
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 5
Topological sort and greedy algorithms

1

Administrativa

• Problem set 1 is due tonight! Problem set 2 is uploaded.

• I have second office hours immediately after this lecture in CSE2 353.

• Many questions on EdStem about how much detail to include.

• https://courses.cs.washington.edu/courses/cse421/25sp/psets.html

• We have written a whole document about this

• Example solutions from section are also a good start

2

https://courses.cs.washington.edu/courses/cse421/25sp/psets.html

Directed acyclic graphs

• A directed graph is acyclic iff it has no directed cycles

• Also referred to as a DAG

• If we shrink every strongly connected component to a vertex, this converts
the directed graph into a DAG

G

3

Topological sorting of graphs

• Input: a directed acyclic graph DAG

• Output: An injective numbering such that edges only go from lower
numbered to higher numbered vertices. 
 
i.e. for , we must have .

• Applications

• Vertices represents tasks and edges represent prerequisites

• Topological sorts gives a sequential ordering for how to solve the system

• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort. Cannot number the vertices within a SCC.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)

4

In-degree and out-degree

5

In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.

• Proof:

• Assume every vertex has in-degree .

• Starting with any vertex pick an in-edge and go in reverse to .
Repeat.

• Since there are only vertices, eventually a vertex will be repeated. This
means there is a cycle, a contradiction.

≥ 1

v u → v u

n

6

Algorithm for topological sort

• Any vertex of in-degree 0 can be numbered as 1

• Topological sorting algorithm:

• If we remove and assign , then the rest is still a DAG

• Then, there is a new vertex of in-degree 0

• Repeat, until all vertices are exhausted

v1

v1 N(v1) = 1

v2

7

Implementing topological sort

8

Implementing topological sort

9

Implementing topological sort

10

Implementing topological sort

11

Implementing topological sort

12

Implementing topological sort

13

Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of will decrease.

vj
vj

14

Implementing topological sort

• Algorithm:

• Iterate through all vertices and set in-degree of each vertex. Initialize
queue with vertices such that . Set .

• While is non-empty, pop vertex off queue

• Set

• Decrease for every nbhr. s.t. If , add to .

• Runtime: Each edge is visited only once. So time.

d(v) =
Q d(v) = 0 j ← 1

Q u

N(u) ← j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v Q

O(n + m)

15

Previously in CSE 421…

16

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

17

Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending of jobs not selected.

• Example:

ti

18

Today

19

The principle of greedy algorithms

• Solving the optimization problem will require making many decisions (such as
whether to include or not a job in the schedule)

• In a greedy algorithm, we make each decision locally without looking as to
how it will effect future decisions

• Not every greedy criteria for making decisions works

• It’s not obvious which criteria will work

• We will focus on methods for proving that greedy algorithms do work

20

Greedy algorithms for interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

• Algorithm: Select the job with earliest ending of jobs not selected.

• Details: Sort the jobs by earliest end time . Keep track of current end time
of selected jobs . Add new job if and update .

• Runtime: Sorting + linear time to create list of jobs.
.

(si, ti) i = 1,…, n n

ti

ti
T (si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)

21

Scheduling all intervals

• Input: for for “jobs” each using 1 room.

• Output: A scheduling of all jobs to rooms using the minimum number of
rooms so that no two use the same room at the same time.

(si, ti) i = 1,…, n n

22

Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

23

Scheduling all intervals
A greedy algorithm

• Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

24

Scheduling all intervals
Proof of correctness

• Theorem: The greedy algorithm is optimal.

• Proof:

• Consider when a new room is “allocated” for the first time. Let job be the reason.

• Then, for all .

• Since denotes when that room will free up, the -th job is incompatible with the
jobs currently in the other rooms.

• Since we sort requests by start time, those jobs all started before and haven’t ended yet.

• So there are incompatible requests, requiring at least rooms.

j i

si ≥ last(j′) j′ < j

last(j′) i
j − 1

si

j j

25

Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all
rooms are currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize an sized array as zeroes and an sized array .

• For to

• Find the first such that .

• Then set and set .

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

n last(j) n r(j)

i ← 1 n

j si ≥ last(j)

last(j) ← ti r(i) ← j

r

26

Scheduling all intervals
Runtime

• Greedy strategy: Increment chronologically and open a new room if all rooms are
currently full.

• Algorithm:

• Sort requests by start time in increasing order.

• Initialize a priority queue , and an sized array .

• For to

• Set .

• If , schedule job in room : and

• Else, allocate a new room and and

• Return assignment function .

s1 ≤ s2 ≤ … ≤ sn

Q k ← 0 n r(j)

i ← 1 n

j ← findmin(Q)

si ≥ last(j) i j setkey(j, Q) ← ti r(i) = j .

k ← k + 1 setkey(k, Q) ← ti r(i) = k .

r

27

Greedy algorithm general strategies

• Greedy algorithm stays ahead: Show that after each step of the greedy
algorithm, its solution is at least as good as any other algorithms

• Structural: Discover a structure-based argument asserting that the greedy
solution is at least as good as every possible solution.

• Exchange argument: We can gradually transform any solution into the one
found by the greedy algorithm with each transform only improving or
maintaining the value of the current solution.

28

Interval scheduling

• Input: start and end times for for “jobs”

• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n

29

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

30

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

31

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

32

Greedy algorithm analysis
Contradiction argument edition

• Let denote the jobs selected by the greedy algorithm.

• Let denote the jobs selected in an optimal solution.

• Assume for the largest possible .

• Since greedy is not optimal (by assumption), .

a1, a2, …, at

o1, o2, …, os

a1 = o1, a2 = o2, …, ak = ok k

s > k

33

Minimizing lateness

• A new scheduling problem. There is a single resource but instead of start and finish times, each
job has

• A time requirement which must be scheduled contiguously

• A target deadline by which the request is ideally finished

• Minimum start time is 0.

• Each item is graded a lateness: where is it’s end time

• Total lateness is defined as the max lateness:

• Goal: Find a scheduling that minimizes the maximum lateness .

i

τi

di

ℓi := min{0, ti − di} ti

L = max
i=1,…,n

ℓi .

L

34

Example minimizing lateness problem

35

Finding the right greedy strategy

• Greedy template suggests finding a strategy and seeing if there are any
glaring counterexamples.

• Shortest processing time. Sort the jobs according to and select in
order.

• Earliest deadline first. Sort according to and select in order.

• Smallest slack. Sort according to slack, , and select in order.

τi

di

di − τi

36

Counterexamples
Shortest processing time

• Sort the jobs according to and select in order.τi

37

Counterexamples
Smallest slack

• Sort according to slack, , and select in order.di − τi

38

Earliest deadline first (EDF)

• Algorithm:

• Sort deadlines in increasing order .

• Set .

• For to

•

•

d1 ≤ d2 ≤ … ≤ dn

T ← 0

i ← 1 n

(si, ti) ← (T, T + τi)

T ← T + τi .

39

Example EDF schedule

40

Exchange argument for optimality

• If for any solution there exists a modification that modifies solution but its value is at
least as good as the original, then wlog optimal solution has modification

• Consider a solution with “gaps” between jobs  
 
 
 

• Then a “gapless” solution by shifting every job earlier is just as good

• Proof: The new for every job is at most . And is monotonic in . So, the new
loss is at most .

t′ i ti ℓi ti
L′ L

41

The EDF Schedule

• By construction, the EDF schedule is gapless

• This doesn’t alone prove optimality

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

i j di > dj

42

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

• Proof:

i j di > dj

43

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

• Proof:

i j di > dj

44

The EDF Schedule

• Property of EDF: No inversions in EDF schedule.

• An inversion is if job is before job but .

• An inversion is adjacent if it occurs between adjacent jobs.

• Exchange principle: If a schedule has an adjacent inversion, flipping the
adjacent inversion yields a schedule of shorter lateness.

• Proof:

i j di > dj

45

Inversion removal

• If is an inversion for but is not an inversion for , then
 is an adjacent inversion

• By induction, if an inversion exists, then an adjacent inversion exists

• Exchange principle lets us clean up all the adjacent inversions

• “Gapless” and “inversion” exchange principles yield a gapless schedule with
no inversions

• This is precisely, the earliest deadline first (EDF) schedule up to events of
equal deadline. All such schedules have same lateness. Thus, it is optimal

(i, j) i < j (i, j′) i < j′ < j
(j − 1,j)

46

