Lecture 6 Greedy approximation algorithms and greedy graph algorithms

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Greedy algorithm general strategy

- Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithms
- Structural: Discover a structure-based argument asserting that the greedy solution is at least as good as every possible solution.
- Exchange argument: We can gradually transform any solution into the one found by the greedy algorithm with each transform only improving or maintaining the value of the current solution.

Maximizing bipartiteness

- We saw how to verify if a graph is bipartite or not using a BFS algorithm
- We could also come up with a "measure of bipartiteness"

• maxcut(G) = max

$$C: V \to \{0,1\}$$
 $\sum_{(u,v) \in E} \mathbf{1}_{\{C(u) \neq C(v)\}}$

- For each possible coloring *C*, measure how many edges are colored "correctly"
- The maxcut(G) is the max number of edges colored correctly over all colorings
- Deciding if maxcut(G) = m or $\neq m$ can be done by the BFS algorithm
- Is there an algorithm for computing maxcut(G) in general?

artiteness" number of connectly Colored edges

Why is it called MaxCut?

- The fn. $C: V \rightarrow \{0,1\}$ partitions the vertices in two sets (yellow and blue).
 - A partition of the vertices into two sets (S, T) is also called a cut.
 - We say that an edge (u, v) crosses the cut if $u \in S$ and $v \in T$.
 - $\max(G) = \max_{C: V \to \{0,1\}} \sum_{\substack{(u,v) \in E \\ (u,v) \in E}} \mathbf{1}_{\{C(u) \neq C(v)\}} \text{ counts the }$ maximum number of edges that cross any cut.
 - Computing "bipartiteness" is equivalent to computing the max cut.

9 cdges cross this cut

A proof that Max Cut is always $\geq m/2$

- Choose $C: V \rightarrow \{0,1\}$ uniformly randomly and independently.
- Since C(u) and C(v) are chosen uniformly randomly, $\mathbb{E}X_{\rho} = 1/2$.
- By linearity of expectation, $\mathbb{E}\sum X_e$ $e \in E$
- $\geq m/2$ edges and $m/2 \leq maxcut(G) \leq m$.

• Then for any edge $(u, v) = e \in E$, let X_{e} be the event that e crosses the cut.

$$\sum_{e \in E} \mathbb{E} X_e = \frac{m}{2}.$$

• A random cut C crosses m/2 edges. Therefore, there exists a cut that crosses

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

- We know a cut exists crossing $\geq m/2$ edges. Can we find it efficiently?
- Let's use a greedy algorithm.
- Algorithm overview: Color the first vertex as 0 (yellow). Then, for every future vertex v, if v has more 0 (yellow) neighbors than 1's (blues), assign it the color 1 (blue), otherwise assign it 0 (yellow).

Greedy algorithm can be suboptimal

- The greedy algorithm can be suboptimal and fail to find the max cut.
- One can design examples where it fails.
- Consider the following graph on 2nvertices explored in the order that the vertices are numbered.

Greedy algorithm can be suboptimal

- The greedy algorithm can be suboptimal and fail to find the max cut.
- One can design examples where it fails.
- Consider the following graph on 2n vertices explored in the order that the vertices are numbered.
 - The left vertices have alternating colors.

Greedy algorithm can be suboptimal

- The greedy algorithm can be suboptimal and fail to find the max cut.
- One can design examples where it fails.
- Consider the following graph on 2*n* vertices explored in the order that the vertices are numbered.
 - The left vertices have alternating colors.
 - Right vertices are all yellow.
- Greedy cut of the graph as $n^2/2 + (n 1)$ edges crossing cut. Optimal cut has n^2 edges crossing cut.

• So
$$\frac{|\operatorname{greedy cut}|}{\operatorname{maxcut}(G)} = \frac{\frac{n^2}{2} + (n-1)}{n^2} \to \frac{1}{2} \operatorname{as} n \to \infty$$

0.

Proof of greedy algorithm optimality

- Lemma: The greedy algorithm always produces a cut crossing $\geq m/2$ edges.
- **Proof**:
 - Consider the set of edges E_v used to determine the color of vertex v. By choosing the color of v to be the opposite of the majority of neighbors, at least half of the edges of E_v cross the greedy cut.
 - Every edge is in exactly one set E_v where v is the later of its two vertices to be assigned a color.

Since $E = \bigcup E_v$ and at least half of the edges of E_v cross the greedy $v \in V$ cut, then at least half the edges of the *E* cross the greedy cut.

Proof of greedy algorithm optimality

- Lemma: The greedy algorithm always produces a cut crossing $\geq m/2$ edges.
- **Proof**:
 - Consider the set of edges E_v used to determine the color of vertex v. By choosing the color of v to be the opposite of the majority of neighbors, at least half of the edges of E_v cross the greedy cut.
 - Every edge is in exactly one set E_v where v is the later of its two vertices to be assigned a color.

Since $E = \bigcup E_v$ and at least half of the edges of E_v cross the greedy $v \in V$ cut, then at least half the edges of the *E* cross the greedy cut.

NP-completeness

- Max Cut is also a NP-complete problem.
- We strongly do not believe there is an efficient algorithm for Max Cut.
- The greedy algorithm always produces a $\geq 1/2$ factor of the optimal sized cut but cannot do better than this (due to our example).
 - Constitutes an approximation algorithm for the Max Cut problem.
 - Best known efficient approximation algorithm achieves a $~\sim 0.878$ factor.
 - Believed to be inefficient to approximate past this barrier.

Greedy graph algorithms

Adjacency list vs. adjacency matrix graph input

unless specified as	sume	gra	ph i	s cx	ipress	jed
3 as adjacency	r list				-	ו
	0	1	1	0	0	
134	1	0	1	1	0	
2 4 5	1	1	0	1	1	
3	٥	1	1	0	0	
	D	٥	1	0	0	
	N J. o		. N	1.4		,
st		Cert			×	
		size	. n ²	•		
7						

Shortest path problem

- Input: G = (V, E), edge weights $w : E \to \mathbb{R}_{>0}$, and source $s \in V$. • Output: $d: V \to \mathbb{R}^{\geq 0}$ with d(u) = the min-weight of a path $s \prec u$.

Shortest path problem

- Input: G = (V, E), edge weights $w : E \to \mathbb{R}_{>0}$, and source $s \in V$. • Output: $d: V \to \mathbb{R}^{\geq 0}$ with d(u) = the min-weight of a path $s \prec u$.

Dijkstra's algorithm

- Initialize $d(v) \leftarrow \infty, p(v) \leftarrow \bot$ ("parent" of v is undefined) for all $v \neq s$.
- Set $d(s) \leftarrow 0$, $p(s) \leftarrow \text{root}$
- Create priority queue Q and insert(Q, key
- While Q isn't empty, pop minimum key-elen
 - For each neighbor v of u, check if d(u) +
 - If so, $d(v) \leftarrow d(u) + w(u, v), p(v) \leftarrow u$, setkey(Q, key = d(v), v)
- Return d, p for distance and parent functions.

$$= d(v), v) \text{ for each } v \in V \qquad \text{once popped off } d(u)$$

is fixed forever
- $w(u, v) < d(v)$
and
$$= update \text{ parent of } d(u)$$

- q, the subpath from s to v is of minimal weight.
- **Proof:**

• Lemma: If q is a path $s \sim u$ of minimal weight to u, then for any vertex v on

- q, the subpath from s to v is of minimal weight.
- **Proof:**

• Lemma: If q is a path $s \sim u$ of minimal weight to u, then for any vertex v on

- q, the subpath from s to v is of minimal weight.
- **Proof:**

• Lemma: If q is a path $s \sim u$ of minimal weight to u, then for any vertex v on

- Claim: During run, let S be the set of vertices popped off Q. At that moment,
 - for $y \in S$, d(y) = length of shortestpath $s \sim y$ and
 - for $x \notin S$, d(x) = length of shortes $s \sim x$ with only the last edge leave
- Proof: By induction. Let u be the ne vertex popped off.

st path Since
$$u$$
 is popped off, $d(u) \leq d(x)$.
ving S.
Then, length of blue path \geq length of black
ext Since x has non-negative reight.
₃₉ So, length of path to u is correct.

- Claim: During run, let S be the set of vertices popped off Q. At that moment,
 - for $y \in S$, d(y) = length of shortestpath $s \sim y$ and
 - for $x \notin S$, d(x) = length of shortes $s \sim x$ with only the last edge leave
- Proof: By induction. Let u be the ne vertex popped off.

st path Since
$$u$$
 is popped off, $d(u) \leq d(x)$.
ving S.
Then, length of blue path \geq length of black
ext Since x has non-negative neight.
 u
 40 So, length of path to u is correct.

Dijkstra's algorithm other perks

- The assignment of parent p(u) generates a tree of shortest paths with root s
- If you only want to calculate the shortest path to vertex *u*, can abort the algorithm as soon as *u* is popped from the queue.
 - This follows from the correctness claim in the previous slide
 - For the vertices in *S*, the distance is minimal over *all* paths and not just the ones contained in *S*.

Dijkstra's algorithm

- Initialize $d(v) \leftarrow \infty, p(v) \leftarrow \bot$ ("parent" of v is undefined) for all $v \neq s$.
- Set $d(s) \leftarrow 0$, $p(s) \leftarrow \text{root}$
- Create priority queue Q and insert(Q, key
- While Q isn't empty, pop minimum key-elen
 - For each neighbor v of u, check if d(u) +
 - If so, $d(v) \leftarrow d(u) + w(u, v), p(v) \leftarrow u$, setkey(Q, key = d(v), v)
- Return d, p for distance and parent functions.

$$= d(v), v) \text{ for each } v \in V \qquad \text{once popped off } d(u)$$

is fixed forever
- $w(u, v) < d(v)$
and
$$= update \text{ parent of } d(u)$$

Priority queue data structure review

- Each element v in the queue is associated with a key k
- Operations allowed by the data structure
 - insert(v, k)
 - $(v, k) \leftarrow \operatorname{findmin}(Q)$ or $(v, k) \leftarrow \operatorname{deletemin}(Q)$
 - decreasekey(v, k) if v is already in the queue.
- Implementations
 - With arrays: O(n) time for find-min or delete, and O(1) time for set and decrease
 - With heaps: $O(\log n)$ time for insert, delete, decrease and O(1) for find-min

Dijkstra's algorithm

- The algorithm has O(n) insertions, O(n) delete-mins since each vertex is added and deleted once
- And O(m) decrease-keys with each decrease-key corresponding to an edge
- Implementation based runtimes \bullet
 - Array has insert O(1), delete-min O(n), and decrease-key O(1)
 - Array has total $O(n + n^2 + m) = O(n^2)$ time
 - Heap has insert, delete-min, and decrease-key $O(\log n)$
 - Heap has total $O(m \log n)$ time
 - *d*-heap for d = m/n has insert and decrease-key $O(\log_d n)$, delete-min $O(d \log_d n)$,
 - *d*-heap for d = m/n has total $O(m \log_{m/n} n)$ time