CSE 421 Spring 2025: Set 9 (just for fun!)

Instructor: Chinmay Nirkhe Due date: Thursday June 12th, 2025 11:59pm

Problem 1 (0 bonus points). Recall coNP to be class of decision problems whose complement is in NP. Equivalently its the set of problems X such that $x \in X$ iff there exists a certifier \mathcal{V} such that $\mathcal{V}(x, \pi) = 1$ for all π . Prove that NP \neq coNP implies $P \neq$ NP.

Problem 2 (**0 bonus points**). A one-way function family is a set of functions $f_n : \{0, 1\}^n \to \{0, 1\}^m$ such that

- 1. there exists some n^c -time algorithm \mathcal{A} such that $\mathcal{A}(x) = f_n(x)$ where n = |x|.
- 2. for all poly-time computable algorithms \mathcal{B} , there exists a y such that $f(\mathcal{B}(y)) \neq y i.e.$, the inverse is not efficiently computable.

Show that the existence of one-way functions implies $P \neq NP$.

Problem 3 (**0 bonus points**). Write down the description of an algorithm \mathcal{A} such that

- 1. if input the description $\langle G \rangle$ of a graph, it necessarily halts and outputs if the graph is 3-colorable.
- 2. if P = NP, then this algorithm A must halt in polynomial-time $|G|^c$ for some constant c > 0.

Hint: There is an enumeration of all possible algorithms as they can be described by Turing machines.