Lecture 5 Topological sort and greedy algorithms

Chinmay Nirkhe | CSE 421 Spring 2025

Administrativa

- Problem set 1 is due tonight! Problem set 2 is uploaded.
- I have second office hours immediately after this lecture in CSE2 353.
- Many questions on EdStem about how much detail to include.
 - <u>https://courses.cs.washington.edu/courses/cse421/25sp/psets.html</u>
 - We have written a whole document about this
- Example solutions from section are also a good start

Directed acyclic graphs

- A directed graph G is *acyclic* iff it has no directed cycles
- Also referred to as a DAG
- the directed graph into a DAG

• If we shrink every strongly connected component to a vertex, this converts

Topological sorting of graphs

- Input: a directed acyclic graph DAG G = (V, E)
- Output: An injective numbering N: V → {1,...,n} such that edges only go from lower numbered to higher numbered vertices.

i.e. for $u \to v$, we must have N(u) < N(v).

- Applications
 - Vertices represents tasks and edges represent prerequisites
 - Topological sorts gives a sequential ordering for how to solve the system
- For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order given by topological sort. Cannot number the vertices within a SCC.

In-degree and out-degree

out degree 3

In-degree zero vertices

- Claim: Every DAG has at least one vertex of in-degree 0.
- Proof:
 - Assume every vertex has in-degree ≥ 1 .
 - Starting with any vertex v pick an in-edge $u \rightarrow v$ and go in reverse to u. Repeat.
 - Since there are only *n* vertices, eventually a vertex will be repeated. This means there is a cycle, a contradiction.

Algorithm for topological sort

- Any vertex v_1 of in-degree 0 can be numbered as 1
- Topological sorting algorithm:

 - If we remove v_1 and assign $N(v_1) = 1$, then the rest is still a DAG • Then, there is a new vertex v_2 of in-degree 0
 - Repeat, until all vertices are exhausted

ogical sort

on ... SO and

- slow.
- neighbors of v_i will decrease.

Issue is finding the next vertex that has in-degree 0. Can be algorithmically

• Observe that when we remove the vertex v_i , the in-degree of only the out-

Algorithm:

- Iterate through all vertices and set d(v) = in-degree of each vertex. Initialize queue Q with vertices such that d(v) = 0. Set $j \leftarrow 1$.
- While Q is non-empty, pop vertex u off queue
 - Set $N(u) \leftarrow j \cdot j \leftarrow j + 1$.
- **Runtime:** Each edge is visited only once. So O(n + m) time.

• Decrease $d(v) \leftarrow d(v) - 1$ for every nbhr. v s.t. $u \rightarrow v$. If d(v) = 0, add v to Q.

Previously in CSE 421...

Interval scheduling

- Input: start and end times (s_i, t_i) for i = 1, ..., n for n "jobs"
- Output: A maximal set of mutually compatible jobs

r i = 1, ..., n for n "jobs' compatible jobs

Greedy algorithms for interval scheduling

- Algorithm: Select the job with earliest ending t_i of jobs not selected.
- **Example:**

The principle of greedy algorithms

- Solving the optimization problem will require making many decisions (such as whether to include or not a job in the schedule)
- In a greedy algorithm, we make each decision locally without looking as to how it will effect future decisions
- Not every greedy criteria for making decisions works
 - It's not obvious which criteria will work
 - We will focus on methods for proving that greedy algorithms do work

Greedy algorithms for interval scheduling

- Input: start and end times (s_i, t_i) for i = 1, ..., n for n "jobs"
- Output: A maximal set of mutually compatible jobs
- Algorithm: Select the job with earliest ending t_i of jobs not selected.
 - **Details:** Sort the jobs by earliest end time t_i . Keep track of current end time of selected jobs T. Add new job (s_i, t_i) if $s_i \ge T$ and update $T \leftarrow t_i$.
 - **Runtime:** Sorting + linear time to create list of jobs. $O(n \log n) + O(n) = O(n \log n).$

Scheduling all intervals

- Input: (s_i, t_i) for i = 1, ..., n for n "jobs" each using 1 room.
- Output: A scheduling of all jobs to rooms using the *minimum number* of rooms so that no two use the same room at the same time.

Scheduling all intervals A greedy algorithm

- **Algorithm:**
 - Sort requests by start time $s_1 \leq s_2 \leq \ldots \leq s_n$ in increasing order.
 - Initialize an *n* sized array last(j) as zeroes and an *n* sized array r(j).
 - For $i \leftarrow 1$ to n
 - Find the first *j* such that $s_i \ge \text{last}(j)$.
 - Then set $last(j) \leftarrow t_i$ and set $r(i) \leftarrow j$.
 - Return assignment function *r*.

Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

Scheduling all intervals A greedy algorithm

- Algorithm:
 - Sort requests by start time $s_1 \leq s_2 \leq \ldots \leq s_n$ in increasing order.
 - Initialize an *n* sized array last(j) as zeroes and an *n* sized array r(j).
 - For $i \leftarrow 1$ to n
 - Find the first j such that $s_i \ge last(j)$.
 - Then set $last(j) \leftarrow t_i$ and set $r(i) \leftarrow j$.
 - Return assignment function *r*.

Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.

Scheduling all intervals **Proof of correctness**

- **Theorem:** The greedy algorithm is optimal.
- **Proof:**

 - Then, $s_i \ge last(j')$ for all j' < j.
 - jobs currently in the other j-1 rooms.

 - So there are *j* incompatible requests, requiring at least *j* rooms.

• Consider when a new room j is "allocated" for the **first** time. Let job i be the reason.

• Since last(j') denotes when that room will free up, the *i*-th job is incompatible with the

Since we sort requests by start time, those jobs all started before s_i and haven't ended yet.

Scheduling all intervals **Runtime**

- Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.
- Algorithm:
 - Sort requests by start time $s_1 \leq s_2 \leq \ldots \leq s_n$ in increasing order.
 - Initialize an n sized array last(j) as zeroes and an n sized array r(j).
 - For $i \leftarrow 1$ to n
 - Find the first *j* such that $s_i \ge \text{last}(j)$. E
 - Then set $last(j) \leftarrow t_i$ and set $r(i) \leftarrow j$.
 - Return assignment function *r*. $\leftarrow O(1)$

E O(n log n) time Loop runs O(n) times.

- could be slow. O(n) each time.

Total: O(n²) due to loop.

Scheduling all intervals **Runtime**

- Greedy strategy: Increment chronologically and open a new room if all rooms are currently full.
- Algorithm:
 - Sort requests by start time $s_1 \leq s_2 \leq \ldots \leq s_n$ in increasing order.
 - Initialize a priority queue $Q, k \leftarrow 0$ and an n sized arra
 - K Now only O(log • For $i \leftarrow 1$ to n• Set $j \leftarrow \text{findmin}(Q)$
 - If $s_i \ge last(j)$, schedule job *i* in room *j*: setkey(*j*, *Q*)
 - Else, allocate a new room $k \leftarrow k + 1$ and setkey(k
 - Return assignment function *r*.

ay
$$r(j)$$
. Better data structure
k) time.

$$Q) \leftarrow t_i \text{ and } r(i) = j.$$

 $(q, Q) \leftarrow t_i \text{ and } r(i) = k.$

 $\begin{cases} Also O(log k) + ime. \end{cases}$

Greedy algorithm general strategies

- Greedy algorithm stays ahead: Show that after each step of the greedy algorithm, its solution is at least as good as any other algorithms
- Structural: Discover a structure-based argument asserting that the greedy solution is at least as good as every possible solution.
- Exchange argument: We can gradually transform any solution into the one found by the greedy algorithm with each transform only improving or maintaining the value of the current solution.

Interval scheduling

- Input: start and end times (s_i, t_i) for i = 1, ..., n for n "jobs"
- Output: A maximal set of mutually compatible jobs

- Let a_1, a_2, \ldots, a_t denote the jobs selected by the greedy algorithm.
- Let o_1, o_2, \ldots, o_s denote the jobs selected in an optimal solution.
- Assume $a_1 = o_1, a_2 = o_2, \dots, a_k = o_k$ for the largest possible k.
- Since greedy is **not** optimal (by assumption), s > k.

- Let a_1, a_2, \ldots, a_t denote the jobs selected by the greedy algorithm.
- Let o_1, o_2, \ldots, o_s denote the jobs selected in an optimal solution.
- Assume $a_1 = o_1, a_2 = o_2, \dots, a_k = o_k$ for the largest possible k.

- Let a_1, a_2, \ldots, a_t denote the jobs selected by the greedy algorithm.
- Let o_1, o_2, \ldots, o_s denote the jobs selected in an optimal solution.
- Assume $a_1 = o_1, a_2 = o_2, \dots, a_k = o_k$ for the largest possible k.

Minimizing lateness

- job *i* has
 - A time requirement τ_i which must be scheduled contiguously
 - A target deadline d_i by which the request is ideally finished
- Minimum start time is 0.
- Each item is graded a lateness: $\ell_i := \min\{0\}$
- Total lateness is defined as the max lateness
- Goal: Find a scheduling that minimizes the magnetizes

• A new scheduling problem. There is a single resource but instead of start and finish times, each

$$t_{i} - d_{i} \text{ where } t_{i} \text{ is it's end time}$$

$$L = \max_{i=1,...,n} \ell_{i}. \quad \text{Crucially different than}$$

$$L = \sum_{i=1,...,n} \ell_{i}.$$

Example minimizing lateness problem

d ₃ =	9	d ₂ = 8		d ₆ = 15		d ₁ =	= 6
0	1	2	3	4	5	6	7

3	4	5	6
1	4	3	2
9	9	14	15

Finding the right greedy strategy

- Greedy template suggests finding a strategy and seeing if there are any glaring counterexamples.
 - Shortest processing time. Sort the jobs according to τ_i and select in order.
 - Earliest deadline first. Sort according to d_i and select in order.
 - Smallest slack. Sort according to slack, $d_i \tau_i$, and select in order.

Counterexamples Shortest processing time

• Sort the jobs according to τ_i and select in order.

Job 1 is selected due to shurter duration. But then Job 2 incurs a lateness of 1, Opposite order has O lateness.

Counterexamples Smallest slack

• Sort according to slack, $d_i - \tau_i$, and select in order.

, 2 has smaller slack.
uses a lateness of
$$11 - 2 = 9$$

her order has lateness of 1 .

Earliest deadline first (EDF)

- **Algorithm:**
 - Sort deadlines in increasing order $d_1 \leq d_2 \leq \ldots \leq d_n$.
 - Set $T \leftarrow 0$.
 - For $i \leftarrow 1$ to n
 - $(s_i, t_i) \leftarrow (T, T + \tau_i)$
 - $T \leftarrow T + \tau_i$.

Example EDF schedule

Original Schedule	d ₃ = 9	d ₂	= 8		d ₆ = 15	
	0	1	2	3	4	5
EDF Schedule		d ₁ = 6	þ		d ₂ = 8	d ₃ =
	0	1	2	3	4	5

3	4	5	6
1	4	3	2
9	9	14	15

Exchange argument for optimality

- If for any solution there exists a modification that modifies solution but its value is at least as good as the original, then wlog optimal solution has modification
- Consider a solution with "gaps" between jobs

- Then a "gapless" solution by shifting every job earlier is just as good
 - Proof: The new t'_i for every job is at most t_i . And ℓ'_i is monotonic in t_i . So, the new loss L' is at most L.

11

- By construction, the EDF schedule is gapless
- This doesn't alone prove optimality
- Property of EDF: No inversions in EDF schedule.
 - An inversion is if job i is before job j but $d_i > d_j$.
 - An inversion is adjacent if it occurs between adjacent jobs.
- Exchange principle: If a schedule has an adjacent inversion, flipping the adjacent inversion yields a schedule of shorter lateness.

- Property of EDF: No inversions in EDF schedule.
 - An inversion is if job *i* is before job *j* but $d_i > d_j$.
 - An inversion is adjacent if it occurs between adjacent jobs.
- **Exchange principle:** If a schedule has an adjacent inversion, flipping the adjacent inversion yields a schedule of shorter lateness.
- **Proof:**

- Property of EDF: No inversions in EDF schedule.
 - An inversion is if job *i* is before job *j* but $d_i > d_j$.
 - An inversion is adjacent if it occurs between adjacent jobs.
- **Exchange principle:** If a schedule has an adjacent inversion, flipping the adjacent inversion yields a schedule of shorter lateness.
- **Proof:**

- **Property of EDF:** No inversions in EDF schedule.
 - An inversion is if job *i* is before job *j* but $d_i > d_i$.
 - An inversion is adjacent if it occurs between adjacent jobs.
- **Exchange principle:** If a schedule has an adjacent inversion, flipping the adjacent inversion yields a schedule of shorter lateness.
- **Proof:**

Inversion removal

- (j 1, j) is an adjacent inversion
- By induction, if an inversion exists, then an adjacent inversion exists
- Exchange principle lets us clean up all the adjacent inversions
- "Gapless" and "inversion" exchange principles yield a gapless schedule with no inversions

• If (i, j) is an inversion for i < j but (i, j') is not an inversion for i < j' < j, then

 This is precisely, the earliest deadline first (EDF) schedule up to events of equal deadline. All such schedules have same lateness. Thus, it is optimal