Lecture 5

Topological sort and greedy algorithms

Chinmay Nirkhe | CSE 421 Spring 2025

Administrativa

 Problem set 1 is due tonight! Problem set 2 is uploaded.
* | have second office hours immediately after this lecture in CSE2 353.
 Many questions on EdStem about how much detail to include.

e https://courses.cs.washington.edu/courses/cse421/25sp/psets.html

e We have written a whole document about this

 Example solutions from section are also a good start

https://courses.cs.washington.edu/courses/cse421/25sp/psets.html

Directed acyclic graphs

» A directed graph G is acyclic iff it has no directed cycles

 Also referred to as a DAG

* |f we shrink every strongly connected component to a vertex, this converts
the directed graph into a DAG

Topological sorting of graphs

e Input: a directed acyclic graph DAG G = (V, E)

e Output: An injective numbering N : V < {1,..., n} such that edges only go from lower
numbered to higher numbered vertices.

i.e. for u — v, we must have N(u) < N(v).
 Applications
» \ertices represents tasks and edges represent prerequisites
e Jopological sorts gives a sequential ordering for how to solve the system

e For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort. Cannot number the vertices within a SCC.

4

In-degree and out-degree

(8 btgvu_ \ . / put §r.
_—— '\/\
Y

In-degree zero vertices

 Claim: Every DAG has at least one vertex of in-degree 0.

* Proof:
« Assume every vertex has in-degree > 1.

o Starting with any vertex v pick an in-edge u — v and go in reverse to u.
Repeat.

e Since there are only n vertices, eventually a vertex will be repeated. This
means there Is a cycle, a contradiction.

Algorithm for topological sort

* Any vertex v, of in-degree 0 can be numbered as 1

 Topological sorting algorithm:
» If we remove v; and assign N(v;) = 1, then the rest is still a DAG

 Then, there is a new vertex v, of in-degree O

 Repeat, until all vertices are exhausted

Implementing topological sort

P

~/ | :

Implementing topological sort

1

/./ ~.
/f\y/ =
/) | :

Implementing topological sort

Implementing topological sort

Implementing topological sort

' rt
Implementing topological so

~/

Implementing topological sort

* |ssue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

« Observe that when we remove the vertex Vi the in-degree of only the out-
neighbors of V; will decrease.

14

Implementing topological sort

* Algorithm:

e lterate through all vertices and set d(v) = in-degree of each vertex. Initialize
queue O with vertices such that d(v) = 0. Setj « 1.

« While 0 is non-empty, pop vertex u off queue
e SetN(u) « j.j«<j+1.
e Decrease d(v) « d(v) — 1 forevery nbhr.vs.t.u — v.Ifd(v) =0, add v to Q.

« Runtime: Each edge is visited only once. So O(n + m) time.

15

Previously in CSE 421...

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

. >
0 1 2 3 4 5 6 7 8 9 10 1 Time

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending #; of jobs not selected.

« Example:

L d S
0 1 2 3 4 5 6 7 8 9 10 11 Time

Today

The principle of greedy algorithms

» Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

* |n a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

* Not every greedy criteria for making decisions works
* |t’s not obvious which criteria will work

* We will focus on methods for proving that greedy algorithms do work

20

Greedy algorithms for interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

 Algorithm: Select the job with earliest ending #; of jobs not selected.

 Details: Sort the jobs by earliest end time 7.. Keep track of current end time
of selected jobs 7. Add new job (s, %;) if s; > T'and update T « t..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).

21

Scheduling all intervals

e Input: (s,) fori = 1,...,n for n “jobs” each using 1 room.

e Output: A scheduling of all jobs to rooms using the minimum number of
rooms so that no two use the same room at the same time.

. . ’ ’ . . [
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' ' '
- ' ' ' ' ' i ' i i i) ' \
-— ' ' ' ' ' '
' ' ' ' ' ' -
' ' ' ' ' '
' ' ' ' e ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' ' ' '
' ' ' [' ' [' ' ' '
' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' ' ' ' '
' ' ' ' ' ' ' i [' '
' ’ '
' ' '
’ '

An_ Ctxs&—(VWY AT AL

Own, ‘uALV\\A.Mlo«J\ a?

ooy qu,\'m A, .

‘ ‘

‘ .] ‘ . ‘] ‘ ‘ ‘ ‘ ‘

' ' . ' ‘ ' .] ‘] ‘ ' ‘

] ‘ . ‘ .

. L] . ‘ . ‘ y - - ' 'y

. L] . .] .

. L] . ‘] ‘ .
. L] . ‘] ‘

. L] ‘ ‘] ‘ '
.] . ‘] ‘

. ’ ‘ ' . '

‘ . ‘ . . .]

‘ . ‘ . . . ‘ . ‘] . .

‘ ‘ . . .] ‘ . ‘] ‘ ‘

‘ ‘ . . .] ‘ ‘ ‘] ‘ .

.

S 9:30 10 10:30 11 1:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

22

Scheduling all intervals
A greedy algorithm

 Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < §, in increasing order.

» Initialize an n sized array last(j) as zeroes and an n sized array ().

e Fori « lton

e FIind the flrSt_] such that S; > laSt(]) AN A T R S A S R S
€ | | | sd | | fg | |
» Then set last(j) < l; and set r(i) < J. ° A R N R B "

 Return assignment function r.

—

g 9:30 10 10:30 11 1:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

23

Scheduling all intervals
A greedy algorithm

 Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < §, in increasing order.

» Initialize an n sized array last(j) as zeroes and an n sized array ().
e Fori <« ltonm

» Find the first j such that s; > last()).
+ Then set last(j) « t,and set r(i) « j. IRz nTn AR
* Return assignment function 7. AN I S S NN NN SN NS N N N N

>

g 9:30 10 10:30 11 11:30 12 12:30 1 1:30 2 2:30 3 3:30 4 4:30 ,
Time

24

Scheduling all intervals

Proof of correctness

* Theorem: The greedy algorithm is optimal.

* Proof:
« Consider when a new room j is “allocated” for the first time. Let job 1 be the reason.
 Then, s; > last(j’) forall j' < j.

» Since last(;’) denotes when that room will free up, the i-th job is incompatible with the
jobs currently in the other j — 1 rooms.

« Since we sort requests by start time, those jobs all started before s; and haven’t ended yet.

« So there are j incompatible requests, requiring at least j rooms.

25

Scheduling all intervals

Runtime

» Greedy strategy: Increment chronologically and open a new room if all
rooms are currently full.

* Algorithm:
 Sort requests by start time s; < 5, < ... < 5, In increasing order. & OG\’ lﬂ

» Initialize an n sized array last(j) as zeroes and an n sized array r(j).

_

« Fori <« lton i l_c,c,(, ame O(n) tmw .

» Find the first j such that s; > last(j). #— —~__ cold be sl O(n) oadn Hme.

» Then set last(j) < ¢ and set r(i) < J.

» Return assignment functionr. ~_ O(:L)

Tokal : O(n*) dwe o loop.

26

Scheduling all intervals

Runtime

 Greedy strategy: Increment chronologically and open a new room if all rooms are
currently full.

* Algorithm: CH O(‘k [ve '> |
& .
« Sort requests by start time s; < 5, < ... < §, In increasing order.

» Initialize a priority queue O, k < 0 and an n sized array r(j). Better data struchre

. Fori<—.1ton | v Newo ot_lj OC‘fj L) Hne
« Setj « findmin(Q).

« If s, > last(j), schedule job i in room j: setkey(j, Q) « t.and r(i) = J . Also OClij k) Hoe
. Else, allocate a new room k < k + 1 and setkey(k, Q) < t,and r(i) = k.

* Return assignment function r.

Totz| vimtine : C)C_W\og \4> di o belten
p{ac)ra SJWLW.

27

Greedy algorithm general strategies

 Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

o Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

 Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

28

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

. >
0 1 2 3 4 5 6 7 8 9 10 1 Time

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

 Since greedy is not optimal (by assumption), s > k.

C‘R’CE’D/'. o] &= ... [a | [@ [. [ﬂtJ

OPT'MAL_ ' ’O,j [: O, 4‘] [Q7 ’: O v“ B -[05

——

30

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

Q,Flac,\‘né Wit [Qe 7
» Since greedy is not optimal (by assumption), s > k. s C")‘%«l— as OP‘h‘mﬂ,

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

OPT'MAL_ ' ’O,j [: O, 4‘] [Q7 ’: O v“ B -[05

Greedy algorithm analysis

Contradiction argument edition

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.
» Let0y,0,,...,0, denote the jobs selected in an optimal solution.
» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.

Q,Flac,\‘né Wit [Qe 7
» Since greedy is not optimal (by assumption), s > k. s C")‘%«l— as OP‘h‘mﬂ,

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

Optmac]o,j o j [q7 | A] [6s

[

Greedy algorithm analysis

Contradiction argument edition now we can wndud

\

» Leta,,a,,...,a, denote the jobs selected by the greedy algorithm.

» Let0y,0,,...,0, denote the jobs selected in an optimal solution.

» Assume a; = 0y,d, = 0,, ..., 4, = 0y, for the largest possible k.
&Flac\‘né widle | Qen 7
 Since greedy is not optimal (by assumption), s > k. A 3%4— as oPﬁmgl

S

| a, (

CT?EE'D/: TA'W [5’\1 1 ...]“kl [Qs 7

Optmac]o,j o j [q7 | A] [6s

[

Minimizing lateness

A new scheduling problem. There is a single resource but instead of start and finish times, each

job 1 has
» Atime requirement 7; which must be scheduled contiguously

» A target deadline d; by which the request is ideally finished

Minimum start time is O.

Each item is graded a lateness: ; := min{0, t, — d;} where ¢, is it’s end time

. . acally A
Total lateness is defined as the max lateness: L = max 7. « CU B

i=1,....n

Goal: Find a scheduling that minimizes the maximum lateness L.

34

.'G\cmvﬂ‘ Han

L=

18 P

Example minimizing lateness problem

2 4
9 9 14 15

noOnon
.
6

lateness = 2 lateness = 0 max lateness = 6
)))

d3:9 dz=8 d6=15 d1=6 d5=14 d4=9
0 1 > 3 a4 5 6 7 8 9 10 1 12 13 14 15

35

Finding the right greedy strategy

* (Greedy template suggests finding a strategy and seeing if there are any
glaring counterexamples.

« Shortest processing time. Sort the jobs according to 7; and select in
order.

» Earliest deadline first. Sort according to d; and select in order.

» Smallest slack. Sort according to slack, d; — 7;, and select in order.

36

Counterexamples

Shortest processing time

« Sort the jobs according to 7; and select in order.

1 2 Dol 1 (s gelectesl dne ‘o Qe dnedion ‘

- 4 10 Bt Hor Tob 2 incwrs o |adencss of 1
{

100 1 O‘Jvos\k acden W O lakeness .

37

Counterexamples

Smallest slack

» Sort according to slack, d; — 7;, and select in order.

Sob 2 lhos swaller Slack
T - Couses o loteness of 11 -2 = 9

] Otber orden bas (adeness o]ﬁ

38

Earliest deadline first (EDF)

e Algorithm:

» Sort deadlines in increasingorderd; < d, < ... <d,
e Set T « 0.
« Fori <« lton

o | « T‘l‘Tl

39

Example EDF schedule

(1]2[3[4|5]|6
3 2 1 4 3 2
6 8 9 9 14 15

lateness = 2 lateness =0 max lateness = 6
)))

Original Schedule d;=9 d,=8 dy = 15 d;=6 ds = 14 ds= 9
0 1 2 3 4 5 6 7 8 9 0 1 12 13 14 15

max lateness = 1
)

EDF Schedule d1:6 d2=8 d3=9 d4=9 d5= 14 d6= 15
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

40

Exchange argument for optimality

* |f for any solution there exists a modification that modifies solution but its value is at
least as good as the original, then wlog optimal solution has modification

* Consider a solution with “gaps” between jobs

d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

At least as good d=4 d=6 d=12
0 1 2 3 4 5 6 7 8 9 10 1

 Then a “gapless” solution by shifting every job earlier is just as good

» Proof: The new t; for every job is at most ;. And Z; is monotonic in ¢,. So, the new
loss L' is at most L.

41

The EDF Schedule

By construction, the EDF schedule is gapless

* This doesn’t alone prove optimality

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]

 An inversion is adjacent If it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

42

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
» An inversion is if job i is before job j but d; > d.
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

+Proon] |
EEIRI T

d; d;

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

* Proof:

The EDF Schedule

 Property of EDF: No inversions in EDF schedule.
. An inversion is if job i is before job j but d; > d]
 An inversion is adjacent if it occurs between adjacent jobs.

 Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

Notice: max |ateness decrzcsen

_b_j {'\'.x_fnj inversion .

* Proof:

Inversion removal

e If (7,7) is an inversion for i < j but (7, ') is not an inversion for i < j' < J, then
(j — 1,j) is an adjacent inversion

By induction, if an inversion exists, then an adjacent inversion exists
 Exchange principle lets us clean up all the adjacent inversions

 “Gapless” and “inversion” exchange principles yield a gapless schedule with
no Inversions

* This is precisely, the earliest deadline first (EDF) schedule up to events of
equal deadline. All such schedules have same lateness. Thus, it Is optimal

46

