
Section 3: Solutions
In this section, we’re going to walk step-by-step through good problem-solving strategies applied to one algorithm
design question. There are also a couple of problems at the end we won’t have time to cover.

1. Line covering

Your new towing company wants to be prepared to help along the highway during the next snowstorm. You have a
list of integers t1, t2, . . . , tn in increasing order, representing mile markers on the highway where you think it is likely
someone will need a tow (entrances/exits, merges, rest stops, etc.). To ensure you can help quickly, you want to
place your tow trucks so that from every marker, at least one truck is at most 3 miles away. Find a minimum length
list of sites where you can place tow trucks to satisfy the requirement, encoded as a list of integers a1, a2, . . . , am in
increasing order. Note that the sites that you pick need not be a subset of the marked locations.

1.1. Getting started
When reading a long word problem, it is useful to summarize it. A common way is:

Input: …
Expected output: …

• mathematical definitions of any special words used above

(a) Write a summary of the above problem.

Solution:

Input: A list of increasing integers t1, t2, . . . , tn
Expected output: A shortest list of increasing integers a1, a2, . . . , am covering the input

• cover: for all i ∈ {1, . . . , n}, there exists j ∈ {1, . . . ,m} such that |ti − aj | ≤ 3.

After summarizing the problem, you’ll want to consider which big category of techniques you want to use.

• Does the problem remind you of an algorithm you’ve seen in class, like stable matching, graph algorithms, etc.?
If so, you can try a reduction or modifying the known algorithm, like you’ve done on the past few homework
sets.

• If not, you’ll want to try techniques for developing algorithms from scratch. Greedy algorithms are the first
category we’re learning about. In the coming weeks, we’ll also learn the techniques of divide and conquer and
dynamic programming.

For today, since this problem doesn’t sound like anything we’ve seen in class so far, we’ll try to use a greedy tech-
nique!

1.2. Generating ideas
When developing an algorithm from scratch, it can be difficult to come up with ideas to get started, but there is a
common method.

• First, solve many examples by hand. In the beginning, don’t worry about the general strategy. But as you
start to try larger examples, keep the techniques you’ve learned like greedy methods (and later dynamic pro-
gramming, etc.) in mind. You will start to see patterns after enough examples to give you an idea.

• Your first idea will probably be wrong. Whenever you have an idea, you should ask yourself, “Can I break my
strategy with a nasty example? Does my strategy ever waste time? Can I optimize it?” If it turns out that your
strategy is bad, go back to examples to see how to modify it or to see what other ideas might work.

1

• After several cycles of this process, you will likely have an idea that you believe to be correct and efficient. At
this point, you can exit the idea generating process and begin writing.

For greedy algorithms in particular, keep in mind that your strategies should meet the following criteria:

• Follows a rule to keep picking something

• Doesn’t consider the future

• Doesn’t go back to fix things

(Of course, considering the future or backtracking to fix mistakes are important things that are sometimes necessary,
but the point of greedy algorithms is that very often, those more advanced ideas aren’t needed. Check whether or
not easy greedy rules first, before trying other techniques that we’ll learn later in class.)

Coming up with many greedy ideas should be easy. But finding the correct greedy idea will usually require trial and
error or insight, so don’t be discouraged.

(b) We will practice the idea generating process.

(i) Solve these examples by hand. Don’t worry too much about greedy strategies yet.

1, 2, 4, 10, 12

0, 1, 3, 5, 7, 8, 13, 14

Solution:

For the first: 2 trucks. Many solutions, for example at 2 and 11.

For the second: 3 trucks. Many solutions, for example at 0, 7, and 13.

(ii) Suppose you came up with the greedy idea, “Put a truck on the first uncovered marker.” Check that this
idea works on the above examples. Then, try to break this idea by coming up with an example where it
doesn’t work.

Solution:

0, 6 can be covered by one truck at 3, this method gives two trucks. There are many other examples.

(iii) Come up with a new greedy idea that solves your new example. Does the idea work? If not, continue the
process until you have a working idea.

Solution:

Place a truck at the farthest location that still covers the next uncovered marker. That is, if ti is the
next uncovered marker, place a truck at ti + 3.

1.3. Writing up your idea
Once you have an efficient, working idea, you should:

• Translate the idea into pseudocode. Recall that pseudocode is of form of writing more precise than English,
but easier to understand than code. There are no hard rules, but see the handout from last week for common
styles.

• Prove the pseudocode correct.

• Finally, write up the running time analysis.

2

(c) Write the pseudocode for the solution.

Solution:
1: i1 ← 1 and j ← 1
2: while ij ≤ n do
3: aj ← tij + 3
4: Let ij+1 ← i, then repeatedly increment ij+1 until tij+1 > aj + 3 (or ij+1 > n).
5: j ← j + 1

6: return the list of all aj

As a refresher, for the proof, always show validity, termination, and correctness.

• Correctness always means, “My algorithm’s output matches the problem summary’s expected output.”

• For greedy algorithms, the expected output is always something about an optimal solution. So, there are two
things to prove:

– “My output is a valid solution.”: In today’s case, that means “The list a1, . . . , am is in increasing order and
covers all markers.”

– “My output is optimal.”: In today’s case, that means “All other valid solutions use at least m trucks.”

Lastly, the optimality proofs of greedy algorithms also tend to have a consistent structure that you can use to help
you. There are a few types:

• “Greedy stays ahead”: For all other solutions, show by induction that at every step, your solution is at least as
good.

• “Exchange argument”: For all other solutions that differ from yours, show how to change a part of the other
solution, so that the quality improves or stays the same (but never decreases).

• “Structural argument”: (less common) Find a “hard subset” of the input that immediately implies why other
solutions must also be as bad as yours (or worse).

(d) Write a proof that your pseudocode is correct.

(i) Validity:

Solution:

No lines require validity justification.

(ii) Termination:

Solution:

We have tij = sj − 3 < sj + 3 < tij+1
, thus ij 6= ij+1, so i increases every iteration, and there are

at most n iterations. Line 4’s inline “repeat” ends in at most n iterations as well, since we stop if
ij+1 > n.

(iii) “The output is in increasing order.”:

Solution:

Again, tij < tij+1
, thus we conclude that aj = tij + 3 < tij+1

+ 3 = aj+1.

(iv) “The output covers all markers.”:

Solution:

We increment ij+1 to ij+1+1 if and only if tij+1
is covered by aj . Since we exit the loop when ij > n,

3

every marker is covered.

(v) “All other valid solutions use at least m trucks.”:

Solution:

We show that all other solutions use at least m trucks using “greedy stays ahead”.

Let o1, . . . , oM be any other valid solution. It suffices to show by induction on j:

P (j) = “Sites a1, . . . , aj cover all ti that are covered by o1, . . . , oj (and possibly more).”

Base case: We will show P (1). Recall that we set a1 = t1+3. If o1 > a1, then o1 > t1+3 and does not
cover t1, and neither do o2, . . . , oM because they are larger than o1 (valid solutions are increasing).
This is a contradiction, so this case is impossible.

If o1 ≤ a1, since t1 is the smallest marker, a1 covers everything that o1 covers, which is the claim.

Inductive hypothesis: Suppose that P (j) holds for j ≤ k.

Inductive step: Wewill showP (k+1). Note that tij is the smallest marker not covered by a1, . . . , aj−1.
(This is a loop invariant, formally prove it by induction.)

So when j = k + 1, tik+1
is not covered by a1, . . . , ak, and thus nor it is covered by o1, . . . , ok, by

the IH. We set ak+1 = tik+1
+ 3. If ok+1 > ak+1, then like in the base case, neither o1, . . . , ok nor

ok+1, . . . , oM cover ai, a contradiction.

If ok+1 ≤ ak+1, like in the base case, since tik+1
is the smallest uncovered marker, ak+1 covers every-

thing that ok+1 newly covers. Combined with the IH, that a1, . . . , ak cover everything that o1, . . . , ok
cover, we get P (k + 1).

Note: It’s also acceptable to use P (0) as the base case (where both lists are empty). It’s slightly slicker,
but thinking through P (1) will often also give you hints for the inductive step, as it did here.

(e) Analyze and prove the running time with big-O in a few sentences.

Solution:

Line 4’s inline repeat occurs n times acorss all iterations of the outer loop, and the rest of the outer loop
takes constant time per iteration, for up to n iterations. Hence, the running time is O(n).

4

The following problems will not be covered in section, but may be useful to think about.
We recommend trying them by yourself first. Solutions will be posted in the evening.

2. Minimizing covers again

You have a set, X , of (possibly overlapping) closed intervals of R. (The closed intervals of R are the sets commonly
denoted [a, b] = {x ∈ R | a ≤ x ≤ b}.) You wish to choose a subset Y of the intervals to cover the full set. Here,
cover means the union of all intervals in X is equal to the union of all intervals in Y. Describe (and prove correct)
an algorithm which gives you a cover with the fewest intervals.

Solution:

Key idea: Consider all intervals that cover the next point, and among all such intervals take one that goes the
farthest right.

Algorithm:

Input: A set X of subsets of R.
Expected output: A smallest set Y ⊆ X such that

⋃
X∈X X =

⋃
Y ∈Y Y .

1: Sort X so that it is increasing by start point (any order is fine for ties).
2: i← 1
3: while X 6= ∅ do
4: yi ← max(bi−1, s), where [s, t] is the interval with smallest remaining start point in X .
5: Among all intervals [a, b] ∈ X satisfying yi ∈ [a, b], let [ai, bi] be the one with largest end point.
6: Delete all elements of X with end point bi or earlier.
7: i← i+ 1

8: return the set of all [ai, bi]

Each line is valid: The only line that needs a justification is line 4, for which we need to show there exists an
interval [a, b] ∈ X such that y ∈ [a, b]. This is because either yi ← s in line 4, in which case yi ∈ [s, t], or y ← bi−1,
in which case still yi ∈ [s, t], but now because s < y and t > bi−1, otherwise we would have deleted [s, t] in the
previous iteration.

(By convention, let max(bi−1, s) return s when bi−1 is undefined.)

Termination: We delete at least [ai, bi] in each iteration, so the size of X decreases every iteration, so we
terminate.

Correctness/Covering: First, observe that the bi are increasing, since bi−1 ≤ yi (by line 4) and yi ≤ bi (by line
5), but bi−1 6= bi, because if bi−1 = bi, the interval [ai, bi] would have been deleted in the (i− 1)th iteration.

With this observation, for covering, it suffices to notice that if we delete an element [a, b] ∈ X in iteration i, then
[a, b] is covered by [a1, b1] ∪ · · · ∪ [ai, bi]. To show the forward direction, suppose for contradiction that x ∈ [a, b]
is not covered. It is not possible that x > bi, otherwise [a, b] would not have been deleted. Thus, x ≤ bi. By the
above observation, there is some j for which bj−1 < x ≤ bj .

For x to be uncovered, in iteration j, we must have had x < yj because [yj , bj] ⊆ [aj , bj]. Then bj−1 < yj , so
from line 4, yj = s where [s, t] was the interval with the smallest remaining start point in X . But x < yj = s was
still a point in X at this time, contradiction.

Correctness/Optimality: Let ALG = [a1, b1], [a2, b2], . . . , [ak, bk] be the list of intervals found by the algorithm,
and let OTH = [o1, p1], . . . , [oj , pj] be the list of intervals in any other cover.

Note that the ai are increasing. To show this, recall that the bi are increasing, so suppose for contradiction
ai−1 ≥ ai, while we know that bi−1 < bi. Then [ai−1, bi−1] ⊆ [ai, bi]. Then [ai, bi] was a interval containing
yi−1 ∈ [ai−1, bi−1] with larger end point than bi−1, which is a contradiction.

We may assume for this proof that the oi are increasing, too. (If they are not, there is no harm in renaming
the indices.) After that, we may also assume that the pi are increasing, since like above, an inverted pair would

5

result in some [oi, pi] ⊆ [oi−1, pi−1], and hence [oi, pi] can be removed from this solution to make it better. It now
suffices to show that:

Claim 1. For all i, we have bi ≥ pi.

Once we have this, by noting that for every i < k, there are uncovered points larger than bi after iteration i
(hence also larger than pi), and that the pi are increasing, we conclude that OTH must also have at least k
intervals, as was to be shown.

Proof of Claim 1.

BC: Both ALG and OTH must cover y1. Furthermore, [o1, p1]must cover y1, because the oi are increasing, and y1
is the smallest start point of any interval X . Then, b1 was chosen to be the largest end point of the all intervals
covering y1, so b1 ≥ p1.

IH: Suppose bj ≥ pj .

IS: Let ε be the half the smallest distance between any two numbers that appear in X . We know that yj+1 + ε is
not covered by [a1, b1], . . . , [aj , bj], since the bi are increasing and yj+1 ≥ bj (by line 4), thus yj+1 + ε > bj . In
fact, there are no uncovered start/end points smaller than yj+1 + ε. This is a loop invariant that can be proven
similar to “Correctness/Covering”.

Furthermore, yj+1+εmust be eventually covered, because either yj+1 = s for some [s, t] ∈ X (and by construction
of ε, this means yj+1 + ε ∈ [s, t]), or yj+1 = bj > s, but we must have t > bj (hence t ≥ bj + 2ε) because [s, t]
was not deleted in iteration j, so again yj+1 + ε ∈ [s, t].

By IH, [o1, p1], . . . , [oj , pj] also does not cover yj+1 ≥ bj ≥ pj . Since all start/end points smaller than yj+1 + ε
are covered, and OTH is a valid cover and sorted with no intervals contained in each other, [oj+1, pj+1] must
cover something new, which must include yj+1 + ε. Now, consider the execution of the algorithm: it looked at
all intervals containing yj+1 and chose the one with the latest end time. Thus, bi ≥ pi.

Running Time: Sorting takesO (n logn) time. Note that afterwards, the entire algorithm including the deletion
step can be implemented O (n) time: Line 4 starts at the first non deleted interval in X , then Line 5 continues
stepping forward until the start time exceeds yi. For line 6, instead of searching through X immediately, we
can just remember to delete all elements of X with end point bi or earlier when we encounter them in the next
iteration. This way, every interval is seen at most twice, since all intervals seen in lines 4 and 5 get deleted in
the next iteration (possibly more). In total, this takes O (n logn) time.

3. Art commissions

You’ve just started a new one-person art company. You’ve convinced n of your friends to each put $c of their current
money into a bank account, which will eventually be withdrawn when they commission you to make art, supporting
your dreams. It takes you one month to finish a commissioned piece (you are only working in your limited free-time).
At the beginning of every month, one of your friends will withdraw the entire value in their account to pay you to
make their artwork.

The bank accounts all earn small (and varying) rates of interest. Friend i earns interest at the rate of ri, compounding
monthly. That is, the amount in their bank account is ri times what it was at the start of the last month (until they
withdraw their money, and ri > 1). To reiterate, your friends decide to pay you both the original $c and all of the
interest earned at the time you start their commission.

Describe an ordering to take the commissions that will maximize the amount you are paid (you may assume you
know the ri for each of your friends).

Solution:

Note: This solution is only a sketch. It includes the only main idea and the core optimality proof. The solutions
you submit on homework should have more detail than this.

6

Key idea: You should take on the commissions in increasing order of ri (starting with the smallest). Intuitively,
you give the fastest growing account the longest to grow.

Correctness/Optimality: By exchange argument. Let OTH be any other solution, and ALG be the solution we
have. Suppose that OTH and ALG are different from each other.

Since ALG keeps elements in sorted order, it must be that interest rates in OTH are not in increasing sorted order.
Rename the friends so that OTH takes them in order 1, . . . , n. Then there will be a consecutive pair of elements,
call them j, j + 1, where rj > rj+1. We will show that swapping these friends increases our earnings.

In OTH, we get crjj + crj+1
j+1 from j and j + 1. Now suppose we swap just j and j + 1. We will instead earn

crjj+1 + crj+1
j . Observe that with this swap, we have not affected the amount earned for any other commission.

Thus if we manage to show that crjj+1 + crj+1
j > crjj + crj+1

j+1, we will have proven that OTH is not optimal.

To show the desired inequality, we begin with the observation that:

rjj (rj − 1) > rjj+1(rj+1 − 1)

which follows from rj > rj+1 (that this pair is not in sorted order) and that all terms in the expression are
positive (since the rates themselves are greater than 1).

Distributing, we have
rj+1
j − rjj > rj+1

j+1 − rjj+1

Rearranging, so everything is positive we have

rj+1
j + rjj+1 > rj+1

j+1 + rjj

Multiplying by c and reordering the terms, we have

crjj+1 + crj+1
j > crjj + crj+1

j+1

as desired. Thus, OTH is not optimal.

Solution:

Remarks:

• The algebra in the proof above is much more easily discovered backwards (starting from the desired con-
clusion), but remember to put proofs in proper logical order.

• This proof relies on the ri being greater than 1. The problem is different if that isn’t the case!

• You could also write a “greedy stays ahead” proof! Though you’d have to keep track of both the rates
themselves and the amounts in the accounts to write the proof.

7

	1 Line covering
	1.1 Getting started
	1.2 Generating ideas
	1.3 Writing up your idea

	2 Minimizing covers again
	3 Art commissions

