RNA secondary 
structure

• Knapsack (prefix of 

items with capacity 
bound)

• Bellman-Ford



Problem solving strategy overview

Read and summarize the 

problem

Decide to use known algorithm or techniques from 

scratch

Solve examples to get 

ideas

Check that idea isn’t 

easily falsified or 

slow

Write pseudocode, 

proof, and running time 

analysis

not covered this 

section

no 

idea

have 

idea
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Dynamic programming is difficult 

because examples rarely help until 

you know your subproblems. You 

need to abstractly analyze the 

problem to determine subproblems 
first.

We’ll go over some strategies today.



●

Problem 1 – Going to parties

Feel free to work with 

the people around 

you!



●

Problem 1 – Going to parties

Solutio

n



When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you 

know your subproblems. 

Without trying any particular class of subproblems, just try to maximize your 

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

Try this for a minute, we’ll see who can get the 

best!



When examples don’t help

Here’s an in-class exercise to show why examples are not so helpful before you 

know your subproblems. 

Without trying any particular class of subproblems, just try to maximize your 

happiness given the following array, using your personal logic and heuristics:

[9, 2, 3, 8, 6, 6, 4, 7, 1]

The answer is 36, by taking [9, 2, 8, 6, 4, 7]. 

Solutio

n



●

A common strategy
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A common strategy
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A common strategy
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A common strategy
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Problem 1 – Going to parties



●

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous 

Solution



●

Problem 1 – Going to parties

Solutio

n

If you haven’t gotten part (iv) yet, take a moment to think about 

it!



●

Problem 1 – Going to parties

Solutio

n



c) Now that you know what form you want your subproblems to take, retry this 

example to flesh out the details of your recurrence and convince yourself that 

it works. 

[9, 2, 3, 8, 6, 6, 4, 7, 1]

d) Write the recurrence relation (for either of the two ideas from last slide). Don’t 

forget the base case(s).

Problem 1 – Going to parties

Feel free to work with the people around you!



●

Problem 1 – Going to parties

Feel free to work with the people around you!

Previous 

Solution



●

Problem 1 – Going to parties

9 2 3 8 6 6 4 7 1

0 9 11 12 20 25 26 30 36

9 2 12 19 18 26 29 33 31

9 11 5 20 25 24 30 36 34

9 2 3 8 6 6 4 7 1

9 11 12 20 25 26 30 36 36

Solutio

n
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Problem 1 – Going to parties

Solutio

n

Base cases involving 0 are usually easier.

Careful: Not always OPT(0) = 0! But it will usually be 

true whenever optimizing for a sum or total of 

something.



●

Problem 1 – Going to parties
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Problem 1 – Going to parties

In dynamic programming, the pseudocode will end up being a fairly direct 

translation of the recurrence, so we’ll do the proof first. In this class, we will 

focus on just proving the recursive case. A complete formal proof is, of 

course, induction. 

e) Prove your recurrence to be correct. 

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Previous 

Solution

Feel free to work with the people around you!
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Problem 1 – Going to parties
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Implementation details



Problem 1 – Going to parties

Even though we’re use a recurrence relation, do not call your function 

recursively! Calling the function recursively can lead to blowing up the running 

time, so we need to consider how to remember the solutions to subproblems. 

There are two steps:

● State the parameters for your subproblems and what kind of structure you 

will use to store them.

● Describe the order for evaluating your subproblems.

f) Give this a try.

Feel free to work with the people around you!



Problem 1 – Going to parties
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Problem 1 – Going to parties

g) Write the pseudocode for your iterative algorithm.

Feel free to work with the people around you!



Problem 1 – Going to parties

●

Feel free to work with the people around you!

Previous 

Solution
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Problem 1 – Going to parties

h) What is the running time of your algorithm?



Problem 1 – Going to parties

●

Solutio

n



Problem 1 – Going to parties

●

Feel free to work with the people around you!



Problem 1 – Going to parties

●



Thanks for coming to section this week!

●

Summary
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