
Section 1: Solutions

1. Gale–Shapley review

Consider the following lists of preferences:

p1 : r3 > r1 > r2 > r4

p2 : r2 > r1 > r4 > r3

p3 : r2 > r3 > r1 > r4

p4 : r3 > r4 > r1 > r2

r1 : p4 > p1 > p3 > p2

r2 : p1 > p3 > p2 > p4

r3 : p1 > p3 > p4 > p2

r4 : p3 > p1 > p2 > p4

(a) Run the Gale–Shapley algorithm on the instance above, with pi proposing. When multiple pi are free to
propose, choose the one with the smallest index (e.g., if p1 and p2 are both free, have p1 propose).

Solution:

The steps of the Gale–Shapley Algorithm with the pi with lowest index proposing first:

p1 chooses r3 (p1, r3)

p2 chooses r2 (p1, r3), (p2, r2)

p3 chooses r2 (p1, r3), (p3, r2)

p2 chooses r1 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r3 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r4 (p1, r3), (p2, r1), (p3, r2), (p4, r4)

(b) Run the Gale–Shapley algorithm again on the instance above, with pi proposing. When multiple pi are free to
propose, now choose the one with the largest index. Do you get the same result?

Solution:

The steps of the Gale–Shapley Algorithm with the pi with highest index proposing first:

p4 chooses r3 (p4, r3)

p3 chooses r2 (p3, r2), (p4, r3)

p2 chooses r2 (p3, r2), (p4, r3)

p2 chooses r1 (p2, r1), (p3, r2), (p4, r3)

p1 chooses r3 (p1, r3), (p2, r1), (p3, r2)

p4 chooses r4 (p1, r3), (p2, r1), (p3, r2), (p4, r4)

We ended up with the same result!

(c) Run the Gale–Shapley algorithm on the instance above, with ri proposing. Whenmultiple ri are free to propose,
choose the one with the smallest index. Do you get the same result?

Solution:

1

The steps of the Gale–Shapley Algorithm with ri proposing:

r1 chooses p4 (p4, r1)

r2 chooses p1 (p1, r2), (p4, r1)

r3 chooses p1 (p1, r3), (p4, r1)

r2 chooses p3 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p3 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p1 (p1, r3), (p3, r2), (p4, r1)

r4 chooses p2 (p1, r3), (p2, r4), (p3, r2), (p4, r1)

No, the result is different when we have the ri propose as opposed to the pi.

2. The number of stable matchings

In the previous problem, we saw two distinct stable matchings for the same instance (depending on whether the pi
or ri are the ones to propose). Is it possible to have an instance of the stable matching problem with more than 2
stable matchings? If so, give an instance with at least 3 stable matchings. If not, prove that every instance has at
most 2 stable matchings.

Solution:

Consider the following “hexagon preference cycle” instance:

A : 1 > 2 > 3

B : 2 > 3 > 1

C : 3 > 1 > 2

1 : B > C > A

2 : C > A > B

3 : A > B > C

This instance has three stable matchings:

(A, 1), (B, 2), (C, 3)

(A, 2), (B, 3), (C, 1)

(A, 3), (B, 1), (C, 2)

Review of graph concepts

• Degree: The number of edges connected to a vertex.

• Path1: A list of vertices v1, v2, . . . , vk such that each {vi, vi+1} is an edge. ((vi, vi+1) in a directed graph)

• Cycle2: A path v1, v2, . . . , vk with v1 = vk.

• Simple path3: A path with all distinct vertices
1Also known as a walk by other sources.
2Also known as a closed walk by other sources.
3Also known as a path by other sources.

2

• Simple cycle4: A cycle with all distinct vertices, except the first/last.

• Connected: There is a path between any two vertices in the graph.

• Tree: A connected, acyclic (no cycles) graph.

• Rooted tree: A tree with a designated vertex called the root. (Note: Words like “parent” and “child” require a
root. For non-rooted trees, say “neighbor” to refer to vertices connected by a single edge to the current one.)

3. Proof-writing workshop

Attached as an appendix to this handout, there are 4 sample proofs of the following statement:

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

(a) Take a minute to think about the problem yourself. (It’s okay if you don’t have a proof.)

(b) Read each sample proof. Discuss with people around you:

(i) Is it correct? (Are there false statements?)

(ii) Is it complete? (Are there unjustified claims, unused hypotheses, or undefined notation?)

(iii) Is it concise? (Are there excessive details, unnecessary notations, or irrelevant arguments?)

(iv) Is it clear? (Are the main ideas obvious or buried? Could stylistic choices like paragraph breaks, diagrams,
bullets, etc. be improved? Are there spelling, grammar, or formatting errors?)

(v) What do you like about the proof? How would you improve this proof?

Solution:

Many of these criteria are subjective, so it is perfectly valid to disagree. We will not take points off for bad style
(unless it is excessively egregious), but we really appreciate thoughtful editing!

(a) Sample Solution? 1

• Correctness: No issues.

• Completeness: Does not explicitly use the fact that there are at least 2 vertices. (Need this to say “the
rest have degree 2,” since when there is 1 vertex it has degree 0.) Also missing “Let n be the number
of vertices in the graph,” though this is a minor point.

• Conciseness: No issues. In fact, fantastic.

• Clarity: The main idea is clear, mainly because it is so concise. Font size is a bit small. This is the
default 10pt font. Prefer 11pt or 12pt, or increase the margins, though this is a minor point.

(b) Sample Solution? 2

• Correctness: The second to last line, “By IH, each tree has at least 2 vertices of degree 1,” is not
correct, because the resulting trees from the previous line may not have at least 2 vertices each. The
author needs to treat the case of getting single-vertex trees.

• Completeness: No issues.

• Conciseness: No issues.

• Clarity: Prefer to separate out IH explicitly. Diagrams are great and helped point out the main ideas,
but they obscured the correctness issue. A more generic image that shows the case of getting a single-
vertex tree is better. Easy-to-read formatting with underlines and indenting.

(c) Sample Solution? 3

4Also known as a cycle by other sources.

3

• Correctness: One can argue whether this is a correctness or completeness error, but it is generally not
advised to do induction by building up graphs from smaller graphs—instead, remove a vertex from the
larger graph to get the smaller graph, as in the previous sample solution. One can ostensibly fix this
by adding a proof that all trees can be constructed by adding a new vertex to a smaller tree, but this
fact is not obvious and would probably double the length of this proof, so it is not advised. Without
this extra part, the proof is not correct. Generally, avoid this whole situation by always starting with
the bigger graph and removing a vertex to apply the IH.

A second point, the sentence in Case 3, “In this case, the graph would be left with no vertices of degree
1,” is just incorrect—there may have been vertices of degree 1 beyond just u and v, so you cannot
conclusively say that attaching w to u and v results in no degree 1 vertices. Luckily, this is also just a
completely unnecessary statement and can be deleted.

And a minor point, edges of undirected graphs are sets (use {}), not ordered pairs as written in Case
3.

• Completeness: See above.

• Conciseness: There are a several superfluous phrases: “undirected” in the base case, “Since we are
interested in connected trees” in the first paragraph of inductive step, “In this case, …luckily” in Case
3, arguably the entire last paragraph, etc. It is not egregious, but editing these out would substantially
shorten the proof.

• Clarity: Google Docs without the symbol browser/equation editor/italicized math is a little harder to
read, compared to proper LaTeX/handwriting, but it’s okay. Grammatically, the frequent use of “u, v”
when it is more proper to write “u or v,” makes parsing the text more difficult. Paragraph breaks and
use of bold are good. Main ideas are sufficiently understandable.

(d) Sample Solution? 4

• Correctness: No issues.

• Completeness: No issues.

• Conciseness: In the first paragraph there is no need to define maximal in line 2. The entire second
paragraph can be deleted and replaced with “The other end of the maximal path is similar and also
has degree 1.”

In the first paragraph, there are too many variables that are not relevant or only marginally relevant
to the proof, and can be safely removed to improve ease of reading. One could just say, “Suppose
P = x1, . . . , xn, and suppose deg(xn) ≥ 2. So there exists y ∈ V with y 6= xn−1 such that {xn, y} ∈ E.
If y ∈ P , then the edge {xn, y} along with the subpath of P between y and xn form a cycle…”

• Clarity: Severe LaTeX errors make this proof difficult to read. If you do choose to use LaTeX, make
sure that you are using math mode ($) whenever appropriate, subscripts are surrounded by grouping
braces ({}), proper symbols are used (\neq, \le), the phrases “there exists” and “for all” are spelled
out instead of in symbols, actual braces are escaped (\{\}), and functions whose names are text are
displayed in text font (\text{deg}, or in this case \deg is a built-in command).

It would have improved the clarity to separate the various cases of the first paragraph into different
paragraphs or bullet points.

The main ideas of this proof are obscured by by difficult-to-parse formatting and wordy language.

The following problems will not be covered in section, but may be useful to think about.
We recommend trying them by yourself first. Solutions will be posted in the evening.

4. Find the bug: failed induction

In this problem, you will fix an incorrect induction proof.

4

Problem: Suppose you have a stable matching instance with n people in P and n people in R. Of the n members
of R, 5 are popular. That is, every person in P has those 5 members of R as their first 5 choices (in some order, not
necessarily the same for each person in P). Similarly, you have 5 popular members of P , such that every person in
R has those 5 as their top choices. Prove that in every stable matching of such an instance, every popular person is
matched with another popular person.

Spoof. Let P (n) be “In every stable matching of an instance with two groups of size n and 5 popular people per
group, every popular person is matched with another popular person.” We will show P (n) holds for all n ≥ 5 by
induction on n.

Base case (n = 5): With both sets having size 5, every person is popular. Since every stable matching pairs every
person, every person is matched to a popular person.

Inductive hypothesis: Suppose P (n) holds for n = 5, . . . , k for an arbitrary integer k ≥ 5.

Inductive step: Let r1, . . . , rk, p1, . . . , pk be k people in each group, with r1, . . . , r5, p1, . . . , p5 being the popular
ones. We add rk+1 and pk+1. By popularity, rk+1 has p1, . . . , p5 (in some order) as their 5 favorite people and pk+1

has r1, . . . , r5 (in some order) as their 5 favorite people. Further, let pk+1 and rk+1 be each other’s 6th choices (i.e.
top choice outside the popular people).

Now, consider any stable matching in the old (size k) instance. We create a stable matching for the new instance by
pairing rk+1 with pk+1. We now show that this matching is stable for the new instance.

Since it was stable for the small instance, the only possible unstable pairs must involve rk+1 or pk+1. By IH, every
popular person is matched to another popular person. Regardless of where rk+1 and pk+1 was added to the popular
person’s list, they fall after the popular ones, so rk+1 and pk+1 cannot form an unstable pair with the popular people.
And since they have each other as their next choices, they cannot form an unstable pair with anyone else. Thus we
have that there are no unstable pairs. The popular people remain matched to each other, as required.

(a) There are at least two correctness errors in this proof. Describe them.

Solution:

The first mistake is in the setup of the inductive step. We need to show a claim for every instance of size
k+1. Instead we build a particular instance of size k+1. In this example, the mistake is quite fundamental
– there is no reason in the problem that pk+1 and rk+1 should have each other as their 6th choices. That is, if
we introduced a recursive definition of stable matching instances and changed this to structural induction,
we would have more steps to do beyond the one here (in contrast to the tree problem where all the cases
are actually handled).

The second bug is again a mistake with handling a for-all. This time, the quantifier on the “every stable
matching” part of the statement. We don’t check every stable matching! We check every matching we built
by starting with a stable matching on the small instance — how do we know there aren’t stable matchings
where pk+1 is matched to r4 (for example)? We need to start with an arbitrary stable matching and argue
whether the popular agents are matched or not.

(b) Write a correct proof of this claim. Do NOT use induction. Use a proof by contradiction instead. Solution:

Suppose, for the sake of contradiction, that there is a stable matching instance with 5 popular members
of each group, and there is a stable matching M for this instance so that some popular person p from the
first group is not matched to any popular member of the second group. Since there are the same number
of popular people in the two groups, there is a popular member r of the second group that is also not
matched to a popular agent. We claim that p and r form an unstable pair. Indeed, since each is popular,
they are each in the top 5 of each other’s lists, but each is matched to a non-popular agent, which must be
6th or lower on both lists. Thus p and r would rather be with each other than with their matches, so they
form an unstable pair. But M was supposed to be a stable matching. A contradiction! So every popular
person in the first group must be matched to a popular person in the second group.

5

5. Practice a reduction

A reduction from problem A to problem B is a solution to A in which you can call a library function that solves B.
Typically, that library function does the bulk of the work, and your solution just consists of some preprocessing of
the inputs to A in order to match what B expects, and postprocessing of the output of B to match what A requires.
Note that you have no control over how the library function works internally—you only know what input it takes
and what output it is guaranteed to give you.

In this question, you will solve a problem by reducing it to the basic stable matching problem.

Problem: Suppose that is a set of r riders and h horses withmanymore riders than horses; in particular, 2h < r < 3h.
You wish to set up a set of 3 rounds of rides which will give each rider exactly one chance to ride a horse. To keep
things fair among the horses, you wish for each to have exactly 2 or 3 rides.

Because it’s winter, by the time the third ride starts it will be very dark, so every rider would prefer any horse on
the first two rides over being on the third ride. Between the first two rides, each rider doesn’t have a preference
over time of day, and have the same preference over horses. If a rider must be on the third ride, it has the same
preference list for that ride as well.

Each horse has a single list over riders, which doesn’t change by ride. Since horses love their jobs, they prefer to
being one of the horses on the third ride to one of the ones left home.

Design an algorithm which calls the following library exactly once and ensures there are no pairs r, h which would
both prefer to change the matching and get a better result for themselves.

BasicStableMatching
Input: A set of 2k people in two groups of k people each. Each person has an ordered preference list of all k
members of the other group.
Output: A stable matching among the 2k agents.

(a) Give a 1–2 sentence summary of your idea.

(b) Give the algorithm you’re going to run.

(c) Give a 1–2 sentence summary of the idea of your proof.

(d) Write a proof of correctness.

(e) Give the running time of your algorithm, and briefly justify (1–3 sentences).

Solution:

(a) We will create a BasicStableMatching instance with 3h agents representing horses and 3h agents repre-
senting riders.

(b) For each horse hi in the original instance, create three agents h1
i ,h2

i , and h3
i representing three potential

rides with horse hi. We will specify their preference lists later.

For each rider rj , their preference list will be the following: from rj ’s original list, replace each hi with h1
i

followed by h2
i . Then at the end, add another copy of the original list with each hi replaced by h3

i .

To make the total number of riders equal to 3h, add “dummy” riders d1, . . . , d` until the number of riders
and horses is equal. The preference list for each dummy will be all of the h3

i , followed by the all of the h2
i ,

the lastly all of the h
(1)
i (in any order within each group).

Lastly, each hj
i will have preference list starting identically to hi’s original list, then listing the dummy riders

in any order.

6

Now, run the BasicStableMatching algorithm, then delete the dummy riders, and in every round, leave
any horse whose partner was deleted unmatched.

(c) The BasicStableMatching algorithm doesn’t produce unstable pairs, so we won’t either (once we delete
the dummies).

(d) We claim the result is a correct assignment. First, observe that each (real) rider is matched, and no horse
is free on the first two rides. Since each horse prefers the real riders to the dummies and each rider prefers
any of the first two rides to the third, a dummy rider matched with a horse on the first two rides would
have created an unstable pair (the horse on the first two rides with any rider assigned to the third ride).
Thus no horse is free on the first two rides.

It remains to show there is no unstable pair among matched agents. Suppose, for contradiction, there is
a pair r, hi where r and hi would both prefer to be paired on ride j (over their current state). Then, by
construction of the lists, r prefers hj

i on its preference list and hj
i prefers r on its preference list. This would

have been an unstable pair for the BasicStableMatching instance. But the algorithm produces a stable
matching, which by definition has no such unstable pairs, a contradiction!

(e) Θ(h2). We have 3h agents on each side, so the guarantee on BasicStableMatching gives aΘ(h2) guarantee
for that call. All the other operations (copying lists, creating agents, etc.) can be done in time linear in the
size of the final instance (since it’s just copy-pasting) which is also Θ(h2) (Θ(h) agents, each with lists of
length Θ(h)).

7

Appendix — Problem 3 — Sample Solution? 1

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Proof. Suppose for contradiction that at most 1 vertex has degree 1, so the rest have degree at least 2. Then
the sum of the degrees is at least 2n− 1. However, recall that a tree has n− 1 edges, so the sum of degrees
should be 2n− 2, contradiction.

1

Glenn Sun

• Correctness: No issues.
• Completeness: Does not explicitly use the fact that there are at least 2 vertices. (Need this to say “the rest have degree 2,” since when there is 1 vertex it has degree 0.) Also missing “Let n be the number of vertices in the graph,” though this is a minor point.
• Conciseness: No issues. In fact, fantastic.
• Clarity: The main idea is clear, mainly because it is so concise. Font size is a bit small. This is the default 10pt font. Prefer 11pt or 12pt, or increase the margins, though this is a minor point.

Glenn Sun
The corrections are SUGGESTIONS ONLY. We will not be so stylistically strict when grading your solutions.

Appendix — Problem 3 — Sample Solution? 2

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

2

Glenn Sun
Not correct, because the resulting trees from the previous line may not have at least 2 vertices each. Need to treat the case of getting single-vertex trees.

Glenn Sun

Glenn Sun
• Correctness: See above.
• Completeness: No issues.
• Conciseness: No issues.
• Clarity: Prefer to separate out IH explicitly. Diagrams are great and helped point out the main ideas, but they obscured the correctness issue. A more generic image that shows the case of getting a single- vertex tree is better. Easy-to-read formatting with underlines and indenting.

Glenn Sun
The corrections are SUGGESTIONS ONLY. We will not be so stylistically strict when grading your solutions.

Appendix — Problem 3 — Sample Solution? 3

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Let P(n) be the statement, “Every tree on n vertices has at least 2 vertices of degree 1.” We will
prove P(n) by induction for n >= 2.

Base Case: n=2. There is only one undirected tree with exactly 2 nodes, and it has 2 vertices
that are both degree 1.

Inductive Hypothesis: Suppose P(n) is true for n = 2, …, k for an arbitrary k >= 2.

Inductive Step: Let T be an arbitrary tree with k nodes. By inductive hypothesis, T has at least
two nodes of degree one. Call them u and v, and create a new node w. Since we are interested
in connected trees, we must attach w; we break into cases depending on what it is adjacent to.

Case 1: w is attached to neither u nor v. If w is adjacent to a node other than u, v then u and v
still have degree one, so the claim holds on T’.

Case 2: w is attached to one of u, v but not the other. If w is adjacent to u or v, then the other of
u, v, and w will both be degree one.

Case 3: w is attached to both u, v. In this case, the graph would be left with no vertices of
degree 1, but luckily this case is impossible! If w were connected to both u and v, then the path
in T between u and v (which exists because T was connected) along with (u, w) and (v, w) form
a cycle, which is not allowed in a tree.

In all (allowed) cases, T’ has the required degree one vertices. Since we constructed T’ to have
k + 1 vertices, we have shown P(k+1).

3

Glenn Sun

Glenn Sun

Glenn Sun

Glenn Sun

Glenn Sun

Glenn Sun

Glenn Sun

Glenn Sun
The corrections are SUGGESTIONS ONLY. We will not be so stylistically strict when grading your solutions.

Glenn Sun
• Correctness: See comments.
• Completeness: See comments.
• Conciseness: See strikethroughs.
• Clarity: Google Docs without the symbol browser/equation editor/italicized math is a little harder to read, compared to proper LaTeX/handwriting, but it’s okay. Grammatically, the frequent use of “u, v” when it is more proper to write “u or v,” makes parsing the text more difficult. Paragraph breaks and use of bold are good. Main ideas are sufficiently understandable.

Glenn Sun
One can argue whether this is a correctness or completeness error, but it is generally not advised to do induction by building up graphs from smaller graphs—instead, remove a vertex from the larger graph to get the smaller graph, as in the previous sample solution. One can ostensibly fix this by adding a proof that all trees can be constructed by adding a new vertex to a smaller tree, but this fact is not obvious and would probably double the length of this proof, so it is not advised. Without this extra part, the proof is not correct. Generally, avoid this whole situation by always starting with the bigger graph and removing a vertex to apply the IH.

Glenn Sun

Glenn Sun
There may have been vertices of degree 1 beyond just u and v, so you cannot conclusively say that attaching w to u and v results in no degree 1 vertices.

Glenn Sun

Glenn Sun
Edges of undirected graphs are sets (use {}), not ordered pairs

Glenn Sun

Appendix — Problem 3 — Sample Solution? 4

Every tree with at least 2 vertices has at least 2 vertices of degree 1.

Proof. Let T = (V, E) be an arbitrary tree. Let P be a simple path of maximal
length in the tree, so P cannot be extended any longer by definition of maximal.
Let x1, ..., xn be the vertices in the path, so {x1, x2}, {x2, x3}, ..., {xn −
1, xn} ∈ E. Suppose that deg(xn) >= 2. So ∃y ∈ V such that y 6= xn−1 and
xn, y ∈ E. If ∃i = 1, ..., n− 2 such that y = xi, then xi, xi + 1, ..., xn, xi = y
is a cycle, which is a contradiction because trees are always acyclic. If
∀i = 1, ..., n − 2 we have y 6= xi then x1, . . . , xn, y is a longer path, which
is a contradiction because we said P had maximal length. So now we’ve
covered all the cases and we can conclude that deg(xn) < 2. And deg(xn) 6= 0
because {xn − 1, xn} is an edge, according to P. So deg(xn) = 1.

Next, suppose that deg(x1) >= 2. So ∃z ∈ V such that z 6= x2 and x1, z ∈ E.
If ∃i = 3, ..., n such that z = xi, then xi = z, x1, ...xi is a cycle, which is a
contradiction because trees are always acyclic. If ∀i = 3, ..., n we have z 6= xi
then z, x1, . . . , xn is a longer path, which is a contradiction because we said
P had maximal length. So now we’ve covered all the cases again and we can
conclude that deg(x1) < 2. And deg(x1) 6= 0 because {x1, x2} is an edge,
according to P. So deg(x1) = 1.

Lastly, considering that every tree with at least two vertices contains at least
one edge, and the longest simple path P contains at least two distinct vertices,
it follows that x1 != xn. So x1 and xn are our two vertices that satisfy the
claim, and we conclude that the claim holds. Q.E.D.

4

Glenn Sun
The corrections are SUGGESTIONS ONLY. We will not be so stylistically strict when grading your solutions.

Glenn Sun
• Correctness: No issues.
• Completeness: No issues.
• Conciseness: See comments
• Clarity: Severe LaTeX errors make this proof difficult to read. If you do choose to use LaTeX, make sure that you are using math mode ($) whenever appropriate, subscripts are surrounded by grouping braces ({}), proper symbols are used (\neq, \le), the phrases “there exists” and “for all” are spelled out instead of in symbols, actual braces are escaped (\{\}), and functions whose names are text are displayed in text font (\text{deg}, or in this case \deg is a built-in command).

It would have improved the clarity to separate the various cases of the first paragraph into different paragraphs or bullet points.

The main ideas of this proof are obscured by by difficult-to-parse formatting and wordy language.

Glenn Sun

Glenn Sun

Glenn Sun
Replace with “The other end of the maximal path is similar and also has degree 1.”

Glenn Sun
Too many variables that are not relevant or only marginally relevant to the proof, and can be safely removed to improve ease of reading. One could just say, “Suppose P = x_1, ... , x_n, and suppose deg(x_n) ≥ 2. So there exists y ∈ V with y != x_n−1 such that {x_n, y} ∈ E. If y ∈ P, then the edge {x_n,y} along with the subpath of P between y and x_n form a cycle...”

Glenn Sun

Glenn Sun

Glenn Sun

