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Lecture 7
Minimum spanning trees
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Previously in CSE 421…
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Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p
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Today
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Minimum spanning trees/forests

• Input: connected , edge weights 


• Output: A tree  such that every vertex is connected and  

is minimized. Called a minimum spanning tree.

G = (V, E) w : E → ℝ

T = (V, E′￼) ∑
e∈E′￼

w(e)
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Minimum spanning trees/forests

• Input:                   , edge weights 


• Output: A forest  with a minimum spanning tree per connected 
component of . Called a minimum spanning forest.


• Equivalently, a subgraph  of minimal total weight such that  are 
connected in  if they are connected in .

G = (V, E) w : E → ℝ

F = (V, E′￼)
G

F u, v
F G
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Prim’s algorithm
High level

• Dijkstra’s creates a spanning tree as it unfolds.


• However, Dijkstra’s optimizes for a shortest-path tree.


• Whereas, we want to optimize for a minimum weight tree.
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High level
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• Dijkstra’s creates a spanning tree as it unfolds.


• However, Dijkstra’s optimizes for a shortest-path tree.


• Whereas, we want to optimize for a minimum weight tree.



Prim’s algorithm
High level

• Pick a starting vertex . Let .


• While  doesn’t equal 


• Find the edge  of 
minimal weight .


• Set  and set parent 
.

s ∈ V S ← {s}

S V

(u, v) ⊆ S × (V∖S)
w(u, v)

S ← S ∪ {v}
p(v) ← u
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Kruskal’s algorithm
High level

• Start with 


• While there exists edges  such that 
 contains no cycles, add such edge 

of minimal weight  to  

F = (V, E′￼ = ∅)

e ∈ E∖E′￼

E′￼∪ {e}
w(e) E′￼
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A unified argument for proving correctness
Of both Prim’s and Kruskal’s algorithm

• A partition/cut of the vertices is a split into two 
pieces  and .


• The cut is denoted as .


• An edge crosses the cut if  and  and 
.


• We say a subgraph  respects the cut  
iff no edge of  crosses the cut.

S V∖S

(S, V∖S)

e = (u, v) u ∈ S
v ∈ V∖S

G′￼ ⊆ G (S, V∖S)
G′￼
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Arguing correctness of greedy MST algorithms

• Definition: An edge  is safe for a tree  iff there is some cut  such 
that  is the cheapest edge crossing .


• Theorem: Greedy algorithms that always choose safe edges for the current 
tree  correctly compute an MST


• Proof: By induction. Let  be the first edge added by greedy algorithm to tree 
 that is not contained in some MST.


• Let  be the cheapest safe edge for some cut . It suffices to show 
there is some MST which contains .

e T (S, V∖S)
e (S, V∖S)

T

e
T

e (S, V∖S)
T ∪ {e}
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Arguing correctness of greedy MST algorithms
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• Definition: An edge  is safe for a tree  iff there 
is some cut  such that  is the cheapest 
edge crossing .


• Theorem: Greedy algorithms that always choose 
safe edges for the current tree  correctly 
compute an MST


• Proof: By induction. Let  be the first edge 
added by greedy algorithm to tree  that is not 
contained in some MST.


• Let  be the cheapest safe edge for some cut 
. It suffices to show there is some MST 

which contains .

e T
(S, V∖S) e

(S, V∖S)

T

e
T

e
(S, V∖S)

T ∪ {e}
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e T
(S, V∖S) e

(S, V∖S)

T

e
T

e
(S, V∖S)

T ∪ {e}



Applying proof for Prim’s and Kruskal’s

• Prim’s algorithm


• Add cheapest vertex from current tree to the rest


•  equals the vertices connected by the tree  at that moment.


• Kruskal’s algorithm


• Add cheapest vertex connecting two trees  and 


• the vertices in  (amongst many possible defs. of ) 

S T

T1 T2

S = T1 S
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Implementation details for Prim’s

• We need a data structure to keep track of distance from  to  with 
the ability to quickly calculate the minimal element .


• Answer: Priority queue


• Initial state:  includes all of  with keys equaling  except key of  is 0.


• Update rule when processing vertex  that we pop off the priority queue:


• For each neighbor , update key to  if necessary.

u ∈ V∖S S
u

Q V ∞ s

u

v w(u, v)
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Runtime of Prim’s

•  insertions,  runs of delete-min, and  updates to the key


• Same resultant complexity as Dijkstra’s


• Array implementation:  time


• Heap implementation:  time


• -heap for  implementation: ) time.

O(n) O(n) O(m)

O(n2)

O(m log n)

d d = m/n O(m logm/n(n)
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Implementation details for Kruskal’s

• Need to add edges of minimal weight but only if they don’t form a cycle


• Helpful to first sort all the edges by weight:  time


• Iterate through edges in sorted order


• If the edge connects two trees in the forest, we add. Otherwise skip.


• Need a data structure to handle this type of query: Union-Find


• Total cost of Union-Find is  with  


• Dominant runtime is from sorting for  time.

O(m log m) = O(m log n)

O(m ⋅ α(n)) α(n) ≪ log m

O(m log m)
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Union-find data structure
Also known as disjoint-set data structure

• Stores a collection of disjoint (non-overlapping) subsets of 


• Allowed operations and runtimes


•  create a new set with only the element . Takes  time


•  returns the “name” of the set containing . Takes  time*


•  merges the sets containing  and . Takes O( ) time*

[n]

Makeset(x) x O(1)

Find(x) x O(α(n))

Merge(x, y) x y α(n)
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Implementation details for Kruskal’s

• Kruskal’s requires  initalizations,  finds and  merges of sets 


• Total amortized runtime is .


• Data structures matter!


• Union-find is a data structure optimized for an algorithm like Kruskal’s


• Generically using an array would yield  since merge is slow.

O(n) O(m) O(n)

O(m log n) + O(mα(n)) = O(m log n)

O(n2)
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Parallelizing MST finding
Boruvka’s algorithm (1927)

• Notice that until the trees in the forest during Kruskal’s could grow in parallel 
until they join together


• Is there an algorithm for parallelizing this growth?


• At each step


• Each tree chooses its cheapest outgoing edge


• Two trees in the forest can choose to add the same edge


• Need a tiebreaker on edge weights (no equal weights) to avoid generating 
cycles 
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Boruvka implementation example
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Boruvka implementation example
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Boruvka implementation example
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Boruvka implementation example
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Boruvka implementation example
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Other MST algorithms

• Cheritos and Tarjan: 

• Uses a queue of components


• Component at head chooses cheapest outgoing edge


• New merged component goes to tail of the queue


•  time


• Chazelle:  time


• Karger, Klein, and Tarjan:  time algorithm that works most of the time

O(m log log n)

O(m ⋅ α(m) ⋅ log(m))

O(m + n)
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Applications of MST

• Network design — minimal connectivity for telephone, electrical, cable, internet networks


• Approximation algorithms for computational problems - traveling problem, Steiner trees


• Indirect applications


• Max bottleneck paths


• LDPC error correcting codes


• Image restoration under Renyí entropy


• Reducing data storage in sequencing amino acids


• Modeling local particle interaction in turbulence flows


• Autoconfig protocol for Ethernet bridging to avoid network cycles

43



-clustering of data pointsk
Maximum distance clustering

• Input: A set  of  elements, a metric , 
and 


• Metric satisfies ,  


• and triangle inequality 


• Output: A clustering function  maximizing 
 

, 

 
the minimum distance between the clusters

U n d : U2 → ℝ≥0

k ∈ ℕ

d(u, u) = 0 d(u, v) = d(v, u)

d(u, v) + d(v, w) ≥ d(u, w)

a : U → [k]

min
u,v∈U: a(u)≠a(v)

d(u, v)
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Kruskal’s based algorithm 

• Let  and  (all-to-all) with weight .


• Run Kruskal’s until  edges are added.


• Ensures that there are  trees in the forest.


• Assign a cluster for every tree.


• Alternatively, run any MST algorithm and delete the heaviest 
 edges from the output tree. 

V = U E = V2 w(e) = d(e)

n − k

k

k − 1

45



Maximum distance clustering optimality

• Let  be the dist. between clustering  generated by Kruskal’s


• By our alg. design,  for  in the same cluster: 
.


• Consider a different clustering 


• There exist two points such that  but 
.


• Then spacing between clusters of  is at most .


• So  is no better than  so  is optimal.

d* a

d* ≥ d(u, v) u, v
a(u) = a(v)

b : U → [k]

a(u) = a(v)
b(u) ≠ b(v)

b d(u, v) ≤ d*

b a a
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