
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 6
Greedy approximation algorithms and greedy graph algorithms

1



Previously in CSE 421…

2



Greedy algorithm general strategy

• Greedy algorithm stays ahead: Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithms


• Structural: Discover a structure-based argument asserting that the greedy 
solution is at least as good as every possible solution.


• Exchange argument: We can gradually transform any solution into the one 
found by the greedy algorithm with each transform only improving or 
maintaining the value of the current solution.

3



Today

4



Maximizing bipartiteness

• We saw how to verify if a graph is bipartite or not using a BFS algorithm


• We could also come up with a “measure of bipartiteness”


• 


• For each possible coloring , measure how many edges are colored 
“correctly”


• The  is the max number of edges colored correctly over 
all colorings


• Deciding if  or  can be done by the BFS algorithm


• Is there an algorithm for computing  in general?

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

C

maxcut(G)

maxcut(G) = m ≠ m

maxcut(G)

5



Why is it called MaxCut?

• The fn.  partitions the vertices in two sets 
(yellow and blue).


• A partition of the vertices into two sets  is also called 
a cut.


• We say that an edge  crosses the cut if  and 
.


•  counts the 

maximum number of edges that cross any cut.


• Computing “bipartiteness” is equivalent to computing the 
max cut.

C : V → {0,1}

(S, T)

(u, v) u ∈ S
v ∈ T

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

6



A proof that Max Cut is always ≥ m/2

• Choose  uniformly randomly and independently. 


• Then for any edge , let  be the event that  crosses the cut.


• Since  and  are chosen uniformly randomly, .


• By linearity of expectation, .


• A random cut  crosses  edges. Therefore, there exists a cut that crosses 
 edges and .

C : V → {0,1}

(u, v) = e ∈ E Xe e

C(u) C(v) 𝔼Xe = 1/2

𝔼∑
e∈E

Xe = ∑
e∈E

𝔼Xe =
m
2

C m/2
≥ m/2 m/2 ≤ maxcut(G) ≤ m

7



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

8



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

9



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

10



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

11



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

12



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

13



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

14



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

15



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

16



Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v

17



Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal 
and fail to find the max cut.


• One can design examples where it fails.


• Consider the following graph on  
vertices explored in the order that the 
vertices are numbered.

2n

18



Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal 
and fail to find the max cut.


• One can design examples where it fails.


• Consider the following graph on  
vertices explored in the order that the 
vertices are numbered.


• The left vertices have alternating colors.

2n

19



Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal and fail to find the max 
cut.


• One can design examples where it fails.


• Consider the following graph on  vertices explored in the 
order that the vertices are numbered.


• The left vertices have alternating colors.


• Right vertices are all yellow.


• Greedy cut of the graph as  edges crossing cut. 
Optimal cut has  edges crossing cut.


• So  as .

2n

n2/2 + (n − 1)
n2

|greedy cut |
maxcut(G)

=
n2

2 + (n − 1)

n2
→

1
2

n → ∞

20



Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing  
edges.


• Proof:


• Consider the set of edges  used to determine the color of vertex . 
By choosing the color of  to be the opposite of the majority of 
neighbors, at least half of the edges of  cross the greedy cut.


• Every edge is in exactly one set  where  is the later of its two 
vertices to be assigned a color.


• Since  and at least half of the edges of  cross the greedy 

cut, then at least half the edges of the  cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E

21



Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing  
edges.


• Proof:


• Consider the set of edges  used to determine the color of vertex . 
By choosing the color of  to be the opposite of the majority of 
neighbors, at least half of the edges of  cross the greedy cut.


• Every edge is in exactly one set  where  is the later of its two 
vertices to be assigned a color.


• Since  and at least half of the edges of  cross the greedy 

cut, then at least half the edges of the  cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E

22



NP-completeness

• Max Cut is also a -complete problem.


• We strongly do not believe there is an efficient algorithm for Max Cut.


• The greedy algorithm always produces a  factor of the optimal sized 
cut but cannot do better than this (due to our example).


• Constitutes an approximation algorithm for the Max Cut problem.


• Best known efficient approximation algorithm achieves a  factor.


• Believed to be inefficient to approximate past this barrier.

𝖭𝖯

≥ 1/2

∼ 0.878

23



Greedy graph algorithms

24



Adjacency list vs. adjacency matrix graph input

25



Shortest path problem

• Input: , edge weights , and source .


• Output:  with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

26



Shortest path problem

• Input: , edge weights , and source .


• Output:  with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u

27



Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

28



Dijkstra’s algorithm
Example execution

29



Dijkstra’s algorithm
Example execution

30



Dijkstra’s algorithm
Example execution

31



Dijkstra’s algorithm
Example execution

32



Dijkstra’s algorithm
Example execution

33



Dijkstra’s algorithm
Example execution

34



Dijkstra’s algorithm
Example execution

35



Dijkstra’s algorithm
Proof of correctness

• Lemma: If  is a path  of minimal weight to , then for any vertex  on 
, the subpath from  to  is of minimal weight.


• Proof:

q s ↝ u u v
q s v

36



Dijkstra’s algorithm
Proof of correctness

• Lemma: If  is a path  of minimal weight to , then for any vertex  on 
, the subpath from  to  is of minimal weight.


• Proof:

q s ↝ u u v
q s v

37



Dijkstra’s algorithm
Proof of correctness

• Lemma: If  is a path  of minimal weight to , then for any vertex  on 
, the subpath from  to  is of minimal weight.


• Proof:

q s ↝ u u v
q s v

38



Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let  be the set of 
vertices popped off . At that moment,


• for ,  = length of shortest 
path  and 


• for ,  = length of shortest path 
 with only the last edge leaving .


• Proof: By induction. Let  be the next 
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u

39



Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let  be the set of 
vertices popped off . At that moment,


• for ,  = length of shortest 
path  and 


• for ,  = length of shortest path 
 with only the last edge leaving .


• Proof: By induction. Let  be the next 
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u

40



Dijkstra’s algorithm other perks

• The assignment of parent  generates a tree of shortest paths with root 


• If you only want to calculate the shortest path to vertex , can abort the 
algorithm as soon as  is popped from the queue.


• This follows from the correctness claim in the previous slide


• For the vertices in , the distance is minimal over all paths and not just the 
ones contained in .

p(u) s

u
u

S
S

41



Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p

42



Priority queue data structure review

• Each element  in the queue is associated with a key 


• Operations allowed by the data structure


• 


•  or 


•  if  is already in the queue.


• Implementations


• With arrays:  time for find-min or delete, and  time for set and decrease


• With heaps:  time for insert, delete, decrease and  for find-min

v k

insert(v, k)

(v, k) ← findmin(Q) (v, k) ← deletemin(Q)

decreasekey(v, k) v

O(n) O(1)

O(log n) O(1)

43



Dijkstra’s algorithm

• The algorithm has  insertions,  delete-mins since each vertex is added and deleted once


• And  decrease-keys with each decrease-key corresponding to an edge


• Implementation based runtimes


• Array has insert , delete-min , and decrease-key  


• Array has total  time


• Heap has insert, delete-min, and decrease-key  


• Heap has total  time


• -heap for  has insert and decrease-key , delete-min , 


• -heap for  has total  time

O(n) O(n)

O(m)

O(1) O(n) O(1)

O(n + n2 + m) = O(n2)

O(log n)

O(m log n)

d d = m/n O(logd n) O(d logd n)

d d = m/n O(m logm/n n)

44


