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Lecture 6
Greedy approximation algorithms and greedy graph algorithms
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Previously in CSE 421…
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Greedy algorithm general strategy

• Greedy algorithm stays ahead: Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithms


• Structural: Discover a structure-based argument asserting that the greedy 
solution is at least as good as every possible solution.


• Exchange argument: We can gradually transform any solution into the one 
found by the greedy algorithm with each transform only improving or 
maintaining the value of the current solution.
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Today
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Maximizing bipartiteness

• We saw how to verify if a graph is bipartite or not using a BFS algorithm


• We could also come up with a “measure of bipartiteness”


• 


• For each possible coloring , measure how many edges are colored 
“correctly”


• The  is the max number of edges colored correctly over 
all colorings


• Deciding if  or  can be done by the BFS algorithm


• Is there an algorithm for computing  in general?

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

C

maxcut(G)

maxcut(G) = m ≠ m

maxcut(G)
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Why is it called MaxCut?

• The fn.  partitions the vertices in two sets 
(yellow and blue).


• A partition of the vertices into two sets  is also called 
a cut.


• We say that an edge  crosses the cut if  and 
.


•  counts the 

maximum number of edges that cross any cut.


• Computing “bipartiteness” is equivalent to computing the 
max cut.

C : V → {0,1}

(S, T)

(u, v) u ∈ S
v ∈ T

maxcut(G) = max
C:V→{0,1} ∑

(u,v)∈E

1{C(u)≠C(v)}

6



A proof that Max Cut is always ≥ m/2

• Choose  uniformly randomly and independently. 


• Then for any edge , let  be the event that  crosses the cut.


• Since  and  are chosen uniformly randomly, .


• By linearity of expectation, .


• A random cut  crosses  edges. Therefore, there exists a cut that crosses 
 edges and .

C : V → {0,1}

(u, v) = e ∈ E Xe e

C(u) C(v) 𝔼Xe = 1/2

𝔼∑
e∈E

Xe = ∑
e∈E

𝔼Xe =
m
2

C m/2
≥ m/2 m/2 ≤ maxcut(G) ≤ m
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Finding a cut crossing  edges≥ m/2

• We know a cut exists crossing  
edges. Can we find it efficiently?


• Let’s use a greedy algorithm.


• Algorithm overview: Color the first vertex 
as 0 (yellow). Then, for every future vertex 
, if  has more 0 (yellow) neighbors than 

1’s (blues), assign it the color 1 (blue), 
otherwise assign it 0 (yellow).

≥ m/2

v v
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Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal 
and fail to find the max cut.


• One can design examples where it fails.


• Consider the following graph on  
vertices explored in the order that the 
vertices are numbered.

2n
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Greedy algorithm can be suboptimal

• The greedy algorithm can be suboptimal and fail to find the max 
cut.


• One can design examples where it fails.


• Consider the following graph on  vertices explored in the 
order that the vertices are numbered.


• The left vertices have alternating colors.


• Right vertices are all yellow.


• Greedy cut of the graph as  edges crossing cut. 
Optimal cut has  edges crossing cut.


• So  as .

2n

n2/2 + (n − 1)
n2

|greedy cut |
maxcut(G)

=
n2

2 + (n − 1)

n2
→

1
2

n → ∞
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Proof of greedy algorithm optimality

• Lemma: The greedy algorithm always produces a cut crossing  
edges.


• Proof:


• Consider the set of edges  used to determine the color of vertex . 
By choosing the color of  to be the opposite of the majority of 
neighbors, at least half of the edges of  cross the greedy cut.


• Every edge is in exactly one set  where  is the later of its two 
vertices to be assigned a color.


• Since  and at least half of the edges of  cross the greedy 

cut, then at least half the edges of the  cross the greedy cut.

≥ m/2

Ev v
v

Ev

Ev v

E = ⨆
v∈V

Ev Ev

E
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NP-completeness

• Max Cut is also a -complete problem.


• We strongly do not believe there is an efficient algorithm for Max Cut.


• The greedy algorithm always produces a  factor of the optimal sized 
cut but cannot do better than this (due to our example).


• Constitutes an approximation algorithm for the Max Cut problem.


• Best known efficient approximation algorithm achieves a  factor.


• Believed to be inefficient to approximate past this barrier.

𝖭𝖯

≥ 1/2

∼ 0.878
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Greedy graph algorithms
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Adjacency list vs. adjacency matrix graph input
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Shortest path problem

• Input: , edge weights , and source .


• Output:  with the min-weight of a path .

G = (V, E) w : E → ℝ≥0 s ∈ V

d : V → ℝ≥0 d(u) = s ↝ u
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Dijkstra’s algorithm

• Initialize (“parent” of  is undefined) for all .


• Set 


• Create priority queue  and  for each 


• While  isn’t empty, pop minimum key-element  from queue


• For each neighbor  of , check if 


• If so, , and 



• Return  for distance and parent functions.

d(v) ← ∞, p(v) ← ⊥ v v ≠ s

d(s) ← 0, p(s) ← root

Q insert(Q, key = d(v), v) v ∈ V

Q u

v u d(u) + w(u, v) < d(v)

d(v) ← d(u) + w(u, v), p(v) ← u
setkey(Q, key = d(v), v)

d, p
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Dijkstra’s algorithm
Example execution
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Dijkstra’s algorithm
Example execution
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Dijkstra’s algorithm
Example execution
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Dijkstra’s algorithm
Proof of correctness

• Lemma: If  is a path  of minimal weight to , then for any vertex  on 
, the subpath from  to  is of minimal weight.


• Proof:

q s ↝ u u v
q s v
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Dijkstra’s algorithm
Proof of correctness

• Claim: During run, let  be the set of 
vertices popped off . At that moment,


• for ,  = length of shortest 
path  and 


• for ,  = length of shortest path 
 with only the last edge leaving .


• Proof: By induction. Let  be the next 
vertex popped off.

S
Q

y ∈ S d(y)
s ↝ y

x ∉ S d(x)
s ↝ x S

u
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Dijkstra’s algorithm other perks

• The assignment of parent  generates a tree of shortest paths with root 


• If you only want to calculate the shortest path to vertex , can abort the 
algorithm as soon as  is popped from the queue.


• This follows from the correctness claim in the previous slide


• For the vertices in , the distance is minimal over all paths and not just the 
ones contained in .

p(u) s

u
u

S
S
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Priority queue data structure review

• Each element  in the queue is associated with a key 


• Operations allowed by the data structure


• 


•  or 


•  if  is already in the queue.


• Implementations


• With arrays:  time for find-min or delete, and  time for set and decrease


• With heaps:  time for insert, delete, decrease and  for find-min

v k

insert(v, k)

(v, k) ← findmin(Q) (v, k) ← deletemin(Q)

decreasekey(v, k) v

O(n) O(1)

O(log n) O(1)
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Dijkstra’s algorithm

• The algorithm has  insertions,  delete-mins since each vertex is added and deleted once


• And  decrease-keys with each decrease-key corresponding to an edge


• Implementation based runtimes


• Array has insert , delete-min , and decrease-key  


• Array has total  time


• Heap has insert, delete-min, and decrease-key  


• Heap has total  time


• -heap for  has insert and decrease-key , delete-min , 


• -heap for  has total  time

O(n) O(n)

O(m)

O(1) O(n) O(1)

O(n + n2 + m) = O(n2)

O(log n)

O(m log n)

d d = m/n O(logd n) O(d logd n)

d d = m/n O(m logm/n n)
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