CSE 421 Section 1

Stable Matchings and Proofs Workshop

Administrivia and introductions

Your Section TA

- Runs your section
- Default TA for general questions

OH: [time/day/location]

Email:

[user]@cs.washington.edu

All Course TAs

- Homework/exam grading
- Office hours and Ed questions

Head TAs

- Logistics
- Issues in the class

Announcements

• Section materials

- Handouts will be provided in each section
- Solutions and slides on course webpage

• HW1

- Due Wednesday, April 9th @ 11:59pm
- **STRICT** deadline, anything past 11:59pm is considered late
- Use Ed Megathreads to ask questions about HW
 - Make a private post if it involves your solution

Homework

LaTeX (preferred)	Google Docs/Word	Handwritten
 overleaf.com Template available Ask us for syntax help 	 Use equation editor for math and variables 	 Write neatly Great for diagrams Use B/W scanning app Note: Must be legible,
 Late days policy 4 total late days 		consider it

• Use up to 1 late day per HW

Stable matchings

Stable matching problem

Input: Two sets *P* and *R* of *n* people each, with each person having a preference list for members of the other group

Output: A stable matching between the two groups

Stable matching: perfect matching with no unstable pairs

everyone matched to exactly one person from other group

two people who prefer each other to their current matches

Gale-Shapley algorithm

We call *P* the **proposers** and *R* the **receivers**.

- 1. Initialize the status of all $p \in P$ and $r \in R$ to free.
- 2. While there is a free $p \in P$,
 - a. Let r be the highest person on p's list that p has not yet proposed to.
 - b. If r is free,
 - i. Match p and r.
 - c. Otherwise, if r prefers p over their current match p',
 - i. Unmatch p' and r.
 - ii. Match p and r.

- $p_1: r_3 > r_1 > r_2 > r_4$
- $p_2: r_2 > r_1 > r_4 > r_3$
- $p_3: r_2 > r_3 > r_1 > r_4$
- $p_4: r_3 > r_4 > r_1 > r_2$
- $r_1: p_4 > p_1 > p_3 > p_2$
- $r_2: p_1 > p_3 > p_2 > p_4$ $r_3: p_1 > p_3 > p_4 > p_2$
- $r_4: p_3 > p_1 > p_2 > p_4$

- 1. Initialize the status of all $p \in P$ and $r \in R$ to free.
- 2. While there is a free $p \in P$,
 - a. Let *r* be the highest person on *p*'s list that *p* has not yet proposed to.
 - b. If *r* is free,
 - i. Match p and r.
 - c. Otherwise, if *r* prefers *p* over their current match *p*',
 - i. Unmatch p' and r.
 - ii. Match p and r.
- a) Run the Gale–Shapley algorithm on the instance shown. When multiple p_i are free to propose, choose the one with the **smallest** index (e.g., if p₁ and p₂ are both free, have p₁ propose).

Taking 8 volunteers!

 Run the Gale–Shapley algorithm on the instance shown. When multiple p_i are free to propose, choose the one with the **smallest** index (e.g., if p₁ and p₂ are both free, have p₁ propose).

$p_1: r_3 > r_1 > r_2 > r_4$
$p_2: r_2 > r_1 > r_4 > r_3$
$p_3: r_2 > r_3 > r_1 > r_4$
$p_4: r_3 > r_4 > r_1 > r_2$
$r_1: p_4 > p_1 > p_3 > p_2$
$r_1: p_4 > p_1 > p_3 > p_2$ $r_2: p_1 > p_3 > p_2 > p_4$
$r_1: p_4 > p_1 > p_3 > p_2$ $r_2: p_1 > p_3 > p_2 > p_4$ $r_3: p_1 > p_3 > p_4 > p_2$

 p_1 chooses r_3 p_2 chooses r_2 p_3 chooses r_2 p_2 chooses r_1 p_4 chooses r_3 p_4 chooses r_4

```
\begin{array}{l} (p_1, r_3) \\ (p_1, r_3), (p_2, r_2) \\ (p_1, r_3), \frac{(p_2, r_2)}{(p_1, r_3)}, (p_2, r_1), (p_3, r_2) \\ (p_1, r_3), (p_2, r_1), (p_3, r_2), (p_4, r_3) \text{ fails} \\ (p_1, r_3), (p_2, r_1), (p_3, r_2), (p_4, r_4) \end{array}
```

- $p_1: r_3 > r_1 > r_2 > r_4$
- $p_2: r_2 > r_1 > r_4 > r_3$
- $p_3: r_2 > r_3 > r_1 > r_4$
- $p_4: r_3 > r_4 > r_1 > r_2$
- $r_1: p_4 > p_1 > p_3 > p_2$
- $r_2: p_1 > p_3 > p_2 > p_4$ $r_3: p_1 > p_3 > p_4 > p_2$
- $r_4: p_3 > p_1 > p_2 > p_4$

- 1. Initialize the status of all $p \in P$ and $r \in R$ to free.
- 2. While there is a free $p \in P$,
 - a. Let *r* be the highest person on *p*'s list that *p* has not yet proposed to.
 - b. If *r* is free,
 - i. Match p and r.
 - c. Otherwise, if *r* prefers *p* over their current match *p*',
 - i. Unmatch p' and r.
 - ii. Match p and r.
- b) What if you default to the one with the **largest** index? Does the answer change?
- c) What if the r_i propose instead of the p_i ? Does the answer change?

Try it yourself, or with people near you!

 $p_{1}: r_{3} > r_{1} > r_{2} > r_{4}$ $p_{2}: r_{2} > r_{1} > r_{4} > r_{3}$ $p_{3}: r_{2} > r_{3} > r_{1} > r_{4}$ $p_{4}: r_{3} > r_{4} > r_{1} > r_{2}$ $r_{1}: p_{4} > p_{1} > p_{3} > p_{2}$ $r_{2}: p_{1} > p_{3} > p_{2} > p_{4}$ $r_{3}: p_{1} > p_{3} > p_{4} > p_{2}$

 $r_4: p_3 > p_1 > p_2 > p_4$

- 1. Initialize the status of all $p \in P$ and $r \in R$ to free.
- 2. While there is a free $p \in P$,
 - a. Let *r* be the highest person on *p*'s list that *p* has not yet proposed to.
 - b. If *r* is free,
 - i. Match p and r.
 - c. Otherwise, if *r* prefers *p* over their current match *p*',
 - i. Unmatch p' and r.
 - ii. Match p and r.
- b) What if you default to the one with the **largest** index? Does the answer change? No change!
- c) What if the r_i propose instead of the p_i ? Does the answer change? Different result!

Turns out, (b) is always true! We proved this in lecture!

Problem 2 – Number of stable matchings

Is there an instance with more than two possible stable matchings? Give example (if yes) or proof (if no).

Take 3 minutes to brainstorm with the people around you, then we'll discuss.

Problem 2 – Number of stable matchings

Is there an instance with more than two possible stable matchings? Give example (if yes) or proof (if no).

Try smaller examples. What's an easy instance with two stable matchings?

A: 1 > 2 $B: 2 > 1$	both matchings stable	square preference" cycle"		
D: 2 > 1 $1: B > A$ $2: A > B$	$\begin{array}{ccc} A - 1 & A \\ B - 2 & B \end{array} \begin{array}{c} 1 \\ 2 \end{array}$	$\begin{array}{c} A \longrightarrow 1 \\ \uparrow \qquad \downarrow \\ 2 \longleftarrow B \end{array}$		

Problem 2 – Number of stable matchings

Is there an instance with more than two? Give example (if yes) or proof (if no).

1	Now generalize	to three. One	possible solution:
A:1>2>3	A — 1	A 1	"hexagon preference
B:2>3>1	В — 2	В 2	
C:3>1>2	C — 3	C^{3}	
1: B > C > A		0	3 B
2: C > A > B	A	1	
3: A > B > C	В	2	
L	C /	3	
			nrefers

Proof-writing workshop

Graph theory review

- **degree:** number of edges connected to a vertex
- **path** (walk): list of vertices $v_1, v_2, ..., v_k$ such that each $\{v_i, v_{i+1}\}$ is an edge
 - for directed graphs, (v_i, v_{i+1})
- cycle (closed walk): path with same first and last vertex
- **simple path** (path): path with all distinct vertices
- **simple cycle** (cycle): cycle with all distinct vertices, except first/last
- **connected:** there is a path between any two vertices
- tree: connected acyclic (no cycles) graph
- rooted tree: tree with a designated vertex called the root
 - Note that "parent" and "child" are not defined unless the tree is rooted!
- independent set: group of nodes that share no edges with each other

In this problem, you will **read many proofs** of the following claim:

Claim. Every tree with at least 2 vertices has at least 2 vertices of degree 1.

a) First, take 3 minutes to think about the problem yourself. How would you prove it?

Qualities of a good proof

	Correct	Complete		Concise		Clear
•	No false statements	 Claims justified Hypotheses used Notation defined 	•	No excessive details No unnecessary notation	•	Main ideas are evident Good stylistic choices

b) Read Sample Solution 1. Discuss with people around you — is it clear, complete, concise, clear? What would you change?

Qualities of a good proof

	Correct	Complete		Concise		Clear
•	No false statements	 Claims justified Hypotheses used Notation defined 	•	No excessive details No unnecessary notation	•	Main ideas are evident Good stylistic choices

b) Read Sample Solution 2. Discuss with people around you — is it clear, complete, concise, clear? What would you change?

Qualities of a good proof

	Correct		Complete		Concise		Clear
•	No false statements	•	Claims justified Hypotheses used Notation defined	•	No excessive details No unnecessary notation	•	Main ideas are evident Good stylistic choices

b) Read Sample Solution 3. Discuss with people around you — is it clear, complete, concise, clear? What would you change?

Qualities of a good proof

	Correct		Complete		Concise		Clear
•	No false statements	•	Claims justified Hypotheses used Notation defined	•	No excessive details No unnecessary notation	•	Main ideas are evident Good stylistic choices

b) Read Sample Solution 4. Discuss with people around you — is it clear, complete, concise, clear? What would you change?

Summary

- When stuck, look for **small examples**.
- When writing a proof, revise it to be correct, complete, concise, and clear.

Thanks for coming to section this week!