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Lecture 8
Divide and conquer
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Principles of divide and conquer

• Identity a division of the problem into  self-similar parts of size 


• Recursively solve each subpart of the problem


• Stitch the solutions from each subpart together


• Runtime is defined by the following recursively defined formula: 
 

 and 

a n/b

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)

2



Examples of divide and conquer

• Mergesort, Quicksort (sort of)


• Binary search (today)


• Euclidean closest pair (today)


• Rank selection, Median finding
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Binary search for roots of a function

• Input: Description of 


• a continuous , 


•  such that 


• and 

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0
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Binary search for roots of a function

• Input: Description of 


• a continuous , 


•  such that 


• and 


• Output: A value  such that 
 for some .

f : ℝ → ℝ

a < b ∈ ℝ f(a) ≤ 0 < f(b)

ϵ > 0

x ∈ [a, b]
f(x′ ) = 0 |x′ − x | ≤ ϵ
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Bisection method

• Intermediate value theorem (IVT): If  and  is continuous, 
there exists an  such that .


• Proof by picture:

f(0) = 0, f(1) = 1 f
x ∈ (0,1) f(x) = 1/2
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Bisection method

• Algorithm : 

• Let .


• If , return .


• Let .


• If , return . 


• Else, return .

g(x, y)

m ← (x + y)/2

y − x ≤ 2ϵ m

z ← f (m)

z > 0 g (x, m)

g (m, y)
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• Claim: If , 
then  outputs an  such that 

.


• Proof:


• Base case, follows from IVT.


• Otherwise,

f(x) ≤ 0 < f(y) for x < y
g(x, y) m

f(m′ ) = 0 for |m′ − m | ≤ ϵ



Runtime analysis
Binary search problem

• Therefore, running  will solve the bisection problem.


• Each iteration of  is on an interval of half the length 


• starting from  until the length is 


• Therefore,  recursions.


• Each recursion costs  arithmetic operations plus  query to .


• Runtime:  queries to .

g(a, b)

g

b − a ≤ 2ϵ

log2 ( b − a
2ϵ )
O(1) 1 f

O(log(b − a) + log(1/ϵ)) f
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Runtime analysis

• Simple version of generalized runtime analysis.


• Let .


• Then,  and  for number of queries.


• Solves to .

k = (b − a)/(2ϵ)

T(k) = T(k/2) + 1 T(1) = 0

T(k) = ⌈log2 k⌉ + 1
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Another classic divide and conquer problem
Mergesort

• To sort an array of  entries, recursively 
sort the first half and recursively sort the 
second half. Then merge the two sorted 
lists.


• Merging two sorted arrays takes  time 
as we only have to compare current 
elements as we iterate through both arrays


• Recursive time equation: 
 with .


• Solution: 

n

O(n)

T(n) ≤ 2T(n/2) + O(n) T(1) = 0

T(n) ≤ O(n log n)
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Euclidean closest pair

• Input: A sequence of  points 


• Find: The pair  minimizing .


• Brute force algorithm: Try all pairs.  time.


• Is there a better algorithm for small ?


• In 1D for example, we can sort and then compare nearest neighbors for 
.


• Can we do better?

n p1, …, pn ∈ ℝd

pi, pj ∥pi − pj∥

O(n2d)

d

O(n log n)
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2D Euclidean closest pair

• Sorting on first coordinate will not work


• No single direction for sorting guarantees success


• Divide and conquer algorithm: 

• Need to figure out a way to subdivide the problem


• Then build solution from best solutions to both 
halves. This will require extra processing
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Split across -coordinate anywaysx

• Let’s split according to -coordinate 
anyways


• Let  be the median -coordinate


• Divide the set into points 
 and 


• Let  be the minimum of the two 
solutions

x

m x

{p : p1 ≤ m} {p : p > m}

δ
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The “conquer” aspect of the algorithm

• We only need to worry about pairs that 
are both split by the median and  
distance apart  

• During “conquer” step, only need to 
look at vertices in the -width band


• Within the band, only need to 
compare points with -coordinates 
that differ by 

< δ

δ

y
< δ
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Close-up analysis
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Close-up analysis
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Close-up analysis
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Close-up analysis
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The full conquer subroutine
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• Let  be the set of points in band. 


• Sort the points in  by -coordinate


• For each point , compare  to 
the 8 points before and 8 points after 

 in the sorting.


• By analysis, this checks all possible 
pairs of distance .

M

M y

a ∈ M a

a

< δ



Divide and conquer algorithm

• Divide step: 

• Compute median  and divide into two subproblems


• Recursively calculate shortest distance for subproblems


• Conquer step:


• Compute the set of points in the band 


• Sort  by -coordinate


• Compare points in sorted  with the next 8 points and update if closer pair found.

m

M

M y

M
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Better divide and conquer algorithm

• Preprocessing: 

• Sort points according to -coordinate for list 


• Sort points according to -coordinate for list 


• Divide step (sorted lists , ): 

• Compute median  by -coordinate


• Divide  into . Filter  into  and .


• Recursively solve  and  problems for 


• Conquer step: 

• Filter  into the band  of -coordinates 


• Compare  to the next 8 points and update if closer point is found.

x X

y Y

X Y

m x

X XL, XR Y YL YR

(XL, YL) (XR, YR) δ

Y M x m ± δ

M
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:

T(n) = a ⋅ T ( n
b ) + f(n) T( < b) = O(1)

f(n), a b
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Analysis divide and conquer runtimes
The master theorem

• For solving recursive equations of the form 
 

             and 


• Different cases based on how , and  compare:


• If , then 


• If , then 


• If , then 

T(n) = a ⋅ T ( n
b )+O(nk) T( < b) = O(1)

f(n), a b

a < bk T(n) = O(nk)

a = bk T(n) = O(nk log n)

a > bk T(n) = O(nlogb a)
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Proof of the master theorem

• Proof strategy: 

• Due to recursion, the problem has a tree like structure


• Calculate the amount of work done by the “conquer” step at each level


• Count how many levels of computation there are
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Proof the master theorem

• Let  so d = ⌈logb n⌉ n ≤ bd

29



Proof the master theorem

• Let  so d = ⌈logb n⌉ n ≤ bd
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