
CSE 421 Spring 2025: Set 8

Instructor: Chinmay Nirkhe
Due date: Friday June 6th, 2025 11:59pm

Instructions: Solutions should be legibly handwritten or typeset (ideally in LATEX). Mathematically
rigorous solutions are expected for all problems unless explicitly stated.

You are encouraged to collaborate on problems in small teams but everyone must individually submit
solutions. Solutions for the problems may be found online or in textbooks – but do not use them.

For grading purposes, list, with each problem, the names of your collaborators. Please start each
problem on a new page.

1



Problem 1 (Integer programming). In this problem, we prove that a variant of linear programming is
NP-complete. Specifically, we will restrict our focus to boolean integer programming where each the re-
sulting solution must have each 𝑥𝑖 as 0 or 1 (the constraints must also be integers, but not necessarily 0
or 1). Instead of maximizing an objective function, our goal is simply to determine whether there exists a
solution in the feasible region.

Formally, given an integer matrix 𝐴 and integer vector 𝑏 , we want to write an algorithm that outputs:

IP(𝐴, 𝑏) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1 if there is a length 𝑛 binary vector 𝑥 that satisfies 𝐴𝑥 ≤ 𝑏

0 otherwise.

1. [2 points] Prove that IP is in NP. Hint: Given 𝐴, 𝑏 , and a possible solution 𝑥 , give a polynomial
time algorithm that checks if 𝑥 is a correct solution. (Our answer to this part was 1-2 sentences.)

2. [8 points]. Prove that Vertex Cover ≤𝑝 IP. I.e. Show that given an instance of Vertex Cover, how to
efficiently convert it into an instance of IP. In other words, construct 𝐴 and 𝑏 from the Vertex Cover
graph, and show a bijection between solutions to the Vertex Cover instance and solutions to the IP
instance.

2



Problem 2 (Finding solutions). [10 points] If P = NP, then every decision problem in NP can be solved in
polynomial time. Show that then there is a poly-time algorithm for finding a valid solution to Decision-
Knapsack.

Formally, prove that if P = NP, there exists a poly-time algorithm which outputs a valid Knapsack set
𝑆 ⊆ [𝑛] for the problem (𝑊 , 𝑉 , 𝑤1, … , 𝑤𝑛, 𝑣1, … , 𝑣𝑛) if it exists and outputs ⟂, if no valid Knapsack set
exists.

3



Problem 3. In this problem we will explore the fickle nature of P and NP – we will see that a variant of
3-SAT will be NP-complete while a similar, but slightly different, variant is trivial. Such distinctions are
important to observe and understand because they help elucidate the landscape of algorithmic complexity.
Recall that a 3-CNF 𝜑 is the AND of clauses 𝜑1, 𝜑2, … , 𝜑𝑚 where each clause 𝜑𝑖 is the OR of at most 3
literals1.

1. [10 points] Let (3, ≤ 3)-SAT be the problem of deciding the satisfiability of a 3-CNF formula with
at most 3 literals per clause, and at most 3 occurrences of any variable. Prove that (3, ≤ 3)-SAT is
NP-complete.

Hint: For the reduction, start with a 3-SAT formula 𝜑(𝑧) over 𝑛 variables and replace a variable 𝑧𝑖
which appears too many times with multiple variables 𝑧(𝑗)𝑖 . Then add some clauses to ensure that
the values assigned to the 𝑧(𝑗)𝑖 are consistent.

2. [10 points] Now let (3, = 3)-SAT be the problem of deciding the satisfiability of a 3-CNF formula
with exactly 3 literals per clause, and at most 3 occurrences of any variable. Prove that every instance
of (3, = 3)-SAT is always satisfiable (and, therefore, in P).

Hint: Consider the bipartite graph with clauses on the left, and variables on the right. Connect a
clause to a variable if the variable or its negation appears in the clause. Prove that this graph has a
matching whose size is the same as the number of clauses. Use the matching to prover there exists
a satisfying assignment.

3. [2 bonus points]Come upwith an algorithmwhich finds the satisfying assignment for the previous
part. You do not need to explain correctness of your algorithm.

1A literal is a variable or its negation.

4


