
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 9
Multiplication

 1

The next couple of weeks

2

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

4/21 
Lecture 10

Sets 4 & 4 ¾
released

4/23 
Lecture 11 
Set 3 due

4/25 
Lecture 12

4/28 
Lecture 13

4/30 
Lecture 14 
Set 4 due

Midterm  
Q&A 

5:30-7:30pm
5/2 

Lecture 15

5/5 
Midterm Set 5 released

5/7 
Lecture 16

Set 4 ¾ due
5/9 

Lecture 17

5/12 
Lecture 18

5/14 
Lecture 19 
Set 5 due

5/16 
Lecture 20

Problem set 4 ¾

• A set with one 10 point question

• The problem is about dynamic programming

• Dynamic programming is covered on the midterm

• It is due on Wednesday May 7th 11:59pm

• But, I’m posting solutions on Saturday May 3rd (12:01am) before its due

• You can look at the solution after you upload your solution to Gradescope

• Not doing so is academic dishonesty. I’m trusting each of you here

3

Previously in CSE 421…

4

Principles of divide and conquer

• Identity a division of the problem into self-similar parts of size

• Recursively solve each subpart of the problem

• Stitch the solutions from each subpart together

• Runtime is defined by the following recursively defined formula: 
 

 and

a n/b

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

5

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
6

Today: Matrix, integer, and
polynomial multiplication

7

Matrix multiplication

• Input: Two matrices

• Output: The matrix

A, B ∈ ℝn×n

AB ∈ ℝn×n

8

Trivial algorithm for matrix multiplication

• Algorithm:

• Initialize array as zeroes

• For ,

• Return .

• Runtime: multiplications + additions

• Can we improve this with divide and conquer?

n × n C

i ∈ [n], j ∈ [n], k ∈ [n] Cij ← Cij + Aik ⋅ Bkj

C

n3 n3

9

Matrix multiplication naturally decomposes

• Matrix multiplication of matrices 
 
 
 
 
 

• Divide and conquer:

• Decompose into 8 matrix multiplications of matrices and 4 matrix additions of
 matrices

•

n/2 × n/2
n/2 × n/2

T(n) = 8T (n
2) + 4 (n

2)
2

⟹ T(n) = O(nlog2 8) = O(n3)

10

Strassen’s divide and conquer (1968)

• Can we decrease the number of mini-multiplications at the cost of increasing the
number of mini-additions?

• If we were to somehow decrease to 7 multiplications but 18 additions …

•

• But how do we achieve this decrease?

• Find repeated terms.

T(n) = 7T (n
2) +

18
4

n2 ⟹ T(n) =
18
4

⋅ O(nlog2 7) = O(n2.8074)

11

A clever decomposition

12

A clever decomposition

13

A clever decomposition

14

A clever decomposition

15

A clever decomposition

16

A clever decomposition

17

Wikipedia article for Strassen’s algorithm

Strassen’s algorithm details

• Best for matrices of size . Pad the matrix with zeroes until it is.

• Strassen’s has 18 mini-additions. Only beneficial if .

• For smaller matrices, use algorithm.

• Still a base case for the recursive definition. Only adjust constants.

• Is there an even cleverer decomposition into fewer mini-multiplications?

• Not for dividing into mini-matrices

• Other divisions plus clever tricks have gotten algorithms down to [May 2024]

• Major open question: time algorithm possible for all .

2m × 2m

n ≥ 32

O(n3)

O(⋅)

n/2 × n/2

O(n2.371339)

O(n2+ϵ) ϵ > 0

18

Integer multiplication

• Input: Two -bit binary numbers

• Output: A -bit binary number

• Gradeschool multiplication algorithm takes time

n x, y ∈ {0,…,2n − 1}

2n

O(n2)

19

The Karatsuba method

T(n) = 4T (n
2) + O(n) ⟹ T(n) = O(nlog2 4) = O(n2)

20

The Karatsuba method

T(n) = 3T (n
2) + O(n) ⟹ T(n) = O(nlog2 3) = O(n1.58)

21

Improving integer multiplication

• Fast integer multiplication is used in high-precision arithmetic

• Storing a number to -bits of precision is equal to precision

• Karatsuba’s algorithm is not the fastest

• Fastest is based on the fast Fourier transform (next!)

• These are galactic algorithms (not useful in practice)

n 2−n

O(n log n)

22

Polynomial multiplication

• Input: polynomials of deg expressed by their coefficients 
 

i.e.  

• Output: The poly. of deg expressed in coefficients. 
 

p, q ∈ ℂ[x] < n

p(x) = an−1xn−1 + an−2xn−2 + … + a1x + a0

q(x) = bn−1xn−1 + bn−2xn−2 + … + b1x + b0

pq ∈ ℂ[x] < 2n − 1

pq(x) = c2n−1x2n−1 + c2n−2x2n−2 + … + c1x + c0 where cj =
j

∑
k=0

akbj−k

23

Why is polynomial multiplication useful?

• This algorithm is used as a subroutine in

• signal processing, image processing, audio compression

• Many public-key cryptosystems rely on polynomial arithmetic

• Computing Reed-Solomon (5G) error-correcting codes

• Polynomial-based error-detection codes

• The major subroutine is equivalent to convolution, a fundamental
mathematical computation

24

Polynomial multiplication

• Output: The poly. of deg expressed in coefficients. 
 

• Can be solved using multiplications

• Can we be any faster? Perhaps using divide and conquer?

pq ∈ ℂ[x] < 2n − 1

pq(x) = c2n−1x2n−1 + c2n−2x2n−2 + … + c1x + c0 where cj =
j

∑
k=0

akbj−k

1 + 2 + … + n + … + 2 + 1 = O(n2)

25

When is polynomial multiplication fast?

• Fundamental theorem of algebra: A degree polynomial is uniquely
specified by any distinct evaluation points.

• Let be distinct. Then uniquely define .

• Let be the poly defined by . 
Let be the poly defined by . 
For every , . So, .

• Then is a poly defined by . 

< n p
n

ξ1, ξ2, …, ξn ∈ ℂ {(ξi, p(ξi))} p

p {(ξi, yi)}
q {(ξi, zi)}

x (pq)(x) = p(x) ⋅ q(x) (pq)(ξi) = yi ⋅ zi

pq {(ξi, yi ⋅ zi)}

26

When is polynomial multiplication fast?

• Fundamental theorem of algebra: A degree polynomial is uniquely
specified by any distinct evaluation points.

• Let be distinct. Then uniquely define .

• Let be the poly defined by . 
Let be the poly defined by . 

• Then is the unique poly defined by . 

< n p
n

ξ1, ξ2, …, ξ2n ∈ ℂ {(ξi, p(ξi))}i∈[2n] p

p {(ξi, yi)}i∈[2n]
q {(ξi, zi)}i∈[2n]

pq {(ξi, yi ⋅ zi)}i∈[2n]

27

Polynomial multiplication algorithm

• New algorithm:

• Pick evaluation points .

• Evaluate and to compute for .

• Calculate

• Compute the coefficients of polynomial uniquely defined by .

ξ1, …, ξ2n

p q yi ← p(ξi), zi ← q(ξi) i ∈ [2n]

wi ← yi ⋅ zi .

{(ξi, wi)}i∈[2n]

28

Polynomial multiplication algorithm

• New idea: Pick interpolation points intelligently.

• If done correctly, we can speed up computing .

• Also will give us a way of un-doing interpolation after multiplication.

• Choose related points to parallelize the computation

• Writing down all the partial computations will take too long

{ξj}

p(ξj), q(ξj)

29

Change of basis

• Let’s observe that is the inner product between two vectors.

•

p(ξ) =
2n

∑
j=0

ajξj

p(ξ) = [1 ξ ξ2 … ξ2n] ⋅

a0
a1
a2
⋮

a2n

30

Change of basis

31

p(ξ1)
p(ξ2)

⋮
p(ξ2n)

=

1 ξ1 ξ2
1 … ξ2n

1

1 ξ2 ξ2
2 … ξ2n

2
⋮ ⋱ ⋮
1 ξ2n ξ2

2n … ξ2n
2n

⋅

a0
a1
a2
⋮

a2n

Polynomial multiplication algorithm

• New new algorithm:

• Pick interpolation points .

• Compute Vandermonde matrix and it’s inverse .

• Compute

• Compute , point-wise multiplication.

• Return .

{ξj}j∈[2n]

V V−1

⃗y ← V ⃗a, ⃗z ← Vb⃗ .

⃗w ← ⃗a ⊙ b⃗

V−1 ⃗w

32

Choice of interpolation points

• To speed up the algorithm, we are
going to pick creatively.

• Let be the smallest power of
that is .

• Choose , a primitive
-th root of unity.

• Define .

{ξj}

m 2
≥ 2n

ω := e2πi/m m

ξj = ω j−1

33

V =

1 1 1 … 1
1 ω ω2 … ωm−1

1 ω2 ω4 … ω2(m−1)

1 ω3 ω6 … ω3(m−1)

⋮ ⋮ ⋮ ⋱ ⋮
1 ωm−1 ω2(m−1) … ω(m−1)2

Complex number review

• A complex number can be expressed as
with

• Alternatively, it can be expressed as with

• Multiplying complex numbers is easy 
 
(

a + bi
a, b ∈ ℝ

reiθ

r ∈ ℝ≥0, θ ∈ [0,2π)

(rieiθ1)(r2eiθ2) = (r1r2)ei(θ1+θ2))

34

Complex number review

• A complex number can be expressed as
with

• Alternatively, it can be expressed as with

• Multiplying complex numbers is easy 
 
(

• , the -th root of unity can be expressed as
,

a + bi
a, b ∈ ℝ

reiθ

r ∈ ℝ≥0, θ ∈ [0,2π)

(rieiθ1)(r2eiθ2) = (r1r2)ei(θ1+θ2))

ω m
r = 1 θ = 2π/m

35

Polynomial multiplication algorithm

• New new new algorithm:

• Let be the smallest power of 2 that is . .

• Pad vectors and with zeroes till length .

• Compute

• Compute , point-wise multiplication.

• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗

Fm(ω)−1 ⃗w

36

Polynomial multiplication algorithm

• New new new algorithm:

• Let be the smallest power of 2 that is . .

• Pad vectors and with zeroes till length .

• Compute

• Compute , point-wise multiplication.

• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗
1
m

Fm(ω−1) ⃗w

37

Computing efficientlyFm(ω) ⃗a

• Goal is to use divide and
conquer to do this
computation efficiently

• To do so, we need to find
similar components to
break the problem into
smaller parts

• Let’s analyze this for
and then generalize.

m = 8

38

p(1)
p(ω)
p(ω2)
p(ω3)
p(ω4)
p(ω5)
p(ω6)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a1
a2
a3
a4
a5
a6
a7

Computing efficientlyFm(ω) ⃗a

• Nothing says we have to
calculate the evaluations in
this order!

• Is there a better order in
which a pattern emerges?

39

p(1)
p(ω)
p(ω2)
p(ω3)
p(ω4)
p(ω5)
p(ω6)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω4 1 ω4 1 ω4 1 ω4

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a1
a2
a3
a4
a5
a6
a7

Computing efficientlyFm(ω) ⃗a

• Nothing says we have to
calculate the evaluations in
this order!

• Is there a better order in
which a pattern emerges?

• Even rows then odd rows

40

p(1)
p(ω2)
p(ω4)
p(ω6)
p(ω)
p(ω3)
p(ω5)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω4 1 ω4 1 ω4 1 ω4

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a2
a4
a6
a1
a3
a5
a7

Computing efficientlyFm(ω) ⃗a

• Nothing says we have to
calculate the evaluations in
this order!

• Is there a better order in
which a pattern emerges?

• Even rows then odd rows

41

p(1)
p(ω2)
p(ω4)
p(ω6)
p(ω)
p(ω3)
p(ω5)
p(ω7)

=

1 1 1 1 1 1 1 1
1 ω2 ω4 ω6 1 ω2 ω4 ω6

1 ω4 1 ω4 1 ω4 1 ω4

1 ω6 ω4 ω2 1 ω6 ω4 ω2

1 ω ω2 ω3 ω4 ω5 ω6 ω7

1 ω3 ω6 ω1 ω4 ω7 ω2 ω5

1 ω5 ω2 ω7 ω4 ω ω6 ω3

1 ω7 ω6 ω5 ω4 ω3 ω2 ω1

⋅

a0
a2
a4
a6
a1
a3
a5
a7

Computing efficientlyFm(ω) ⃗a

42

1 ω ω2 ω3

1 ω3 ω6 ω1

1 ω5 ω2 ω7

1 ω7 ω6 ω5

=

1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3

⋅

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2

Computing efficientlyFm(ω) ⃗a

43

1 ω ω2 ω3

1 ω3 ω6 ω1

1 ω5 ω2 ω7

1 ω7 ω6 ω5

=

1 0 0 0
0 ω 0 0
0 0 ω2 0
0 0 0 ω3

⋅

1 1 1 1
1 ω2 ω4 ω6

1 ω4 1 ω4

1 ω6 ω4 ω2

Computing efficientlyFm(ω) ⃗a

44

Computing efficientlyFm(ω) ⃗a

• Divide and conquer algorithm:

• Split into and coordinates.

• Compute and
.

• Compute and .

• Compute .

• Rearrange coordinates to original format.

⃗a ⃗aeven ⃗aodd

⃗yeven ← Fm/2(ω2) ⃗aeven
⃗yodd ← Fm/2(ω2) ⃗aodd

D ⃗yeven D′ ⃗yodd

[
⃗yeven + ⃗yodd

D ⃗yeven + ⃗D′ yodd]
45

Computing efficientlyFm(ω) ⃗a

• Divide and conquer algorithm:

• Split into and coordinates.

• Compute and
.

• Compute and .

• Compute .

• Rearrange coordinates to original format.

⃗a ⃗aeven ⃗aodd

⃗yeven ← Fm/2(ω2) ⃗aeven
⃗yodd ← Fm/2(ω2) ⃗aodd

D ⃗yeven D′ ⃗yodd

[
⃗yeven + ⃗yodd

D ⃗yeven + ⃗D′ yodd]
46

Returning to the full algorithm

• New new new algorithm:

• Let be the smallest power of 2 that is . .

• Pad vectors and with zeroes till length .

• Compute

• Compute , point-wise multiplication.

• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗

Fm(ω)−1 ⃗w

47

Returning to the full algorithm

• New new new algorithm:

• Let be the smallest power of 2 that is . .

• Pad vectors and with zeroes till length .

• Compute

• Compute , point-wise multiplication.

• Return .

m ≥ 2n ω = e2πi/m

⃗a b⃗ m

⃗y ← Fm(ω) ⃗a, ⃗z ← Fm(ω)b⃗ .

⃗w ← ⃗a ⊙ b⃗
1
m

Fm(ω−1) ⃗w

48

Fast Fourier Transform

• The algorithm for computing is known as the Fast Fourier
Transform (FFT)

• It serves as a major component in many algorithms particularly dealing with
polynomial computations

• Quantum computers are capable of “implementing” the FFT on matrices in
time . This is the major step in the quantum factoring algorithm
and the hype behind quantum computers.

Fm(ω) ⃗a

O(polylog m)

49

Final remaining theorem

• Theorem: .

• Proof:

Fm(ω)−1 =
1
m

Fm(ω−1)

50

General algorithm: Convolution

• Input: Two vectors

• Output: The convolution vector is defined by 
 

• Algorithm: Exact same alg. as that of poly. mult.: 
 

 for .

• Runtime:

f = (f0, …, fn−1), g = (g0, …, gn−1) ∈ ℂn

f * g

(f * g)k :=
n

∑
j=0

fj ⋅ gn−j

f * g =
1
n

Fn(ω−1)(Fn(ω)f ⊙ Fn(ω)g) ω = e2πi/m

O(n log n)

51

• Proof:

• Let , be the poly. with coeffs. given by ,

• Then are the coeffs. of the poly.

• Then for to

• So, prev algorithm will find the coefficients
of the unique polynomial

p q f g

f * g
r = pq (mod xn)

r(ω j) = p(ω j)q(ω j) j = 0 n − 1

Overtime (stay if interested)

52

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gn−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

53

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gn−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

54

• An algorithm for combining two signals to form
a third signal

• Shows up most commonly now in convolution
neural networks

• vs

•

• This is the area under the curve with
weights defined by

• Let’s you smooth out the curve by picking

(f * g)k :=
n

∑
j=0

fj ⋅ gn−j

(f * g)(x) = ∫
∞

−∞
f(τ)g(x − τ)dτ

f
g

f g
Source: Medium post by TDS archive.

Convolution

55

Convolution
Gaussian blurring and edge detection

• Ex. We can also apply a 2D version of convolution for image processing

56

Source: Stanford 315b lectures

Convolution

• Filtering signals (low-pass, high-pass)

• Convolve with a signal to filter out certain frequencies

• Audio effects (reverb, echo, suppression)

• Image processing

• And more!

57

