
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 5
Topological sort and greedy algorithms
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Administrativa

• Problem set 1 is due tonight! Problem set 2 is uploaded.


• I have second office hours immediately after this lecture in CSE2 353.


• Many questions on EdStem about how much detail to include.


• https://courses.cs.washington.edu/courses/cse421/25sp/psets.html


• We have written a whole document about this


• Example solutions from section are also a good start
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Directed acyclic graphs

• A directed graph  is acyclic iff it has no directed cycles


• Also referred to as a DAG


• If we shrink every strongly connected component to a vertex, this converts 
the directed graph into a DAG

G
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Topological sorting of graphs

• Input: a directed acyclic graph DAG 


• Output: An injective numbering  such that edges only go from lower 
numbered to higher numbered vertices. 
 
i.e. for , we must have .


• Applications


• Vertices represents tasks and edges represent prerequisites


• Topological sorts gives a sequential ordering for how to solve the system


• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order 
given by topological sort. Cannot number the vertices within a SCC.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)
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In-degree and out-degree
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In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.


• Proof:


• Assume every vertex has in-degree .


• Starting with any vertex  pick an in-edge  and go in reverse to . 
Repeat.


• Since there are only  vertices, eventually a vertex will be repeated. This 
means there is a cycle, a contradiction.

≥ 1

v u → v u

n
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Algorithm for topological sort

• Any vertex  of in-degree 0 can be numbered as 1


• Topological sorting algorithm: 

• If we remove  and assign , then the rest is still a DAG


• Then, there is a new vertex  of in-degree 0


• Repeat, until all vertices are exhausted 

v1

v1 N(v1) = 1

v2
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Implementing topological sort
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Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically 
slow.


• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of  will decrease.

vj
vj
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Implementing topological sort

• Algorithm: 

• Iterate through all vertices and set in-degree of each vertex. Initialize 
queue  with vertices such that . Set . 


• While  is non-empty, pop vertex  off queue


• Set 


• Decrease  for every nbhr.  s.t. If , add  to .


• Runtime: Each edge is visited only once. So  time.

d(v) =
Q d(v) = 0 j ← 1

Q u

N(u) ← j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v Q

O(n + m)
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Previously in CSE 421…
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected.


• Example:

ti
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Today
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The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as 
whether to include or not a job in the schedule)


• In a greedy algorithm, we make each decision locally without looking as to 
how it will effect future decisions


• Not every greedy criteria for making decisions works


• It’s not obvious which criteria will work


• We will focus on methods for proving that greedy algorithms do work

20



Greedy algorithms for interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: Select the job with earliest ending  of jobs not selected.


• Details: Sort the jobs by earliest end time . Keep track of current end time 
of selected jobs . Add new job  if  and update .


• Runtime: Sorting + linear time to create list of jobs. 
.

(si, ti) i = 1,…, n n

ti

ti
T (si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)
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Scheduling all intervals

• Input:  for  for  “jobs” each using 1 room.


• Output: A scheduling of all jobs to rooms using the minimum number of 
rooms so that no two use the same room at the same time. 

(si, ti) i = 1,…, n n
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Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize an  sized array  as zeroes and an  sized array .


• For  to 


• Find the first  such that .


• Then set  and set .


• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last( j) n r( j)

i ← 1 n

j si ≥ last( j)

last( j) ← ti r(i) ← j

r
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Scheduling all intervals
Proof of correctness

• Theorem: The greedy algorithm is optimal.


• Proof:


• Consider when a new room  is “allocated” for the first time. Let job  be the reason.


• Then,  for all . 


• Since  denotes when that room will free up, the -th job is incompatible with the 
jobs currently in the other  rooms.


• Since we sort requests by start time, those jobs all started before  and haven’t ended yet.


• So there are  incompatible requests, requiring at least  rooms.

j i

si ≥ last( j′ ) j′ < j

last( j′ ) i
j − 1

si

j j
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Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all 
rooms are currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize an  sized array  as zeroes and an  sized array .


• For  to 


• Find the first  such that .


• Then set  and set .


• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last( j) n r( j)

i ← 1 n

j si ≥ last( j)

last( j) ← ti r(i) ← j

r
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Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all rooms are 
currently full.


• Algorithm:


• Sort requests by start time  in increasing order.


• Initialize a priority queue ,  and an  sized array .


• For  to 


• Set .


• If , schedule job  in room :  and 


• Else, allocate a new room  and  and 


• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

Q k ← 0 n r( j)

i ← 1 n

j ← findmin(Q)

si ≥ last( j) i j setkey( j, Q) ← ti r(i) = j .

k ← k + 1 setkey(k, Q) ← ti r(i) = k .

r
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Greedy algorithm general strategies

• Greedy algorithm stays ahead: Show that after each step of the greedy 
algorithm, its solution is at least as good as any other algorithms


• Structural: Discover a structure-based argument asserting that the greedy 
solution is at least as good as every possible solution.


• Exchange argument: We can gradually transform any solution into the one 
found by the greedy algorithm with each transform only improving or 
maintaining the value of the current solution.
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n
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Greedy algorithm analysis
Contradiction argument edition

• Let  denote the jobs selected by the greedy algorithm.


• Let  denote the jobs selected in an optimal solution.


• Assume  for the largest possible .


• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k
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Minimizing lateness

• A new scheduling problem. There is a single resource but instead of start and finish times, each 
job  has


• A time requirement  which must be scheduled contiguously


• A target deadline  by which the request is ideally finished


• Minimum start time is 0.


• Each item is graded a lateness:  where  is it’s end time


• Total lateness is defined as the max lateness: 


• Goal: Find a scheduling that minimizes the maximum lateness .

i

τi

di

ℓi := min{0, ti − di} ti

L = max
i=1,…,n

ℓi .

L
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Example minimizing lateness problem
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Finding the right greedy strategy

• Greedy template suggests finding a strategy and seeing if there are any 
glaring counterexamples.


• Shortest processing time. Sort the jobs according to  and select in 
order.


• Earliest deadline first. Sort according to  and select in order.


• Smallest slack. Sort according to slack, , and select in order.

τi

di

di − τi
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Counterexamples
Shortest processing time

• Sort the jobs according to  and select in order.τi
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Counterexamples
Smallest slack

• Sort according to slack, , and select in order.di − τi
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Earliest deadline first (EDF)

• Algorithm: 


• Sort deadlines in increasing order .


• Set .


• For  to 


• 


•

d1 ≤ d2 ≤ … ≤ dn

T ← 0

i ← 1 n

(si, ti) ← (T, T + τi)

T ← T + τi .
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Example EDF schedule
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Exchange argument for optimality

• If for any solution there exists a modification that modifies solution but its value is at 
least as good as the original, then wlog optimal solution has modification


• Consider a solution with “gaps” between jobs  
 
 
 

• Then a “gapless” solution by shifting every job earlier is just as good


• Proof: The new  for every job is at most . And  is monotonic in . So, the new 
loss  is at most .

t′ i ti ℓi ti
L′ L
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The EDF Schedule

• By construction, the EDF schedule is gapless


• This doesn’t alone prove optimality


• Property of EDF: No inversions in EDF schedule.


• An inversion is if job  is before job  but .


• An inversion is adjacent if it occurs between adjacent jobs.


• Exchange principle: If a schedule has an adjacent inversion, flipping the 
adjacent inversion yields a schedule of shorter lateness.

i j di > dj
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Inversion removal

• If  is an inversion for  but  is not an inversion for , then 
 is an adjacent inversion


• By induction, if an inversion exists, then an adjacent inversion exists


• Exchange principle lets us clean up all the adjacent inversions


• “Gapless” and “inversion” exchange principles yield a gapless schedule with 
no inversions


• This is precisely, the earliest deadline first (EDF) schedule up to events of 
equal deadline. All such schedules have same lateness. Thus, it is optimal

(i, j) i < j (i, j′ ) i < j′ < j
( j − 1,j)
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