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Lecture 9
Multiplication
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The next couple of weeks
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Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/21 
Lecture 10

Sets 4 & 4 ¾ 
released

4/23 
Lecture 11 
Set 3 due

4/25 
Lecture 12

4/28 
Lecture 13

4/30 
Lecture 14 
Set 4 due

Midterm  
Q&A 

5:30-7:30pm
5/2 

Lecture 15

5/5 
Midterm Set 5 released

5/7 
Lecture 16


Set 4 ¾ due
5/9 

Lecture 17 

5/12 
Lecture 18

5/14 
Lecture 19 
Set 5 due

5/16 
Lecture 20



Problem set 4 ¾

• A set with one 10 point question


• The problem is about dynamic programming 

• Dynamic programming is covered on the midterm


• It is due on Wednesday May 7th 11:59pm


• But, I’m posting solutions on Saturday May 3rd (12:01am) before its due


• You can look at the solution after you upload your solution to Gradescope


• Not doing so is academic dishonesty. I’m trusting each of you here
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Previously in CSE 421…
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Principles of divide and conquer

• Identity a division of the problem into  self-similar parts of size 


• Recursively solve each subpart of the problem


• Stitch the solutions from each subpart together


• Runtime is defined by the following recursively defined formula: 
 

 and 

a n/b

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:


• If , then 


• If , then 


• If , then 

T(n) = a ⋅ T ( n
b )+O(nk) T( < b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
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Today: Matrix, integer, and 
polynomial multiplication
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Matrix multiplication

• Input: Two matrices 


• Output: The matrix 

A, B ∈ ℝn×n

AB ∈ ℝn×n
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Trivial algorithm for matrix multiplication

• Algorithm: 

• Initialize  array  as zeroes


• For ,       


• Return .


• Runtime:  multiplications +  additions 

• Can we improve this with divide and conquer?

n × n C

i ∈ [n], j ∈ [n], k ∈ [n] Cij ← Cij + Aik ⋅ Bkj

C

n3 n3
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Matrix multiplication naturally decomposes

• Matrix multiplication of matrices 
 
 
 
 
 

• Divide and conquer: 

• Decompose into 8 matrix multiplications of  matrices and 4 matrix additions of 
 matrices


•  

n/2 × n/2
n/2 × n/2

T(n) = 8T ( n
2 ) + 4 ( n

2 )
2

⟹ T(n) = O(nlog2 8) = O(n3)
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Strassen’s divide and conquer (1968)

• Can we decrease the number of mini-multiplications at the cost of increasing the 
number of mini-additions?


• If we were to somehow decrease to 7 multiplications but 18 additions …


• 


• But how do we achieve this decrease? 


• Find repeated terms.

T(n) = 7T ( n
2 ) +

18
4

n2 ⟹ T(n) =
18
4

⋅ O(nlog2 7) = O(n2.8074)
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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A clever decomposition
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Wikipedia article for Strassen’s algorithm



Strassen’s algorithm details

• Best for matrices of size . Pad the matrix with zeroes until it is.


• Strassen’s has 18 mini-additions. Only beneficial if . 


• For smaller matrices, use  algorithm.


• Still a base case for the recursive definition. Only adjust  constants.


• Is there an even cleverer decomposition into fewer mini-multiplications?


• Not for dividing into  mini-matrices


• Other divisions plus clever tricks have gotten algorithms down to  [May 2024]


• Major open question:  time algorithm possible for all . 

2m × 2m

n ≥ 32

O(n3)

O( ⋅ )

n/2 × n/2

O(n2.371339)

O(n2+ϵ) ϵ > 0
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Integer multiplication

• Input: Two -bit binary numbers 


• Output: A -bit binary number


• Gradeschool multiplication algorithm takes  time

n x, y ∈ {0,…,2n − 1}

2n

O(n2)
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The Karatsuba method

T(n) = 4T ( n
2 ) + O(n) ⟹ T(n) = O(nlog2 4) = O(n2)
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The Karatsuba method

T(n) = 3T ( n
2 ) + O(n) ⟹ T(n) = O(nlog2 3) = O(n1.58)
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Improving integer multiplication

• Fast integer multiplication is used in high-precision arithmetic


• Storing a number to -bits of precision is equal to  precision


• Karatsuba’s algorithm is not the fastest


• Fastest is  based on the fast Fourier transform (next!)


• These are galactic algorithms (not useful in practice)

n 2−n

O(n log n)
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Polynomial multiplication

• Input: polynomials  of deg  expressed by their coefficients 
 

i.e.   

     


• Output: The poly.  of deg  expressed in coefficients. 
 

p, q ∈ ℂ[x] < n

p(x) = an−1xn−1 + an−2xn−2 + … + a1x + a0

q(x) = bn−1xn−1 + bn−2xn−2 + … + b1x + b0

pq ∈ ℂ[x] < 2n − 1

pq(x) = c2n−1x2n−1 + c2n−2x2n−2 + … + c1x + c0 where cj =
j

∑
k=0

akbj−k
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Why is polynomial multiplication useful?

• This algorithm is used as a subroutine in


• signal processing, image processing, audio compression


• Many public-key cryptosystems rely on polynomial arithmetic


• Computing Reed-Solomon (5G) error-correcting codes


• Polynomial-based error-detection codes


• The major subroutine is equivalent to convolution, a fundamental 
mathematical computation
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Polynomial multiplication

• Output: The poly.  of deg  expressed in coefficients. 
 




• Can be solved using  multiplications


• Can we be any faster? Perhaps using divide and conquer?

pq ∈ ℂ[x] < 2n − 1

pq(x) = c2n−1x2n−1 + c2n−2x2n−2 + … + c1x + c0 where cj =
j

∑
k=0

akbj−k

1 + 2 + … + n + … + 2 + 1 = O(n2)
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When is polynomial multiplication fast?

• Fundamental theorem of algebra: A degree  polynomial  is uniquely 
specified by any  distinct evaluation points.


• Let  be distinct. Then  uniquely define .


• Let  be the poly defined by . 
Let  be the poly defined by . 
For every , . So, .


• Then  is a poly defined by . 

< n p
n

ξ1, ξ2, …, ξn ∈ ℂ {(ξi, p(ξi))} p

p {(ξi, yi)}
q {(ξi, zi)}

x (pq)(x) = p(x) ⋅ q(x) (pq)(ξi) = yi ⋅ zi

pq {(ξi, yi ⋅ zi)}
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When is polynomial multiplication fast?

• Fundamental theorem of algebra: A degree  polynomial  is uniquely 
specified by any  distinct evaluation points.


• Let  be distinct. Then  uniquely define .


• Let  be the poly defined by . 
Let  be the poly defined by . 

• Then  is the unique poly defined by . 

< n p
n

ξ1, ξ2, …, ξ2n ∈ ℂ {(ξi, p(ξi))}i∈[2n] p

p {(ξi, yi)}i∈[2n]
q {(ξi, zi)}i∈[2n]

pq {(ξi, yi ⋅ zi)}i∈[2n]
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Polynomial multiplication algorithm

• New algorithm: 

• Pick evaluation points .


• Evaluate  and  to compute  for .


• Calculate 


• Compute the coefficients of polynomial uniquely defined by .  

ξ1, …, ξ2n

p q yi ← p(ξi), zi ← q(ξi) i ∈ [2n]

wi ← yi ⋅ zi .

{(ξi, wi)}i∈[2n]
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Polynomial multiplication algorithm

• New idea: Pick interpolation points  intelligently.


• If done correctly, we can speed up computing .


• Also will give us a way of un-doing interpolation after multiplication.


• Choose related points to parallelize the computation


• Writing down all the partial computations will take too long

{ξj}

p(ξj), q(ξj)
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Change of basis

• Let’s observe that  is the inner product between two vectors.


•
             

p(ξ) =
2n

∑
j=0

ajξj

p(ξ) = [1 ξ ξ2 … ξ2n] ⋅

a0
a1
a2
⋮

a2n
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Change of basis

31

p(ξ1)
p(ξ2)

⋮
p(ξ2n)

=

1 ξ1 ξ2
1 … ξ2n

1

1 ξ2 ξ2
2 … ξ2n

2
⋮ ⋱ ⋮
1 ξ2n ξ2

2n … ξ2n
2n

⋅

a0
a1
a2
⋮

a2n



Polynomial multiplication algorithm

• New new algorithm: 

• Pick interpolation points .


• Compute Vandermonde matrix  and it’s inverse .


• Compute 


• Compute , point-wise multiplication.


• Return .

{ξj}j∈[2n]

V V−1

⃗y ← V ⃗a, ⃗z ← Vb⃗ .

⃗w ← ⃗a ⊙ b⃗

V−1 ⃗w
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Choice of interpolation points

• To speed up the algorithm, we are 
going to pick  creatively.


• Let  be the smallest power of  
that is .


• Choose , a primitive 
-th root of unity.


• Define .

{ξj}

m 2
≥ 2n

ω := e2πi/m m

ξj = ω j−1

33

V =

1 1 1 … 1
1 ω ω2 … ωm−1

1 ω2 ω4 … ω2(m−1)

1 ω3 ω6 … ω3(m−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 ωm−1 ω2(m−1) … ω(m−1)2



Complex number review

• A complex number can be expressed as  
with 


• Alternatively, it can be expressed as  with 



• Multiplying complex numbers is easy 
 
(

a + bi
a, b ∈ ℝ

reiθ

r ∈ ℝ≥0, θ ∈ [0,2π)

(rieiθ1)(r2eiθ2) = (r1r2)ei(θ1+θ2))
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Complex number review

• A complex number can be expressed as  
with 


• Alternatively, it can be expressed as  with 



• Multiplying complex numbers is easy 
 
( 


• , the -th root of unity can be expressed as 
, 

a + bi
a, b ∈ ℝ

reiθ

r ∈ ℝ≥0, θ ∈ [0,2π)

(rieiθ1)(r2eiθ2) = (r1r2)ei(θ1+θ2))

ω m
r = 1 θ = 2π/m
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Polynomial multiplication algorithm

• New new new algorithm: 

• Let  be the smallest power of 2 that is . .


• Pad vectors  and  with zeroes till length .


• Compute 


• Compute , point-wise multiplication.


• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗

Fm(ω)−1 ⃗w
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Polynomial multiplication algorithm

• New new new algorithm: 

• Let  be the smallest power of 2 that is . .


• Pad vectors  and  with zeroes till length .


• Compute 


• Compute , point-wise multiplication.


• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗
1
m

Fm(ω−1) ⃗w
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Computing  efficientlyFm(ω) ⃗a

• Goal is to use divide and 
conquer to do this 
computation efficiently


• To do so, we need to find 
similar components to 
break the problem into 
smaller parts


• Let’s analyze this for  
and then generalize.

m = 8

38

p(1)
p(ω)
p(ω2)
p(ω3)
p(ω4)
p(ω5)
p(ω6)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a1
a2
a3
a4
a5
a6
a7



Computing  efficientlyFm(ω) ⃗a

• Nothing says we have to 
calculate the evaluations in 
this order!


• Is there a better order in 
which a pattern emerges?
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p(1)
p(ω)
p(ω2)
p(ω3)
p(ω4)
p(ω5)
p(ω6)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a1
a2
a3
a4
a5
a6
a7



Computing  efficientlyFm(ω) ⃗a

• Nothing says we have to 
calculate the evaluations in 
this order!


• Is there a better order in 
which a pattern emerges?


• Even rows then odd rows
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p(1)
p(ω2)
p(ω4)
p(ω6)
p(ω)
p(ω3)
p(ω5)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω4 1 ω4 1 ω4 1 ω4

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a2
a4
a6
a1
a3
a5
a7



Computing  efficientlyFm(ω) ⃗a

• Nothing says we have to 
calculate the evaluations in 
this order!


• Is there a better order in 
which a pattern emerges?


• Even rows then odd rows
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p(1)
p(ω2)
p(ω4)
p(ω6)
p(ω)
p(ω3)
p(ω5)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω4 1 ω4 1 ω4 1 ω4

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a2
a4
a6
a1
a3
a5
a7



Computing  efficientlyFm(ω) ⃗a
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1 ω ω2 ω3

1 ω3 ω6 ω1

1 ω5 ω2 ω7

1 ω7 ω6 ω5

=

1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3

⋅

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2



Computing  efficientlyFm(ω) ⃗a
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1 ω ω2 ω3

1 ω3 ω6 ω1

1 ω5 ω2 ω7

1 ω7 ω6 ω5

=

1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3

⋅

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2



Computing  efficientlyFm(ω) ⃗a
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Computing  efficientlyFm(ω) ⃗a

• Divide and conquer algorithm:


• Split  into  and  coordinates.


• Compute  and 
.


•  Compute  and . 


• Compute .


• Rearrange coordinates to original format.

⃗a ⃗aeven ⃗aodd

⃗yeven ← Fm/2(ω2) ⃗aeven
⃗yodd ← Fm/2(ω2) ⃗aodd

D ⃗yeven D′ ⃗yodd

[
⃗yeven + ⃗yodd

D ⃗yeven + ⃗D′ yodd]
45



Computing  efficientlyFm(ω) ⃗a

• Divide and conquer algorithm:


• Split  into  and  coordinates.


• Compute  and 
.


•  Compute  and . 


• Compute .


• Rearrange coordinates to original format.

⃗a ⃗aeven ⃗aodd

⃗yeven ← Fm/2(ω2) ⃗aeven
⃗yodd ← Fm/2(ω2) ⃗aodd

D ⃗yeven D′ ⃗yodd

[
⃗yeven + ⃗yodd

D ⃗yeven + ⃗D′ yodd]
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Returning to the full algorithm

• New new new algorithm: 

• Let  be the smallest power of 2 that is . .


• Pad vectors  and  with zeroes till length .


• Compute 


• Compute , point-wise multiplication.


• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗

Fm(ω)−1 ⃗w
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Returning to the full algorithm

• New new new algorithm: 

• Let  be the smallest power of 2 that is . .


• Pad vectors  and  with zeroes till length .


• Compute 


• Compute , point-wise multiplication.


• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗
1
m

Fm(ω−1) ⃗w
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Fast Fourier Transform

• The algorithm for computing  is known as the Fast Fourier 
Transform (FFT) 

• It serves as a major component in many algorithms particularly dealing with 
polynomial computations


• Quantum computers are capable of “implementing” the FFT on matrices in 
time . This is the major step in the quantum factoring algorithm 
and the hype behind quantum computers.

Fm(ω) ⃗a

O(polylog m)
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Final remaining theorem

• Theorem: .


• Proof:

Fm(ω)−1 =
1
m

Fm(ω−1)
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General algorithm: Convolution

• Input: Two vectors 


• Output: The convolution vector  is defined by 
 




• Algorithm: Exact same alg. as that of poly. mult.: 
 

 for .


• Runtime:   

f = ( f0, …, fn−1), g = (g0, …, gn−1) ∈ ℂn

f * g

( f * g)k :=
n

∑
j=0

fj ⋅ gn−j

f * g =
1
n

Fn(ω−1)(Fn(ω)f ⊙ Fn(ω)g) ω = e2πi/m

O(n log n)
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• Proof:  

• Let ,  be the poly. with coeffs. given by , 


• Then  are the coeffs. of the poly. 



• Then  for  to 


•  So, prev algorithm will find the coefficients 
of the unique polynomial

p q f g

f * g
r = pq (mod xn)

r(ω j) = p(ω j)q(ω j) j = 0 n − 1



Overtime (stay if interested)
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• An algorithm for combining two signals to form 
a third signal


• Shows up most commonly now in convolution 
neural networks


•  vs


• 


• This is the area under the curve  with 
weights defined by 


• Let’s you smooth out the curve  by picking 

( f * g)k :=
n

∑
j=0

fj ⋅ gn−j

( f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution
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• An algorithm for combining two signals to form 
a third signal


• Shows up most commonly now in convolution 
neural networks


•  vs


• 


• This is the area under the curve  with 
weights defined by 


• Let’s you smooth out the curve  by picking 

( f * g)k :=
n

∑
j=0

fj ⋅ gn−j

( f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution
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• An algorithm for combining two signals to form 
a third signal


• Shows up most commonly now in convolution 
neural networks


•  vs


• 


• This is the area under the curve  with 
weights defined by 


• Let’s you smooth out the curve  by picking 

( f * g)k :=
n

∑
j=0

fj ⋅ gn−j

( f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution
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Convolution
Gaussian blurring and edge detection

• Ex. We can also apply a 2D version of convolution for image processing

56

Source: Stanford 315b lectures



Convolution

• Filtering signals (low-pass, high-pass) 


• Convolve with a signal to filter out certain frequencies 


• Audio effects (reverb, echo, suppression)


• Image processing


• And more!
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