
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 7
Minimum spanning trees

 1

Previously in CSE 421…

2

Dijkstra’s algorithm

• Initialize (“parent” of is undefined) for all .

• Set

• Create priority queue and for each

• While isn’t empty, pop minimum key-element from queue

• For each neighbor of , check if

• If so, , and

• Return for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

3

Today

4

Minimum spanning trees/forests

• Input: connected , edge weights

• Output: A tree such that every vertex is connected and

is minimized. Called a minimum spanning tree.

G = (V, E) w : E → ℝ

T = (V, E′) ∑
e∈E′

w(e)

5

Minimum spanning trees/forests

• Input: , edge weights

• Output: A forest with a minimum spanning tree per connected
component of . Called a minimum spanning forest.

• Equivalently, a subgraph of minimal total weight such that are
connected in if they are connected in .

G = (V, E) w : E → ℝ

F = (V, E′)
G

F u, v
F G

6

Prim’s algorithm
High level

• Dijkstra’s creates a spanning tree as it unfolds.

• However, Dijkstra’s optimizes for a shortest-path tree.

• Whereas, we want to optimize for a minimum weight tree.

7

Prim’s algorithm
High level

8

• Dijkstra’s creates a spanning tree as it unfolds.

• However, Dijkstra’s optimizes for a shortest-path tree.

• Whereas, we want to optimize for a minimum weight tree.

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

9

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

10

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

11

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

12

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

13

Prim’s algorithm
High level

• Pick a starting vertex . Let .

• While doesn’t equal

• Find the edge of
minimal weight .

• Set and set parent
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u

14

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

15

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

16

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

17

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

18

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

19

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

20

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

21

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

22

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

23

Kruskal’s algorithm
High level

• Start with

• While there exists edges such that
 contains no cycles, add such edge

of minimal weight to

F = (V, E′ = ∅)

e ∈ E∖E′

E′ ∪ {e}
w(e) E′

24

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

• A partition/cut of the vertices is a split into two
pieces and .

• The cut is denoted as .

• An edge crosses the cut if and and
.

• We say a subgraph respects the cut
iff no edge of crosses the cut.

S V∖S

(S, V∖S)

e = (u, v) u ∈ S
v ∈ V∖S

G′ ⊆ G (S, V∖S)
G′

25

A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

• A partition/cut of the vertices is a split into two
pieces and .

• The cut is denoted as .

• An edge crosses the cut if and and
.

• We say a subgraph respects the cut
iff no edge of crosses the cut.

S V∖S

(S, V∖S)

e = (u, v) u ∈ S
v ∈ V∖S

G′ ⊆ G (S, V∖S)
G′

26

Arguing correctness of greedy MST algorithms

• Definition: An edge is safe for a tree iff there is some cut such
that is the cheapest edge crossing .

• Theorem: Greedy algorithms that always choose safe edges for the current
tree correctly compute an MST

• Proof: By induction. Let be the first edge added by greedy algorithm to tree
 that is not contained in some MST.

• Let be the cheapest safe edge for some cut . It suffices to show
there is some MST which contains .

e T (S, V∖S)
e (S, V∖S)

T

e
T

e (S, V∖S)
T ∪ {e}

27

Arguing correctness of greedy MST algorithms

28

• Definition: An edge is safe for a tree iff there
is some cut such that is the cheapest
edge crossing .

• Theorem: Greedy algorithms that always choose
safe edges for the current tree correctly
compute an MST

• Proof: By induction. Let be the first edge
added by greedy algorithm to tree that is not
contained in some MST.

• Let be the cheapest safe edge for some cut
. It suffices to show there is some MST

which contains .

e T
(S, V∖S) e

(S, V∖S)

T

e
T

e
(S, V∖S)

T ∪ {e}

Arguing correctness of greedy MST algorithms

29

• Definition: An edge is safe for a tree iff there
is some cut such that is the cheapest
edge crossing .

• Theorem: Greedy algorithms that always choose
safe edges for the current tree correctly
compute an MST

• Proof: By induction. Let be the first edge
added by greedy algorithm to tree that is not
contained in some MST.

• Let be the cheapest safe edge for some cut
. It suffices to show there is some MST

which contains .

e T
(S, V∖S) e

(S, V∖S)

T

e
T

e
(S, V∖S)

T ∪ {e}

Applying proof for Prim’s and Kruskal’s

• Prim’s algorithm

• Add cheapest vertex from current tree to the rest

• equals the vertices connected by the tree at that moment.

• Kruskal’s algorithm

• Add cheapest vertex connecting two trees and

• the vertices in (amongst many possible defs. of)

S T

T1 T2

S = T1 S

30

Implementation details for Prim’s

• We need a data structure to keep track of distance from to with
the ability to quickly calculate the minimal element .

• Answer: Priority queue

• Initial state: includes all of with keys equaling except key of is 0.

• Update rule when processing vertex that we pop off the priority queue:

• For each neighbor , update key to if necessary.

u ∈ V∖S S
u

Q V ∞ s

u

v w(u, v)

31

Runtime of Prim’s

• insertions, runs of delete-min, and updates to the key

• Same resultant complexity as Dijkstra’s

• Array implementation: time

• Heap implementation: time

• -heap for implementation:) time.

O(n) O(n) O(m)

O(n2)

O(m log n)

d d = m/n O(m logm/n(n)

32

Implementation details for Kruskal’s

• Need to add edges of minimal weight but only if they don’t form a cycle

• Helpful to first sort all the edges by weight: time

• Iterate through edges in sorted order

• If the edge connects two trees in the forest, we add. Otherwise skip.

• Need a data structure to handle this type of query: Union-Find

• Total cost of Union-Find is with

• Dominant runtime is from sorting for time.

O(m log m) = O(m log n)

O(m ⋅ α(n)) α(n) ≪ log m

O(m log m)
33

Union-find data structure
Also known as disjoint-set data structure

• Stores a collection of disjoint (non-overlapping) subsets of

• Allowed operations and runtimes

• create a new set with only the element . Takes time

• returns the “name” of the set containing . Takes time*

• merges the sets containing and . Takes O() time*

[n]

Makeset(x) x O(1)

Find(x) x O(α(n))

Merge(x, y) x y α(n)

34

Implementation details for Kruskal’s

• Kruskal’s requires initalizations, finds and merges of sets

• Total amortized runtime is .

• Data structures matter!

• Union-find is a data structure optimized for an algorithm like Kruskal’s

• Generically using an array would yield since merge is slow.

O(n) O(m) O(n)

O(m log n) + O(mα(n)) = O(m log n)

O(n2)

35

Parallelizing MST finding
Boruvka’s algorithm (1927)

• Notice that until the trees in the forest during Kruskal’s could grow in parallel
until they join together

• Is there an algorithm for parallelizing this growth?

• At each step

• Each tree chooses its cheapest outgoing edge

• Two trees in the forest can choose to add the same edge

• Need a tiebreaker on edge weights (no equal weights) to avoid generating
cycles

36

Boruvka implementation example

37

Boruvka implementation example

38

Boruvka implementation example

39

Boruvka implementation example

40

Boruvka implementation example

41

Other MST algorithms

• Cheritos and Tarjan:

• Uses a queue of components

• Component at head chooses cheapest outgoing edge

• New merged component goes to tail of the queue

• time

• Chazelle: time

• Karger, Klein, and Tarjan: time algorithm that works most of the time

O(m log log n)

O(m ⋅ α(m) ⋅ log(m))

O(m + n)
42

Applications of MST

• Network design — minimal connectivity for telephone, electrical, cable, internet networks

• Approximation algorithms for computational problems - traveling problem, Steiner trees

• Indirect applications

• Max bottleneck paths

• LDPC error correcting codes

• Image restoration under Renyí entropy

• Reducing data storage in sequencing amino acids

• Modeling local particle interaction in turbulence flows

• Autoconfig protocol for Ethernet bridging to avoid network cycles

43

-clustering of data pointsk
Maximum distance clustering

• Input: A set of elements, a metric ,
and

• Metric satisfies ,

• and triangle inequality

• Output: A clustering function maximizing 
 

, 

 
the minimum distance between the clusters

U n d : U2 → ℝ≥0

k ∈ ℕ

d(u, u) = 0 d(u, v) = d(v, u)

d(u, v) + d(v, w) ≥ d(u, w)

a : U → [k]

min
u,v∈U: a(u)≠a(v)

d(u, v)

44

Kruskal’s based algorithm

• Let and (all-to-all) with weight .

• Run Kruskal’s until edges are added.

• Ensures that there are trees in the forest.

• Assign a cluster for every tree.

• Alternatively, run any MST algorithm and delete the heaviest
 edges from the output tree.

V = U E = V2 w(e) = d(e)

n − k

k

k − 1

45

Maximum distance clustering optimality

• Let be the dist. between clustering generated by Kruskal’s

• By our alg. design, for in the same cluster:
.

• Consider a different clustering

• There exist two points such that but
.

• Then spacing between clusters of is at most .

• So is no better than so is optimal.

d* a

d* ≥ d(u, v) u, v
a(u) = a(v)

b : U → [k]

a(u) = a(v)
b(u) ≠ b(v)

b d(u, v) ≤ d*

b a a

46

