
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 8
Divide and conquer

1

Principles of divide and conquer

• Identity a division of the problem into self-similar parts of size

• Recursively solve each subpart of the problem

• Stitch the solutions from each subpart together

• Runtime is defined by the following recursively defined formula: 
 

 and

a n/b

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

2

Examples of divide and conquer

• Mergesort, Quicksort (sort of)

• Binary search (today)

• Euclidean closest pair (today)

• Rank selection, Median finding

3

Binary search for roots of a function

• Input: Description of

• a continuous ,

• such that

• and

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

4

Binary search for roots of a function

• Input: Description of

• a continuous ,

• such that

• and

• Output: A value such that
 for some .

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

x ∈ [a, b]
f(x′) = 0 |x′ − x | ≤ ϵ

5

Bisection method

• Intermediate value theorem (IVT): If and is continuous,
there exists an such that .

• Proof by picture:

f(0) = 0, f(1) = 1 f
x ∈ (0,1) f(x) = 1/2

6

Bisection method

• Algorithm :

• Let .

• If , return .

• Let .

• If , return .

• Else, return .

g(x, y)

m ← (x + y)/2

y − x ≤ 2ϵ m

z ← f (m)

z > 0 g (x, m)

g (m, y)
7

• Claim: If ,
then outputs an such that

.

• Proof:

• Base case, follows from IVT.

• Otherwise,

f(x) ≤ 0 < f(y) for x < y
g(x, y) m

f(m′) = 0 for |m′ − m | ≤ ϵ

Runtime analysis
Binary search problem

• Therefore, running will solve the bisection problem.

• Each iteration of is on an interval of half the length

• starting from until the length is

• Therefore, recursions.

• Each recursion costs arithmetic operations plus query to .

• Runtime: queries to .

g(a, b)

g

b − a ≤ 2ϵ

log2 (b − a
2ϵ)
O(1) 1 f

O(log(b − a) + log(1/ϵ)) f
8

Runtime analysis

• Simple version of generalized runtime analysis.

• Let .

• Then, and for number of queries.

• Solves to .

k = (b − a)/(2ϵ)

T(k) = T(k/2) + 1 T(1) = 0

T(k) = ⌈log2 k⌉ + 1

9

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

10

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

11

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

12

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

13

Another classic divide and conquer problem
Mergesort

• To sort an array of entries, recursively
sort the first half and recursively sort the
second half. Then merge the two sorted
lists.

• Merging two sorted arrays takes time
as we only have to compare current
elements as we iterate through both arrays

• Recursive time equation:
 with .

• Solution:

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)

14

Euclidean closest pair

• Input: A sequence of points

• Find: The pair minimizing .

• Brute force algorithm: Try all pairs. time.

• Is there a better algorithm for small ?

• In 1D for example, we can sort and then compare nearest neighbors for
.

• Can we do better?

n p1, …, pn ∈ ℝd

pi, pj ∥pi − pj∥

O(n2d)

d

O(n log n)

15

2D Euclidean closest pair

• Sorting on first coordinate will not work

• No single direction for sorting guarantees success

• Divide and conquer algorithm:

• Need to figure out a way to subdivide the problem

• Then build solution from best solutions to both
halves. This will require extra processing

16

Split across -coordinate anywaysx

• Let’s split according to -coordinate
anyways

• Let be the median -coordinate

• Divide the set into points
 and

• Let be the minimum of the two
solutions

x

m x

{p : p1 ≤ m} {p : p > m}

δ

17

The “conquer” aspect of the algorithm

• We only need to worry about pairs that
are both split by the median and
distance apart

• During “conquer” step, only need to
look at vertices in the -width band

• Within the band, only need to
compare points with -coordinates
that differ by

< δ

δ

y
< δ

18

Close-up analysis

19

Close-up analysis

20

Close-up analysis

21

Close-up analysis

22

The full conquer subroutine

23

• Let be the set of points in band.

• Sort the points in by -coordinate

• For each point , compare to
the 8 points before and 8 points after

 in the sorting.

• By analysis, this checks all possible
pairs of distance .

M

M y

a ∈ M a

a

< δ

Divide and conquer algorithm

• Divide step:

• Compute median and divide into two subproblems

• Recursively calculate shortest distance for subproblems

• Conquer step:

• Compute the set of points in the band

• Sort by -coordinate

• Compare points in sorted with the next 8 points and update if closer pair found.

m

M

M y

M

24

Better divide and conquer algorithm

• Preprocessing:

• Sort points according to -coordinate for list

• Sort points according to -coordinate for list

• Divide step (sorted lists ,):

• Compute median by -coordinate

• Divide into . Filter into and .

• Recursively solve and problems for

• Conquer step:

• Filter into the band of -coordinates

• Compare to the next 8 points and update if closer point is found.

x X

y Y

X Y

m x

X XL, XR Y YL YR

(XL, YL) (XR, YR) δ

Y M x m ± δ

M

25

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

T(n) = a ⋅ T (n
b) + f(n) T(< b) = O(1)

f(n), a b

26

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
27

Proof of the master theorem

• Proof strategy:

• Due to recursion, the problem has a tree like structure

• Calculate the amount of work done by the “conquer” step at each level

• Count how many levels of computation there are

28

Proof the master theorem

• Let so d = ⌈logb n⌉ n ≤ bd

29

Proof the master theorem

• Let so d = ⌈logb n⌉ n ≤ bd

30

Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

 and

• Different cases based on how , and compare:

• If , then

• If , then

• If , then

T(n) = a ⋅ T (n
b)+O(nk) T(< b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
31

