
CSE 421 Section 3

Problem solving with greedy algorithms

Administrivia

Announcements & Reminders
● HW1

○ Regrade requests are open

○ Answer keys available on Ed

● HW2

○ Was due yesterday, 4/16

○ Remember the late days policy

○ Total of 4 late days, at most 1 late day per assignment

○ Assignments cannot be submitted after >1 day late!

● HW3

○ Due Wednesday 4/23 @ 11:59pm

Induction on Graphs

Induction on graphs
Induct on the number of vertices

Remove a vertex or edge

Prove that graph still has all
properties (important!)

Use IH, then add the vertex/edge
back and prove claim still holds

Induction on trees
Induct on the number of vertices

Remove a leaf

Prove that tree is still a tree and
has all properties (important!)

Use IH, then add the leaf back
and prove claim still holds

Trees lend themselves nicely to

induction – we can always remove

leaves, and the graph remains a

tree.

Example on Trees
Every tree on n vertices has exactly n-1 edges.

We induct on the number of vertices. Let P(n) be that “a tree on n vertices
has n-1 edges.” We prove P(n) for all n >= 1.

Base Case: n=1, there is one tree, and it has zero edges.

IH: Assume P(n-1) holds.

IS: Start with a tree on n vertices. Every tree has a leaf, so we can remove a
leaf and its corresponding edge. The resulting graph has n-1 edges.
Removing a leaf does not introduce a cycle nor can it disconnect the
graph, so the resulting graph is a tree on n-1 vertices. By IH, this tree has
n-2 edges. Add the leaf back and we get n-1 edges exactly.

Example on Trees

We encourage you to write proofs in plain technical English instead of a
formal template like the last slide.

We prove by induction that every tree with n vertices has exactly n - 1
edges. For the base case, a tree with one vertex has no edges, satisfying
the formula n - 1 = 0. Assume a tree with k vertices has k - 1 edges. For a

tree with k + 1 vertices, remove a leaf (a vertex of degree 1); the resulting
graph is still a connected, acyclic graph—i.e., a tree—with k vertices and
thus k - 1 edges by the inductive hypothesis. Adding back the removed

vertex and its edge gives k edges, so the formula holds for k + 1.

How to write an algorithm

Problem solving strategy overview

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Getting started

Getting started

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Problem summary

When reading a long word problem, it is useful to summarize it. A common way is:

Input: …

Expected output: …

● mathematical definitions of any special words used above

Problem summary

When reading a long word problem, it is useful to summarize it. A common way is:

Example

Input: Two sets 𝑃 and 𝑅 of 𝑛 people each, with preference lists

Expected output: A stable matching

● preference list: an ordered list of people in the other set

● stable matching: a perfect matching for which there is no (𝑝, 𝑟) where 𝑝 and

𝑟 prefer each other over their current match

Problem 1 – Line covering

Your new towing company wants to be prepared to help along the highway during the

next snowstorm. You have a list of integers 𝑡1, 𝑡2, … , 𝑡𝑛 in increasing order,

representing mile markers on the highway where you think it is likely someone will

need a tow (entrances/exits, merges, rest stops, etc.). To ensure you can help quickly,

you want to place your tow trucks so that from every marker, at least one truck is at

most 3 miles away. Find a minimum length list of sites where you can place tow trucks

to satisfy the requirement, written as a list of integers 𝑎1, 𝑎2, … , 𝑎𝑚 in increasing order.

Note that the sites that you pick need not be a subset of the marked locations.

a) Write a summary of the problem.
Feel free to work with

the people around you!

Problem 1 – Line covering

a) Write a summary of the problem.

Input: A list of increasing integers 𝑡1, 𝑡2, … , 𝑡𝑛
Expected output: A shortest list of increasing integers 𝑎1, … , 𝑎𝑚 covering the input

● cover: for all 𝑖 ∈ {1, … , 𝑛}, there exists 𝑗 ∈ {1, …𝑚} such that 𝑡𝑖 − 𝑎𝑗 ≤ 3.

Solution

Reduction vs. techniques from scratch

Read and summarize the problem

Known algorithms

• Stable matching

• Graph algorithms

• …etc.

• Network flows (week 6)

• Linear programming (week 8)

Techniques from scratch

• Greedy algorithms

• Divide and conquer (week 4)

• Dynamic programming (week 5)

Does the problem remind me of an algorithm I’ve seen in class?

None of these seem right for today’s problem,
so we’ll try a greedy algorithm!

Generating ideas

Generating ideas

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Generating ideas

If using techniques from scratch:

(for today, greedy algorithms only)

Solve many examples by hand

• In the beginning, don’t worry about

general strategy

• Think about what patterns appear

• If your brain is magically solving

small examples, try bigger ones

Ask yourself questions

• Can I break my strategy with a

nasty example?

• Does my strategy ever waste

time? Can I optimize it?

have ideano idea

yes :(

all good!

idea!

Ideas for greedy algorithms

● What’s a greedy algorithm?

○ Follows a rule to keep picking something

○ Doesn’t consider the future

○ Doesn’t go back to fix things

● Coming up with many greedy ideas should be easy. Finding the correct greedy idea

will usually require trial and error or insight.

Problem 1 – Line covering

b) We will practice generating ideas.

i. Solve these by hand. Don’t worry too much about greedy strategies yet.

1, 2, 4, 10, 12

0, 1, 3, 5, 7, 8, 13, 14

Feel free to work with the people around you!

Problem 1 – Line covering

b) We will practice generating ideas.

i. Solve these by hand. Don’t worry too much about greedy strategies yet.

1, 2, 4, 10, 12

2 trucks. Many solutions, for example at 2 and 11.

0, 1, 3, 5, 7, 8, 13, 14

3 trucks. Many solutions, for example at 0, 7, and 13.

Solution

Problem 1 – Line covering

1, 2, 4, 10, 12

0, 1, 3, 5, 7, 8, 13, 14

ii. Suppose you came up with the greedy idea:

“Put a truck on the first uncovered marker.”

Check that this idea works on the above examples. Then, try to break this idea by

coming up with an example where it doesn’t work.

Feel free to work with the people around you!

Problem 1 – Line covering

1, 2, 4, 10, 12

0, 1, 3, 5, 7, 8, 13, 14

ii. Suppose you came up with the greedy idea:

“Put a truck on the first uncovered marker.”

Check that this idea works on the above examples. Then, try to break this idea by

coming up with an example where it doesn’t work.

0, 6 can be covered by one truck at 3, this method gives two trucks.

(many other examples)

Solution

Problem 1 – Line covering

iii. Come up with a new greedy idea that solves your new example. Does the idea

work? If not, continue the process until you have a working idea.

Feel free to work with the people around you!

Problem 1 – Line covering

iii. Come up with a new greedy idea that solves your new example. Does the idea

work? If not, continue the process until you have a working idea.

Sample final idea:

Place a truck at the farthest location that still covers the next uncovered marker.

That is, if 𝑡𝑖 is the next uncovered marker, place a truck at 𝑡𝑖 + 3.

Solution

Writing up your idea

Writing up your idea

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that idea isn’t

easily falsified or slow

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

Writing up your idea

Once you have an efficient, working idea:

1. Translate it into pseudocode.

• More precise than English, but easier to understand than code.

• No hard rules, but see handout from last week for common styles.

2. Prove the pseudocode correct.

• We’ll cover greedy-specific tips today!

3. Write up the running time analysis.

Problem 1 – Line covering

c) Write the pseudocode for the solution.

Problem 1 – Line covering

c) Write the pseudocode for the solution.

Input: A list of increasing integers 𝑡1, 𝑡2, … , 𝑡𝑛
Expected output: A shortest list of increasing integers 𝑎1, … , 𝑎𝑚 covering the input

Idea: Place a truck at the farthest location that still covers the next uncovered marker.

That is, if 𝑡𝑖 is the next uncovered marker, place a truck at 𝑡𝑖 + 3.

Previous Solution

Feel free to work with the people around you!

Problem 1 – Line covering

c) Write the pseudocode for the solution.

Input: A list of increasing integers 𝑡1, 𝑡2, … , 𝑡𝑛
Expected output: A shortest list of increasing integers 𝑎1, … , 𝑎𝑚 covering the input

Solution

1. Let 𝑖 = 1 and 𝑗 = 1.

2. While 𝑖 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖 + 3.

b. Repeatedly increment 𝑖 until 𝑡𝑖 > 𝑎𝑗 + 3 (or 𝑖 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Problem 1 – Line covering

c) Write the pseudocode for the solution.

Input: A list of increasing integers 𝑡1, 𝑡2, … , 𝑡𝑛
Expected output: A shortest list of increasing integers 𝑎1, … , 𝑎𝑚 covering the input

Solution

Extra tip: Avoid changing values
(excluding the iteration counter)
whenever you can do so without
increasing big-O runtime. This
way, proofs are easier to write:

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly increment

𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3 (or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.
“𝑖 at the start of iteration 𝑗” → “𝑖𝑗”

“𝑖 at the end of iteration 𝑗” → “𝑖𝑗+1”

Algorithm proofs refresher

● As always, prove validity, termination, and correctness.

● Correctness always means:
“My algorithm’s output matches the problem summary’s expected output.”

● For greedy algorithms, correctness means “My output is an optimal solution.”
In other words, two things to prove:
○ “Output is a valid solution.”

■ “The list 𝑎1, … , 𝑎𝑚 is in increasing order and covers all markers.”

○ “Output is optimal.”
■ “All other valid solutions use at least 𝑚 trucks.”

Algorithm proofs refresher

For optimality, there are some common strategies:

● “Greedy stays ahead”: For all other solutions, show by induction that at every
step, your solution is at least as good.

● “Exchange argument”: For all other solutions that differ from yours, show how to
replace a part of the other solution, so that the quality improves or stays the same
(but never decreases).

● “Structural argument”: (less common) Find a “hard subset” of the input that
immediately implies why other solutions must also be as bad as yours (or worse).

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Each line is valid:

Termination:

“The output is in increasing order.”:

“The output covers all markers.”:

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Each line is valid:

Termination:

“The output is in increasing order.”:

“The output covers all markers.”:

Previous Solution

Focus on these easier parts first, and feel free to work with the people around you!

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Each line is valid:

Evident.

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Solution

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Termination:

We have 𝑡𝑖𝑗 = 𝑎𝑗 − 3 < 𝑎𝑗 + 3 < 𝑡𝑖𝑗+1 ,

thus 𝑖𝑗 ≠ 𝑖𝑗+1, so 𝑖 increases every

iteration and there are at most 𝑛

iterations. Line 2b’s inline “repeat” ends

in at most 𝑛 iterations as well, since we

stop if 𝑖𝑗+1 > 𝑛.

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Solution

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

“The output is in increasing order.”:

Again, 𝑡𝑖𝑗 < 𝑡𝑖𝑗+1 , thus we conclude that

𝑎𝑗 = 𝑡𝑖𝑗 + 3 < 𝑡𝑖𝑗+1 + 3 = 𝑎𝑗+1.

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Solution

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

“The output covers all markers.”:

We increment 𝑖𝑗+1 to 𝑖𝑗+1 + 1 if and only

if 𝑡𝑖𝑗+1 is covered by 𝑎𝑗. Since we exit the

loop when 𝑖𝑗 > 𝑛, every marker is

covered.

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Solution

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Now for the harder part. For this section, try

to write a “greedy stays ahead” proof!

“All other valid solutions use

at least 𝒎 trucks.”

i. What is the “greedy stays ahead” claim?

Problem 1 – Line covering

d) Write a proof that your pseudocode is correct.

Now for the harder part. For this section, try

to write a “greedy stays ahead” proof!

“All other valid solutions use

at least 𝒎 trucks.”

i. What is the “greedy stays ahead” claim?

Feel free to work with the people around you!

Previous Solution

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Problem 1 – Line covering

i. What the “greedy stays ahead” claim?

Let 𝑜1, … , 𝑜𝑀 be any other valid solution. We will show for all 𝑗:

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

There are actually many possible “greedy stays ahead” claims. Another option is:

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 covers at least as many 𝑡𝑖 as 𝑜1, … , 𝑜𝑗 covers.”

The one we chose will be a bit natural to prove, since it describes the situation a bit

more exactly.

Solution

Problem 1 – Line covering

ii. Prove the “greedy stays ahead” claim using induction.

Feel free to work with
the people around you!

Problem 1 – Line covering

ii. Prove the “greedy stays ahead” claim using induction.

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Feel free to work with
the people around you!

Previous Solution

Problem 1 – Line covering

ii. Prove the “greedy stays ahead” claim using induction.

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

Solution

Base case: We will show 𝑃(1), that 𝑎1 covers

all 𝑡𝑖 that are covered by 𝑜1.

1. We set 𝑎1 = 𝑡1 + 3.

2. If 𝑜1 > 𝑎1, then 𝑜1 does not cover 𝑡1, and

neither do 𝑜2, … , 𝑜𝑀 > 𝑜1, contradiction.

𝑡𝑖

𝑎𝑗

𝑜𝑗

…

Problem 1 – Line covering

ii. Prove the “greedy stays ahead” claim using induction.

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

Solution

Base case: We will show 𝑃(1), that 𝑎1 covers

all 𝑡𝑖 that are covered by 𝑜1.

1. We set 𝑎1 = 𝑡1 + 3.

2. If 𝑜1 > 𝑎1, then 𝑜1 does not cover 𝑡1, and

neither do 𝑜2, … , 𝑜𝑀 > 𝑜1, contradiction.

3. If 𝑜1 ≤ 𝑎1, since 𝑡1 is the smallest marker,

𝑎1 covers everything that 𝑜1 covers.

𝑡𝑖

𝑎𝑗

𝑜𝑗

…

Problem 1 – Line covering

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

Solution

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Inductive hypothesis: Suppose that 𝑃(𝑗)

holds for all 𝑗 ≤ 𝑘.

Inductive step: We will show 𝑃(𝑘 + 1).

1. Note that for all 𝑗, 𝑡𝑖𝑗 is the smallest

marker not covered by 𝑎1, … , 𝑎𝑗−1. (This

is a loop invariant, formally prove it by

induction).

2. So when 𝑗 = 𝑘 + 1, 𝑡𝑖𝑘+1 is not covered

by 𝑎1, … , 𝑎𝑘, and nor by 𝑜1, … , 𝑜𝑘 by IH.

Problem 1 – Line covering

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

Solution

3. We set 𝑎𝑘+1 = 𝑡𝑖𝑘+1 + 3.

4. If 𝑜𝑘+1 > 𝑎𝑘+1, sites 𝑜1, … , 𝑜𝑘 don’t cover

𝑡𝑖𝑘+1 by what we just said, and nor do

𝑜𝑘+1, … , 𝑜𝑀 > 𝑡𝑖𝑘+1 + 3, contradiction.

𝑡𝑖𝑘+1

𝑎𝑘+1 ……

𝑜𝑘+1

𝑡𝑖𝑘+1

𝑎𝑘+1 …

𝑜𝑘+1

Problem 1 – Line covering

𝑃 𝑗 = “Sites 𝑎1, … , 𝑎𝑗 cover all 𝑡𝑖 that are covered by 𝑜1, … , 𝑜𝑗 (and possibly more).”

Solution

3. We set 𝑎𝑘+1 = 𝑡𝑖𝑘+1 + 3.

4. If 𝑜𝑘+1 > 𝑎𝑘+1, sites 𝑜1, … , 𝑜𝑘 don’t cover

𝑡𝑖𝑘+1 by what we just said, and nor do

𝑜𝑘+1, … , 𝑜𝑀 > 𝑡𝑖𝑘+1 + 3, contradiction.

5. If 𝑜𝑘+1 ≤ 𝑎𝑘+1, since 𝑡𝑖𝑘+1 is the smallest

uncovered marker, 𝑎𝑘+1 covers

everything that 𝑜𝑘+1 newly covers.

Combined with IH, we get 𝑃(𝑘 + 1).

…

Problem 1 – Line covering

e) Analyze and prove the running time with big-O in a few sentences.

Problem 1 – Line covering

e) Analyze and prove the running time with big-O in a few sentences.

Feel free to work with the people around you!

Previous Solution

1. Let 𝑖1 = 1 and 𝑗 = 1.

2. While 𝑖𝑗 ≤ 𝑛,

a. Let 𝑎𝑗 = 𝑡𝑖𝑗 + 3.

b. Let 𝑖𝑗+1 = 𝑖𝑗, then repeatedly

increment 𝑖𝑗+1 until 𝑡𝑖𝑗+1 > 𝑎𝑗 + 3

(or 𝑖𝑗+1 > 𝑛).

c. Increment 𝑗.

3. Return the list of all 𝑎𝑗.

Problem 1 – Line covering

e) Analyze and prove the running time with big-O in a few sentences.

Line 2b’s inline repeat occurs 𝑛 times across all iterations of the outer loop, and the

rest of the outer loop takes constant time per iteration, for up to 𝑛 iterations. Hence,

the running time is 𝑂(𝑛).

Solution

Summary

Thanks for coming to section this week!

Read and summarize the problem

Decide to use known algorithm or techniques from scratch

Solve examples to get ideas
Check that ideas are

correct and efficient

Write pseudocode, proof,
and running time analysis

not covered this section no idea have idea

	Intro
	Slide 1: CSE 421 Section 3

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders
	Slide 4: Induction on Graphs
	Slide 5: Induction on graphs
	Slide 6: Induction on trees
	Slide 7: Example on Trees
	Slide 8: Example on Trees

	Overview
	Slide 9: How to write an algorithm
	Slide 10: Problem solving strategy overview

	Getting started
	Slide 11: Getting started
	Slide 12: Getting started
	Slide 13: Problem summary
	Slide 14: Problem summary
	Slide 15: Problem 1 – Line covering
	Slide 16: Problem 1 – Line covering
	Slide 17: Reduction vs. techniques from scratch

	2
	Slide 18: Generating ideas
	Slide 19: Generating ideas
	Slide 20: Generating ideas
	Slide 21: Ideas for greedy algorithms
	Slide 22: Problem 1 – Line covering
	Slide 23: Problem 1 – Line covering
	Slide 24: Problem 1 – Line covering
	Slide 25: Problem 1 – Line covering
	Slide 26: Problem 1 – Line covering
	Slide 27: Problem 1 – Line covering

	5
	Slide 28: Writing up your idea
	Slide 29: Writing up your idea
	Slide 30: Writing up your idea
	Slide 31: Problem 1 – Line covering
	Slide 32: Problem 1 – Line covering
	Slide 33: Problem 1 – Line covering
	Slide 34: Problem 1 – Line covering
	Slide 35: Algorithm proofs refresher
	Slide 36: Algorithm proofs refresher
	Slide 37: Problem 1 – Line covering
	Slide 38: Problem 1 – Line covering
	Slide 39: Problem 1 – Line covering
	Slide 40: Problem 1 – Line covering
	Slide 41: Problem 1 – Line covering
	Slide 42: Problem 1 – Line covering
	Slide 43: Problem 1 – Line covering
	Slide 44: Problem 1 – Line covering
	Slide 45: Problem 1 – Line covering
	Slide 46: Problem 1 – Line covering
	Slide 47: Problem 1 – Line covering
	Slide 48: Problem 1 – Line covering
	Slide 49: Problem 1 – Line covering
	Slide 50: Problem 1 – Line covering
	Slide 51: Problem 1 – Line covering
	Slide 52: Problem 1 – Line covering
	Slide 53: Problem 1 – Line covering
	Slide 54: Problem 1 – Line covering
	Slide 55: Problem 1 – Line covering

	Outro
	Slide 56

