CSE 421 Section 5

Midterm Review




Announcements & Reminders

e HW4 was due yesterday, 4/30
e HWA4.75 is due Wednesday, 5/7

e Your midterm exam is on Monday, 5/5 in class
o A practice midterm is available on the class site



Preparation Tips

e Read the practice midterm. This will give you a good idea of the format,
length, and type of questions asked. Work on it yourself before looking at
solutions.

e Read the midterm cover sheet on the class site. This states our
expectations for your solutions and some advice to keep in mind

e Rewatch lectures and refresh your understanding of all key concepts

e You may bring one sheet of double sided 8.5x11” paper containing notes.

o Must write name, student number, and UW NetID
o Must turn in with exam
e Review solutions to homework and section problems!



Midterm Tips

Come on time!

You have the full lecture period — attempt everything for partial credit!
Write short, direct solutions. Use technical English where possible.
Read each question fully. Most questions do not make you write the full
algorithm, correctness and runtime — don’t waste time on unneeded
parts!

e If you can’t find an algorithm with the optimal runtime, you will get
partial credit for a weaker runtime algorithm.



Topics - General / Stable Matching

e Runtime, Big-O notation

e Direct Proofs, Proof By Contradiction, Induction / Strong Induction
e Stable Matching Problem

e Gale-Shapley — proposer optimality, receiver pessimality, runtime



Topics - Graphs

Runtime, Big-O notation

Direct Proofs, Proof By Contradiction, Induction / Strong Induction
Cycles, trees, properties of trees

Graph search (BFS, DFS), properties of BFS, DFS tree

Finding connected components, odd cycles, etc.

Directed graphs (topological sort), DFS on directed graphs



Topics - Greedy

e Interval Scheduling, Minimizing Lateness
e Prim’s MST, Kruskal's MST, Dijkstra’s Shortest Paths
e \Ways to prove correctness:

(@)

Greedy Stays Ahead: Show that after each step of the greedy algorithm,
its solution is at least as good as any other algorithms

Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

Exchange Argument: We can gradually transform any solution into the
one found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.



Topics - Divide and Conquer

o Recurrences (Master Theorem)

e Binary Search, Merge-sort

o Approximation the Root of a Function

o Finding Closest Points

o Multiplication - Matrix, Integer, Polynomial
o Median, Selection, Quicksort



Topics — Dynamic Programming

o Writing recursive definition of problem
o Calculating runtime (subproblems * time per subproblem)

e Problems discussed:

o Tribonacci
- Edit Distance
- Knapsack



Today’s plan

Choose from these problems!
* Problem 1: Short answer
* Problem 2: Stable matching reduction*
* Problem 3: Graph algorithms
* Problem 4: Greedy algorithms*
* Problem 5: Divide and conquer®
* Problem 6: Dynamic programming

*the problem was an extra problem on a previous section handout



Problems




Problem 1 - Short answer

® p ranks r first and r ranks p first, then (p, r) must be in every stable matching.



Solutio

Problem 1 - Short answer

* p ranks r first and r ranks p first, then (p, ) must be in every stable matching.

True. If p and r were not matched, then they prefer each other over the current
matches, so this is an instability.

n




Problem 1 - Short answer

Running DFS on a directed acyclic graph may produce:
J Tree edges
d Back edges
d Forward edges
[ Cross edges



Solutio

n

Problem 1 - Short answer

Running DFS on a directed acyclic graph may produce:
J Tree edges
d Back edges
d Forward edges
[ Cross edges

All except back edges, since they create cycles. 6/7




Problem 1 - Short answer

The recurrence T(n) = 2T (n/3) + 0(n?) simplifies to...?



Problem 1 - Short answer
The recurrence T(n) = 2T (n/3) + 0(n?) simplifies to...?

®(n?). By master theorem, since 2 < 32,

Solutio

n




Problem 1 - Short answer

Suppose G has positive, distinct edge costs. If T is an MST of G, then it is stillan MST
after replacing each edge cost c, with c2.



Problem 1 - Short answer

Solutio

n

Suppose G has positive, distinct edge costs. If T is an MST of G, then it is stillan MST

after replacing each edge cost ¢, with cZ.

True. Kruskal’s (or Prim’s) only depends on the relative order of edge costs.

Furthermore, because costs are distinct, there is a unique MST, so Kruskal’s algorithm

found T before and will still find T now.




Problem 1 - Short answer

eet G = (V,E) be a weighted, undirected graph. Considerany cutS € V, and let e be
an edge of minimum weight across the cut S. Then every MST contains e.



Problem 1 - Short answer

Solutio

n

eet G = (V,E) be a weighted, undirected graph. Considerany cutS € V, and let e be

an edge of minimum weight across the cut S. Then every MST contains e.

False. The theorem requires edge weights be distinct. Consider:
1

1

Return to problem
select




Problem 2 - Stable matching reduction

¥here are R riders, H horses with 2H < R < 3H. Riders and horses have preferences
for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round.

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse
does exactly 2 or 3 rides, and there are no unstable matches.



Solutio

n

Problem 2 - Stable matching reduction

¥here are R riders, H horses with 2H < R < 3H. Riders and horses have preferences
for each other. Also, riders prefer the first 2 rounds. Horses prefer to ride every round.

Set up 3 rounds of rides, so that every rider will ride a horse exactly once, every horse
does exactly 2 or 3 rides, and there are no unstable matches.

For all horses h, create hq, hy, and h;. Add 3H — R dummy riders. For preference lists:
e Forrealriders: original list with h; and h, replacing h, then original list with h3’s.
e Fordummy riders: all h; (in any order), then everything else (in any order).

e For horse-in-rounds: original list, then dummy riders in any order.



Problem 2 - Stable matching reduction

Solutio

n

®or all horses h, create h,, h,,and h;. Add 3H — R dummy riders. For preference lists:
e Forrealriders: original list with h; and h, replacing h, then original list with h3’s.

e For dummyriders: all h; (in any order), then everything else (in any order).
e For horse-in-rounds: original list, then dummy riders in any order.

Then:
e Everyrideris matched because library returns perfect matching.

e Dummy matched to horse in round 1 or 2 is unstable.
e Horse and real rider who prefer each other is unstable.

Return to problem
select




Problem 3 - Graph modeling

€iven (a4, by), ..., (ay, by), the person living in unit a; is moving to b;. Some people
may be new arrivals (a; = null) or moving out (b; = null). Give an algorithm that

returns a valid moving order (every unit is vacated before someone moves in), or “not
possible” and a minimal list of pairs that explains why.



Solutio

Problem 3 - Graph modeling "

€iven (a4, by), ..., (ay, by), the person living in unit a; is moving to b;. Some people
may be new arrivals (a; = null) or moving out (b; = null). Give an algorithm that

returns a valid moving order (every unit is vacated before someone moves in), or “not
possible” and a minimal list of pairs that explains why.

(2,null) > (1,2) » (nul, 1) A - B iff A must happen before B

VRN

G363



Solutio

Problem 3 - Graph modeling "

€iven (a4, by), ..., (ay, by), the person living in unit a; is moving to b;. Some people
may be new arrivals (a; = null) or moving out (b; = null). Give an algorithm that

returns a valid moving order (every unit is vacated before someone moves in), or “not
possible” and a minimal list of pairs that explains why.

(2 null) > (1,2) + (null,1) 1. Check for cycles with B/DFS.
a. Ifthere is a cycle, not
VRS

possible.



Solutio

Problem 3 - Graph modeling "

€iven (a4, by), ..., (ay, by), the person living in unit a; is moving to b;. Some people
may be new arrivals (a; = null) or moving out (b; = null). Give an algorithm that

returns a valid moving order (every unit is vacated before someone moves in), or “not
possible” and a minimal list of pairs that explains why.

(2 null) > (1,2) + (null,1) 1. Check for cycles with B/DFS.
a. Ifthere is a cycle, not
(3,5) — (4,3) possible.

b. If there is no cycle, topo sort.

Return to problem
select




Problem 4 - Greedy algorithms

&iven a set X of integer intervals [a, b] € Z, find the smallest set Y € X such that
every pointin any interval of X belongs to some interval of Y (i.e. Y covers X).



Solutio

Problem 4 - Greedy algorithms "

€iven a set X of integer intervals [a, b] € Z, find the smallest set Y € X such that
every pointin any interval of X belongs to some interval of Y (i.e. Y covers X).

Repeatedly pick the interval with the largest end point that covers the smallest yet-
uncovered point.

(For implementation details, see solutions tonight. Naively finding the “smallest yet-
uncovered point” is technically correct but slow.)



Solutio

Problem 4 - Greedy algorithms "

Repeatedly pick the interval with the largest end point that covers the smallest yet-
uncovered point.

Proof sketch: (greedy stays ahead)
e Weoutput[a,, b]), ..., [ak, bx] and suppose [04,P1], ---, [0}, ;] is valid and sorted.
e Can prove by induction that b; = p; for all i (explain why this is enough).

o After selecting [a,, b,], ..., [a;—1, b;—1] the smallest uncovered point is larger
than b;_, and hence not covered by [04, 1], ..., [0i—1, Pi—1] by induction.
If [0;, p;] does not cover it, by sortedness, other solution is invalid.

If [0;, p;] does cover it, then b; = p; because that was our greedy criterion.

Return to problem
select




Problem 5 - Divide and conquer

®[1..n] isa mountain if there is a peak i such that
A[l] < <Ali—1] < A[i]and A[i] > A[i + 1] > --- > A[n].
The peak may be at 1 or n. Given a mountain, find the peakin O(logn) time.



Solutio

n

Problem 5 - Divide and conquer

#l[1..n] is a mountain if there is a peak i such that
All] < -+ < Ali — 1] < A[i]and A[i] > Ali + 1] > -+ > A[n].
The peak may be at 1 or n. Given a mountain, find the peak in O (log n) time.

function peakFinder(i, j) _ _

1 o |t (base case omitted for slide
N Y brevity)

2. if Alm] < Alm + 1]

a. returnpeakFinder(m + 1, j)

3. elseif Alm — 1] > A[m]
a. returnpeakFinder(i,m — 1)

4. elsereturnm



Problem 5 - Divide and conquer

éunction peakFinder(i, j)

1. me [
’ 2
2. if Alm] < Alm + 1]
a. return peakFinder(m + 1, j)
3. elseif Am—1] > A[m]

a. returnpeakFinder(i,m — 1)
4, elsereturnm

Inductionon k:

Solutio

n

Foralliandjwithj —i = k, if A[i.. j] contains the peak, peakFinder(i, j) finds it.

(crucial point!)




Problem 5 - Divide and conquer

tduction on k:
Foralliand j withj — i = k, if A[i.. j] contains the peak, peakFinder(i, j) finds it.

Three cases for where the peak is:
1. ThepeakisinA[m + 1..j].

We end up in the first if branch (explain why).

Solutio

n

Can apply IH to peakFinder(m + 1, j) because the peakisin Ajm + 1..j]!
2. Thepeakisin A[i..m — 1]. Similar.
3. Thepeakis A[m].

We end up in the else branch (explain why).

Return to problem

select




Problem 6 - Dynamic programming

€ompute the maximum reward going from (1, 1) to (m, n) on a grid, where you gain
R[i, j] whenever passing through (i, j). Starting/ending count as passing through.
R[i, j] may be negative (penalty) or —oo (impassible).



Solutio

n

Problem 6 - Dynamic programming

€ompute the maximum reward going from (1, 1) to (m, n) on a grid, where you gain
R[i, j] whenever passing through (i, j). Starting/ending count as passing through.
R[i, j] may be negative (penalty) or —oo (impassible).

OPT(i,j) = R[i,j] + max(OPT(i — 1,j),0PT(i,j — 1)) i,j>2
OPT(1,1) = R[1,1]

OPT(1,j) = R[1,j] + OPT(1,j — 1) j>2
OPT(i,1) = R[i, 1] + OPT(i — 1,1) i>2

Return to problem
select




