Lecture 7 Minimum spanning trees

Chinmay Nirkhe | CSE 421 Spring 2025

1

Previously in CSE 421...

Dijkstra's algorithm

- Initialize $d(v) \leftarrow \infty, p(v) \leftarrow \bot$ ("parent" of v is undefined) for all $v \neq s$.
- Set $d(s) \leftarrow 0$, $p(s) \leftarrow \text{root}$
- Create priority queue Q and insert(Q, key
- While Q isn't empty, pop minimum key-elen
 - For each neighbor v of u, check if d(u) +
 - If so, $d(v) \leftarrow d(u) + w(u, v), p(v) \leftarrow u$, setkey(Q, key = d(v), v)
- Return d, p for distance and parent functions.

$$= d(v), v) \text{ for each } v \in V \qquad \text{once popped off } d(u)$$

is fixed forever
- $w(u, v) < d(v)$
and
$$= update \text{ parent of } d(u)$$

Minimum spanning trees/forests

• Input: connected G = (V, E), edge weights $w : E \to \mathbb{R}$ **Output:** A tree T = (V, E') such that every vertex is connected and $\sum w(e)$ $e \in E'$ is minimized. Called a minimum spanning tree.

negative neights allowed

Minimum spanning trees/forests

- Input: G = (V, E), edge weights $w : E \to \mathbb{R}$
- Output: A forest F = (V, E') with a minimum spanning tree per connected component of G. Called a minimum spanning forest.
- Equivalently, a subgraph *F* of minimal total weight such that *u*, *v* are connected in *F* if they are connected in *G*.

- Dijkstra's creates a spanning tree as it unfolds.
 - However, Dijkstra's optimizes for a shortest-path tree.
 - Whereas, we want to optimize for a minimum weight tree.

- Dijkstra's creates a spanning tree as it unfolds.
 - However, Dijkstra's optimizes for a shortest-path tree.
 - Whereas, we want to optimize for a minimum weight tree.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Pick a starting vertex $s \in V$. Let $S \leftarrow \{s\}$.
- While S doesn't equal ${\cal V}$
 - Find the edge $(u, v) \subseteq S \times (V \setminus S)$ of minimal weight w(u, v).
 - Set $S \leftarrow S \cup \{v\}$ and set parent $p(v) \leftarrow u$.

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

- Start with $F = (V, E' = \emptyset)$
- While there exists edges e ∈ E\E' such that
 E' ∪ {e} contains no cycles, add such edge
 of minimal weight w(e) to E'

A unified argument for proving correctness **Of both Prim's and Kruskal's algorithm**

- A partition/cut of the vertices is a split into two pieces S and $V \setminus S$.
- The cut is denoted as $(S, V \setminus S)$.
- An edge crosses the cut if e = (u, v) and $u \in S$ and $v \in V \setminus S$.
- We say a subgraph $G' \subseteq G$ respects the cut $(S, V \setminus S)$ iff no edge of G' crosses the cut.

A unified argument for proving correctness **Of both Prim's and Kruskal's algorithm**

- A partition/cut of the vertices is a split into two pieces S and $V \setminus S$.
- The cut is denoted as $(S, V \setminus S)$.
- An edge crosses the cut if e = (u, v) and $u \in S$ and $v \in V \setminus S$.
- We say a subgraph $G' \subseteq G$ respects the cut $(S, V \setminus S)$ iff no edge of G' crosses the cut.

also respects the cut.

Arguing correctness of greedy MST algorithms

- **Definition:** An edge *e* is **safe** for a tree *T* iff there is *some* cut $(S, V \setminus S)$ such that *e* is the **cheapest** edge crossing $(S, V \setminus S)$.
- Theorem: Greedy algorithms that *always* choose safe edges for the current tree T correctly compute an MST
- Proof: By induction. Let *e* be the first edge added by greedy algorithm to tree
 T that is not contained in some MST.
- Let *e* be the cheapest safe edge for some cut $(S, V \setminus S)$. It suffices to show there is some MST which contains $T \cup \{e\}$.

Arguing correctness of greedy MST algorithms

- **Definition:** An edge *e* is **safe** for a tree *T* iff there is *some* cut $(S, V \setminus S)$ such that *e* is the **cheapest** edge crossing $(S, V \setminus S)$.
- Theorem: Greedy algorithms that *always* choose safe edges for the current tree *T* correctly compute an MST
- Proof: By induction. Let *e* be the first edge added by greedy algorithm to tree *T* that is not contained in some MST.
- Let *e* be the cheapest safe edge for some cut (S, V\S). It suffices to show there is some MST which contains *T* ∪ {*e*}.

Arguing correctness of greedy MST algorithms

- **Definition:** An edge *e* is **safe** for a tree *T* iff there is *some* cut $(S, V \setminus S)$ such that *e* is the **cheapest** edge crossing $(S, V \setminus S)$.
- Theorem: Greedy algorithms that *always* choose safe edges for the current tree *T* correctly compute an MST
- Proof: By induction. Let *e* be the first edge added by greedy algorithm to tree *T* that is not contained in some MST.
- Let *e* be the cheapest safe edge for some cut (S, V\S). It suffices to show there is some MST which contains *T* ∪ {*e*}.

Applying proof for Prim's and Kruskal's

Prim's algorithm

- Add cheapest vertex from current tree to the rest
- S equals the vertices connected by the tree T at that moment.
- Kruskal's algorithm
 - Add cheapest vertex connecting two trees T_1 and T_2
 - S = the vertices in T_1 (amongst many possible defs. of S)

Implementation details for Prim's

- We need a data structure to keep track of distance from $u \in V \setminus S$ to S with the ability to quickly calculate the minimal element u.
- Answer: Priority queue
- Initial state: Q includes all of V with keys equaling ∞ except key of s is 0.
- Update rule when processing vertex u that we pop off the priority queue:
 - For each neighbor v, update key to w(u, v) if necessary.

Runtime of Prim's

- O(n) insertions, O(n) runs of delete-min, and O(m) updates to the key
- Same resultant complexity as Dijkstra's
 - Array implementation: $O(n^2)$ time
 - Heap implementation: $O(m \log n)$ time
 - *d*-heap for d = m/n implementation: $O(m \log_{m/n}(n))$ time.

Implementation details for Kruskal's

- Need to add edges of minimal weight but only if they don't form a cycle • Helpful to first sort all the edges by weight: $O(m \log m) = O(m \log n)$ time
- Iterate through edges in sorted order
 - If the edge connects two trees in the forest, we add. Otherwise skip.
 - Need a data structure to handle this type of query: Union-Find
- Total cost of Union-Find is $O(m \cdot \alpha(n))$ with $\alpha(n) \ll \log m$
- Dominant runtime is from sorting for $O(m \log m)$ time.

Union-find data structure Also known as disjoint-set data structure

- Stores a collection of disjoint (non-overlapping) subsets of [n]
- Allowed operations and runtimes

• Makeset(x) create a new set with only the element x. Takes O(1) time • Find(x) returns the "name" of the set containing x. Takes $O(\alpha(n))$ time" • Merge(x, y) merges the sets containing x and y. Takes $O(\alpha(n))$ time*

Implementation details for Kruskal's

- Kruskal's requires O(n) initalizations, O(m) finds and O(n) merges of sets • Total amortized runtime is $O(m \log n) + O(m\alpha(n)) = O(m \log n)$.
- Data structures matter!

 - Union-find is a data structure optimized for an algorithm like Kruskal's • Generically using an array would yield $O(n^2)$ since merge is slow.

Parallelizing MST finding Boruvka's algorithm (1927)

- Notice that until the trees in the forest during Kruskal's could grow in parallel until they join together
- Is there an algorithm for parallelizing this growth?
- At each step
 - Each tree chooses its cheapest outgoing edge
 - Two trees in the forest can choose to add the same edge
 - Need a tiebreaker on edge weights (no equal weights) to avoid generating cycles

Requires unique neights!

Other MST algorithms

- Cheritos and Tarjan:
 - Uses a queue of components
 - Component at head chooses cheapest outgoing edge
 - New merged component goes to tail of the queue
 - $O(m \log \log n)$ time
- Chazelle: $O(m \cdot \alpha(m) \cdot \log(m))$ time

• Karger, Klein, and Tarjan: O(m + n) time algorithm that works most of the time

Applications of MST

- Network design minimal connectivity for telephone, electrical, cable, internet networks •
- Approximation algorithms for computational problems traveling problem, Steiner trees
- Indirect applications
 - Max bottleneck paths
 - LDPC error correcting codes
 - Image restoration under Renyí entropy
 - Reducing data storage in sequencing amino acids
 - Modeling local particle interaction in turbulence flows
 - Autoconfig protocol for Ethernet bridging to avoid network cycles

k-clustering of data points **Maximum distance clustering**

- Input: A set U of n elements, a metric $d: U^2 \to \mathbb{R}^{\geq 0}$, and $k \in \mathbb{N}$
 - Metric satisfies d(u, u) = 0, d(u, v) = d(v, u)
 - and triangle inequality $d(u, v) + d(v, w) \ge d(u, w)$
- **Output:** A clustering function $a: U \rightarrow [k]$ maximizing

d(u, v),m1n $u,v \in U: a(u) \neq a(v)$

the minimum distance between the clusters

minimum dist. Clusters

Kruskal's based algorithm

- Let V = U and $E = V^2$ (all-to-all) with weight w(e) = d(e).
- Run Kruskal's until n k edges are added.
 - Ensures that there are k trees in the forest.
 - Assign a cluster for every tree.
- Alternatively, run any MST algorithm and delete the heaviest k-1 edges from the output tree.

Maximum distance clustering optimality

- Let d^* be the dist. between clustering a generated by Kruskal's
- By our alg. design, $d^* \ge d(u, v)$ for u, v in the same cluster: a(u) = a(v).
- Consider a *different* clustering $b: U \to [k]$
 - There exist two points such that a(u) = a(v) but $b(u) \neq b(v).$
 - Then spacing between clusters of b is at most $d(u, v) \leq d^*$.
 - So b is no better than a so a is optimal.

