
Section 2: Solutions

1. Warmup: BFS and DFS review

(a) Run breadth first search and record the layer of each vertex. For this problem, start with a, and say that a is
in layer 0. Solution:

(b) Run depth first search, record the start/end times, and classify the edges (tree/back/forward/cross). When
there are multiple choices for the next vertex, pick the alphabetically earliest one.

Solution:
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Tree edges: (a, b), (a, c), (c, d), (d, g), (c, e), (e, f)
Back edges: (g, c)
Forward edges: (a, d), (c, f)
Cross edges: (f, g)

2. Investigating algorithm proofs

The purpose of this problem is to help you:

• Figure out how to start a proof about algorithms.

• Check the correctness of proofs.

To help with these situations, we will practice completely thinking through an algorithm and proof that you have
already seen in lecture. If you have trouble thinking through your proofs as we do here, it is probably either
wrong or incomplete. Then, we will summarize the general proof techniques.

(a) Answer the questions embedded in the proof below as you read. They are marked with . and italics.

(b) Discuss with people near you: What is the general structure of a proof that an algorithm is correct? How is
the proof related to the pseudocode?

Generic graph traversal

Input: Graph G = (V,E) and starting vertex s ∈ V .
Expected output: Set of all vertices v ∈ V such that there is a path from s to v.

1: R← {s}
2: while there is {u, v} ∈ E with u ∈ R and v 6∈ R do
3: Add v to R.
4: return R

Claim. The algorithm above is correct.

The proof as written is a near carbon-copy of Monday’s lecture. You will add details to it.

Proof.

1. Claim. The algorithm terminates.

a. . What quantity increases every iteration, but is bounded? Why does it increase? Refer to particular line(s)
in the code.

Solution:

|R| increases every iteration, and is bounded by |V |. In every iteration, we add v to R (line 3) where
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v 6∈ R (line 2), and never remove elements from R.

b. . Conclude that there are a bounded number of iterations.

Solution:

There can be at most |V | iterations, by above.

2. Claim. At termination, for all v ∈ V , we have v ∈ R if and only if there exists a path from s to v.

a. ( =⇒ ) Claim. If v ∈ R, then there exists a path from s to v.

. Prove this fact. Refer to particular line(s) in the code.

Solution:

By induction on iterations.

Base Case: By (line 1), before the first iteration, R = {s}, and there is a path from s to s.

Inductive Hypothesis: Before/after every iteration, if v ∈ R, then there exists a path from s to v.

Inductive Step: Assume IH at start of this iteration. In the current iteration, because u ∈ R (line 2),
there is a path from s to u by IH. Because {u, v} ∈ E (line 2), we get a path from s to v. We only add
v to R (line 3), so IH is true at end of this iteration.

b. (⇐= ) Claim. If there exists a path from s to v, then v ∈ R.

i. Suppose for contradiction there exists v 6∈ R, but there is a path P from s to v.

ii. In this case, we may actually take v to be the first node on P such that v 6∈ R.

. Why is this allowed?

Solution:

If there are multiple of any object, we can always look at the first one.

iii. The predecessor u of v in P satisfies u ∈ R and {u, v} ∈ E.

. Why does the predecessor exist? Refer to particular line(s) in the code. Why is u ∈ R and {u, v} ∈ E?

Solution:

Predecessor exists because v 6= s, as v 6∈ R but s ∈ R. To show that s ∈ R at the loop’s end,
formally use induction on iterations:

Base Case: R = {s} before first iteration by (line 1).

Inductive Hypothesis: s ∈ R before/after every iteration.

Inductive Step: We never remove vertices from R so IH is true at end of iteration.

Lastly, u ∈ R because v was first vertex not in R and {u, v} ∈ E because u is the predecessor of
v.

iv. This is a contradiction.

. What is the contradiction? Refer to particular line(s) in the code.

Solution:

We found u and v such that u ∈ R, v 6∈ R, and {u, v} ∈ E. This contradicts the loop exit condition
in (line 2).
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. Is it possible to directly prove this claim by induction on iterations, as you did for the =⇒ direction, instead
of contradiction? Solution:

No, the claim “If there exists a path from s to v then v ∈ R.” is not true until the loop exits.

3. Judging books by their covers

You have a large collection of books and want to arrange them by color. You wish to put only books of a single color
on any given shelf. Every pair of books is either “same color” or “not same color”, and this relation is an equivalence
relation (reflexive, symmetric, and transitive).

Input: A list of books, and a list of pairs that are the same color
Expected output: The best upper bound on the number of shelves you will need

For example, if there are books u, v, w, and x, and you are given “u and v have the same color” and “v and w have
the same color”, the best upper bound is 2. (While u, v, and w are all the same color, we do not know for certain
that x is a different color—we are just not given any information about x. The best upper bound assumes the worst
case, so 2 colors total.)

Give an algorithm, prove its correctness, and describe the running time in terms of (whichever subset is appropriate):
b (the number of books), p (the number of pairs listed), and s (the number of shelves required, i.e. your final
answer).

Solution:

Let G = (V,E) be a graph where vertices are books and edges are pairs that we are told have the same color.
Run the connected components algorithm using BFS or DFS to find all connected components of G. Output the
number of connected components.

To prove the algorithm correct, first, there are no unbounded loops, so termination is clear. To show that the
number of connected components is the best upper bound on the number of shelves needed, we need to show
that it is an upper bound, and that it is best.

To show that it is an upper bound, suppose we give each connected component its own shelf. Because “same
color” is transitive, if there is a walk from u to v, then u and v are the same color (formally by induction on the
length of the walk). Thus, it was valid to put them on the same shelf.

To show that it is best, note that the input is compatible with the situation where every connected component has
books of different colors. Thus, every upper bound must output at least the number of connected components.

Because the graph has b vertices and p edges, and BFS/DFS dominates the running time, the running time is
O (b+ p).

4. Graphs in hiding: water jugs

This is a classic puzzle that you might have heard of before.

You have a 5-gallon jug and 3-gallon jug, which start out empty. Your goal is to have 4 gallons of water in the 5-gallon
jug and 0 gallons of water in the 3-gallon jug. Unfortunately, you are only allowed the following operations:

• Completely fill any of your jugs.

• Pour one of your jugs into another, until the first jug is empty or the second is full.

• Empty out all the water in a jug.

(a) Describe a method to reach the goal. (No need to use any general algorithm yet, just solve the puzzle however
you like.)
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Solution:

Let (m,n) denote m gallons in the 5-gallon jug and n gallons in the 3-gallon jug. The following sequences
of steps are potential solutions, there may be more.

(0, 0)→ (5, 0)→ (2, 3)→ (2, 0)→ (0, 2)→ (5, 2)→ (4, 3)→ (4, 0)

OR

(0, 0)→ (0, 3)→ (3, 0)→ (3, 3)→ (5, 1)→ (0, 1)→ (1, 0)→ (1, 3)→ (4, 0)

(b) Solve the following problem with a graph algorithm:

Input: Jug sizes a and b, with target amounts x and y, respectively.
Expected output: The minimum number of steps to reach the target amount, or “unreachable”.

Warning: Graph algorithms are not the most efficient way to solve this problem. It turns out that this problem
can be solved more efficiently (in logarithmic time) with the Euclidean algorithm and some fancier mathemat-
ical arguments. But today’s goal is to practice graph algorithms.

Solution:

Algorithm
Construct a graph G = (V,E) where V is a list of all pairs (m,n) for 0 ≤ m ≤ a and 0 ≤ n ≤ b, and E is all
possible transitions according to the rules. Then use BFS to compute the shortest path from (0, 0) to (x, y)
and output it, or “unreachable” if BFS terminates before reaching (x, y).

Correctness
Termination and validity are clear. We will show that the shortest path from (0, 0) to (x, y) is the shortest
sequence of moves to obtain the desired volumes, and that we output “unreachable” if and only if the
target cannot be reached. In fact, both parts barely require proof—they both follow from the fact that we
constructed the edge set to exactly equal the allowed moves, so sequences of moves are in bijection with
paths in the graph.

Running Time
BFS runs in Θ(|V |+ |E|), where |V | = (a+ 1)(b+ 1) and |E| ≤ 6|V | (since there are 3 types of transitions
from every state, which you can do with either jug). Thus, the total running time is Θ(ab).

Solution:

A slight improvement to the above solution notes that all transitions result in at least one of the jugs full or
empty. Thus, instead of having V contain all pairs (m,n), it only needs to contain the pairs where m = 0,
m = a, n = 0, or n = b. This reduces the running time to Θ(a+ b).

The following problems will not be covered in section, but may be useful to think about.
We recommend trying them by yourself first. Solutions will be posted in the evening.

5. More algorithms proof practice

Consider the following algorithm for the following problem.

Input: A graph G = (V,E) that is guaranteed to have out-degree at least 1 for every vertex.
Expected output: A directed cycle.

1: Let v1 be an arbitrary vertex in V .
2: i← 1
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3: cycleFound← false
4: while not cycleFound do
5: Let vi+1 be an arbitrary out-neighbor of vi.
6: if there exists k ∈ {1, . . . , i} such that vk = vi+1 then
7: Remember this k.
8: cycleFound← true
9: else

10: i← i+ 1

11: C ← vk, vk+1, . . . , vi+1

12: return C

(a) Follow the techniques and structure discussed earlier to prove that every line is valid (if necessary) and that
the algorithm terminates. Solution:

Line 5 needs a validity justification, which is just from the input guarantee.

To show that the loop terminates, note that the sequence of vertices v1, . . . , vi increases in length every
iteration and consists of distinct vertices (the distinctness is a loop invariant that can be formally proven
by induction). However, the graph is finite, so there is no sequence of distinct vertices longer than |V |, a
contradiction.

(b) Read the following attempted “solution” for proving that the output is a directed cycle, assuming termination.
Is it correct and sufficiently complete?

Proof. The algorithm constructs longer and longer paths in G. By an induction argument, line 5 ensures that
P = v1, v2, . . . , vi is always a path. In each iteration, there are two cases. If there exists k ∈ {1, . . . , i} such
that vk = vi+1, then we would set cycleFound to true and exit the loop. In this case, because P is a path and
vk = vi+1, the sequence C = vk, vk+1, . . . , vi+1 is a subpath of P (hence also a path) with endpoints that are
the same, i.e. a cycle. On the other hand, if there is no k ∈ {1, . . . , i} such that vk = vi+1, then we incremented
the loop counter and kept going. But we cannot go forever because the algorithm terminates as noted above,
so eventually we end up in the first case, where we output correctly.

This proof is not very concise. It wastes a lot of writing to unnecessarily repeat the algorithm. To improve it,
rewrite this proof using the technique discussed before, starting with what you want to prove, then unwrapping
definitions. That is, start your proof with the line:

We will show that C is a cycle.

Solution:

We will show that C is a cycle. Thus, we need to show that vk = vi+1, and that C is a path.

Because we exited the loop, line 8 was run, so the condition in line 6 was met. By line 6, vk = vi+1, as was
to be shown.

By induction, line 5 ensures that P = v1, . . . , vi+1 is a directed path. Because C is a subsequence of P , it
is also a path.

6. Big-O review

Put these functions in increasing order. That is, if f comes before g in the list, it must be the case that f(n) is
O (g(n)). Additionally, if there are any pairs such that f(n) is Θ(g(n)), mark those pairs.

• 2log(n)

• 2n logn

• log(log(n))
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• 2
√
n

• 3
√
n

• log(n)

• log(n2)

•
√
n

• (log(n))2

Hint: A useful trick in these problems is to know that since log(·) is an increasing function, if f(n) is O(g(n)),
then log(f(n)) is O(log(g(n)). But be careful! Since log(·) makes functions much smaller it can obscure differences
between functions. For example, even though n3 is less than n4, log(n3) and log(n4) are big-Θ of each other.

Solution:

(a) log(log(n))

(b) log(n)

(c) log(n2) This function is Θ(log(n)). They differ only by the constant factor 2.

(d) (log(n))2

(e)
√
n

(f) 2log(n) Note that this is just n.

(g) 2
√
n

(h) 3
√
n

(i) 2n logn
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