Lecture 7

Minimum spanning trees

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Dijkstra’s algorithm

o Initialize d(v) <« oo, p(v) « L (“parent” of v is undefined) for all v # .
e Setd(s) « 0, p(s) « root

» Create priority queue Q and insert(Q, key = d(v),v) foreachv € V

« While Q isn’t empty, pop minimum key-element u from queue

» For each neighbor v of u, check if d(u) + w(u,v) < d(v) uPDWZ ?&ﬂ’-vd’ C“E %

e If so, d(v) «— d(u) + w(u, v), p(v) «— U, and +o be L.
setkey(Q, key = d(v), v) -

 Return d, p for distance and parent functions.

Today

Minimum spanning trees/forests

Vlcja‘l'\‘vc ’\«b\glﬂk allowed

e Input: connected G = (V, E), edge weights w : £ — |

Output: Atree T = (V, E’) such that every vertex is connected and Z w(e)

eck’

IS minimized. Called a minimum spanning tree.

Minimum spanning trees/forests

e Input: G = (V,E), edge weightsw : E — |

e Qutput: A forest ' = (V, E’) with a minimum spanning tree per connected
component of . Called a minimum spanning forest.

« Equivalently, a subgraph F of minimal total weight such that u, v are
connected in F'if they are connected in G.

Prim’s algorithm
High level

» Dijkstra’s creates a spanning tree as it unfolds.
 However, Dijkstra’s optimizes for a shortest-path tree.

 Whereas, we want to optimize for a minimum weight tree.

®
2

£ 3

A.
G

S

Prim’s algorithm
High level

» Dijkstra’s creates a spanning tree as it unfolds.
 However, Dijkstra’s optimizes for a shortest-path tree.

 Whereas, we want to optimize for a minimum weight tree.

S
D X 'LS‘\T Q’ 4 ‘l'm Miaimumn S F&V\V\‘?\j lree.
- RS ¢ e AR
Z i :
| 5' WeN \lhl" 17\ i VYR a\w\’ 11
6 3 J £
S S

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BAD\Q

p(v) < u.

we. will eave the cltzuls ﬁ,
‘/\ow o do <o dDdV lat/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

10

we. will eave the cltzuls ﬁ,
‘/\ow o do <o dDdV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

11

we. will eave the cltzuls ﬁ,
‘/\ow o do <o dDdV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) BADXQ

p(v) < u.

12

we. will eave the cltzuls ﬁ,
‘/\ow o do <o dDdV lﬂt/z

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.
e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent //é \O) _zl)XQ

p(v) < u.

13

we. will eave fhe cletzuls ﬁf
how b0 do <o vtz

Prim’s algorithm
High level

 Pick a starting vertex s € V. Let § « {s}.

e While S doesn’t equal V

o Find the edge (i, v) C S X (V\S) of
minimal weight w(u, v).

e SetS « SU {v} and set parent . Q 3 /3l X
p(v) < u. //é \O O

14

we. wll leave. fhe. ledzu ls 5”
‘/\ow o do <o dDdV lﬂt/z

/\

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

15

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

16

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

17

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

18

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

19

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

20

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge S

of minimal weight w(e) to £’ / \
2y

O O

p)| N\
//?\Q/ OQ\Q
/s

O—
L’.

21

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge

of minimal weight w(e) to E’ / \

2 3
o . N

22

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge

of minimal weight w(e) to E’ / \

2 3
o . AN

23

Kruskal’s algorithm
High level

e Start with ' = (V,E' = @)

» While there exists edges e € E\ E’ such that
E’ U {e} contains no cycles, add such edge
of minimal weight w(e) to E’

24

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

* A partition/cut of the vertices is a split into two

pieces S and V\S. /\
» The cut is denoted as (S, V\S). P /\
« An edge crosses the cutif e = (14, v) and u € S and \“
v € VA\S. L /

» We say a subgraph G’ C G respects the cut (S, V\S)
iff no edge of G’ crosses the cut.

25

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

* A partition/cut of the vertices is a split into two

pieces S and V\S. /\
» The cut is denoted as (S, V\9). g l\
» An edge crosses the cutif e = (1, v) and u € S and \“

v € VA\S. // /
» We say a subgraph G’ C G respects the cut (S, V\S)

iff no edge of G’ crosses the cut. A diffeceat ?&Aﬂ‘h‘o/\ which

also YESFecA’S the C"(l_-

26

Arguing correctness of greedy MST algorithms

» Definition: An edge e is safe for a tree T iff there is some cut (S, V\S) such
that e is the cheapest edge crossing (S, V\S).

 Theorem: Greedy algorithms that a/lways choose safe edges for the current
tree 1 correctly compute an MST

 Proof: By induction. Let e be the first edge added by greedy algorithm to tree
I that is not contained in some MST.

» Let e be the cheapest safe edge for some cut (S, V\S). It suffices to show
there is some MST which contains 7 U {e}.

27

Arguing correctness of greedy MST algorithms

« Definition: An edge e is safe for a tree 1 iff there
is some cut (S, V\S) such that e is the cheapest
edge crossing (S, V\S).

 Theorem: Greedy algorithms that always choose

safe edges for the current tree 1" correctly
compute an MST

* Proof: By induction. Let e be the first edge

added by greedy algorithm to tree 1 that is not
contained in some MST.

* Let e be the cheapest safe edge for some cut
(S, V\S). It suffices to show there is some MST
which contains 7'U {e}.

28

- E,daes of

pE—

— 543a5+v adl

’h»gammﬂz MST
- Other edans of

(x

Arguing correctness of greedy MST algorithms

« Definition: An edge e is safe for a tree 1 iff there

is some cut (S, V\S) such that e is the cheapest S Y\
edge crossing (S, V\9). / “\

 Theorem: Greedy algorithms that always choose ° i) '\ - f’—d'g]ﬁs °f
safe edges for the current tree 1 correctly] \ P T
compute an MST 1 N - J cd&cs b ol
Proof: By induction. Let e be the first edge \-- _ .":/ To g“"”‘& MST
added by greedy algorithm to tree 1 that is not e’ - Ofhes eda,:s of

contained in some MST.

While ¢ is not contained. I an MS’I: G
Let e be the cheapest safe edge for some cut

(S, VA\S). It suffices to show there is some MST aome. Other C&%a e cmssﬁ (9,\/\33 Mmust
which contains T U {e}. Since. w(e) < w(e') ,cxdaang'mg e Do e

CQV\V\O‘\’ 1nCrease we 3(/\“(' of S\Javmiﬁ ’lhze,.

29

Applying proof for Prim’s and Kruskal’s

 Prim’s algorithm
 Add cheapest vertex from current tree to the rest

» S equals the vertices connected by the tree T at that moment.

 Kruskal’s algorithm

» Add cheapest vertex connecting two trees 1| and 1,

» 5 = the vertices in T} (amongst many possible defs. of)

30

Implementation details for Prim’s

» We need a data structure to keep track of distance from u € V\§ to S with
the ability to quickly calculate the minimal element u.

 Answer: Priority queue
o |nitial state: O includes all of V with keys equaling co except key of s is 0.
 Update rule when processing vertex u that we pop off the priority queue:

» For each neighbor v, update key to w(u, v) if necessary.

31

Runtime of Prim’s

« O(n) insertions, O(n) runs of delete-min, and O(m) updates to the key

e Same resultant complexity as Dijkstra’s
. Array implementation: O(n?) time
» Heap implementation: O(m log n) time

» d-heap for d = m/n implementation: O(m log, . .(n)) time.

32

Implementation details for Kruskal’s

* Need to add edges of minimal weight but only if they don’t form a cycle

» Helpful to first sort all the edges by weight: O(mlogm) = O(mlogn) time

 |terate through edges in sorted order

 |If the edge connects two trees in the forest, we add. Otherwise skip.

 Need a data structure to handle this type of query: Union-Find
» Total cost of Union-Find is O(m - a(n)) with a(n) < logm

» Dominant runtime is from sorting for O(m log m) time.

33

Union-find data structure

Also known as disjoint-set data structure

 Stores a collection of disjoint (hon-overlapping) subsets of [7]

* Allowed operations and runtimes
« Makeset(x) create a new set with only the element x. Takes O(1) time
« Find(x) returns the “name” of the set containing x. Takes O(a(n)) time*

« Merge(x, y) merges the sets containing x and y. Takes O(a(n)) time*

34

Implementation details for Kruskal’s

 Kruskal’s requires O(n) initalizations, O(m) finds and O(n) merges of sets

» Total amortized runtime is O(m log n) + O(ma(n)) = O(mlogn).
o Data structures matter!

 Union-find is a data structure optimized for an algorithm like Kruskal’s

. Generically using an array would yield O(n°) since merge is slow.

35

Parallelizing MST finding

Boruvka’s algorithm (1927)

* Notice that until the trees in the forest during Kruskal’s could grow in parallel
until they join together

* |s there an algorithm for parallelizing this growth?
* At each step
 Each tree chooses its cheapest outgoing edge
* [wo trees in the forest can choose to add the same edge

 Need a tiebreaker on edge weights (no equal weights) to avoid generating
cycles

36

Boruvka implementation example

OY-:L \O
e NN
//Q N / Q\O

Boruvka implementation example

/’ac ﬁ‘\«'\ s UM _TAQ, WU 5"‘3 \

Boruvka implementation example

/’ac ﬁ‘\«'\ s UM _TAQ, WU 5"‘3 \

O,
N
N Qy /3l \
//6 &O 4 D 5 O

() —

41 /8

Boruvka implementation example

/Iacgl\,\;% U\v\.\%v\@ W ‘L'E\

<>/ N

- X
A AN

OF S

Boruvka implementation example

/’aﬁ ﬁ‘\«'\ s UM _TAQ, WU 3"‘\5 \

L, O O
o7 T

Other MST algorithms

 Cheritos and Tarjan:
 Uses a queue of components
 Component at head chooses cheapest outgoing edge

* New merged component goes to tail of the queue
» O(mloglogn)time
» Chazelle: O(m - a(m) - log(m)) time

» Karger, Klein, and Tarjan: O(m + n) time algorithm that works most of the time

42

Applications of MST

 Network design — minimal connectivity for telephone, electrical, cable, internet networks
* Approximation algorithms for computational problems - traveling problem, Steiner trees
* |ndirect applications

 Max bottleneck paths

 LDPC error correcting codes

* Image restoration under Renyi entropy

 Reducing data storage in sequencing amino acids
 Modeling local particle interaction in turbulence flows

* Autoconfig protocol for Ethernet bridging to avoid network cycles

43

k-clustering of data points

v
Maximum distance clustering /\
U

» Input: A set U of n elements, a metricd : U?* - R2Y, -

and k € N

» Metric satisfies d(u, u) = 0, d(u, v) = d(v, u)

e and triangle inequality d(u, v) + d(v, w) > d(u, w) S e
e Output: A clustering function a : U — [k] maximizing . G .

Alun)
min d(u,v), Miniwupa_ st

uvelU: a(u)#a(v) Lot o

the minimum distance between the clusters Clarfers

44

Kruskal’s based algorithm

. Let V= U and E = V? (all-to-all) with weight w(e) = d(e).

» Run Kruskal’s until n — k edges are added.

e Ensures that there are k trees in the forest.
* Assign a cluster for every tree.

» Alternatively, run any MST algorithm and delete the heaviest
k — 1 edges from the output tree.

45

Maximum distance clustering optimality

« Let d* be the dist. between clustering a generated by Kruskal’s

d*
e By our alg. design, d* > d(u, v) for u, v in the same cluster: -
a(u) = a(v).
« Consider a different clustering b : U — [k] 5(), .-~
« There exist two points such that a(u#) = a(v) but L NN
b(u) # b(v). |
» Then spacing between clusters of b is at most d(u, v) < d*. -
b(fv)

» So b is no better than a so a is optimal.

46

