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Lecture 4
Breadth- and depth-first search, topological sort
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Graph search and traversal

• Used to discover the structure of a graph


• “Walk” from a fixed starting vertex  (“the source”) to find all the vertices 
reachable from 


• Generic traversal algorithm. 

• Input: Graph  and vertex 


• Find: set  reachable from 

s
s

G s ∈ V

R ⊆ V s
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Reachable(  ): 

 
While there exists a  
    Add  to : . 
return 

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R



Breadth-first search (BFS)

• Used to explore the vertices in  according to their distance from .


• Implemented using the queue data structure.


• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and queue 


• Set all vertices to not visited. Set  as visited.


• While  isn’t empty, pop  off the queue.


• For every neighbor  of  that is not visited,


•  and set  to visited.


• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}
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Graph search and traversal

• Used to discover the structure of a graph


• “Walk” from a fixed starting vertex  (“the source”) to find all the vertices 
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• Input: Graph  and vertex 
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s
s

G s ∈ V
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Reachable(  ): 

 
While there exists a  
    Add  to : . 
return 

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R



Generic graph traversal finds correct R

• Claim:  is exactly the set of reachable vertices.


• Proof: We show both directions. (1): every vertex in  is reachable. (2): every reachable is in 


• Direction 1. For , there is a path . Proved by induction on the generic graph 
traversal algorithm: If we added  by edge  then .


• Direction 2. Assume (for ), there is a vertex  that is reachable but not . 


• Let the path  and let  be the first vertex on  such that 


• Then , the predecessor of , satisfies  and .


• Contradicts the definition of the generic graph traversal.

R

R R .

v ∈ R s ↝ v
v (u, v) ∈ R × (V∖R) s ↝ u → v

⊥ v v ∉ R

p = s ↝ v v′ p v′ ∉ R .

u v′ u ∈ R (u, v′ ) ∈ R × (V∖R)
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Reachable(  ): 

 
While there exists a  
    Add  to : . 
return 

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R



Connected components 

• For a undirected graph , a connected component  is a maximal set 
such that


• For all pairs , there exists a path 


• There are no edges between  and .


• Then,  iff  in the same connected component

G C ⊆ V

u, v ∈ C u ↝ v

C V∖C

u ↝ v u, v
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Connected components 

• Algorithm for computing connected components:


• Idea: Let Create an array 
smallest numbered vertex connected to . A 
canonical name for the connected component.


• Then  and  are connected iff . 
Better than storing all pairs of paths .

V = {1,…, n} . A(u) =
u

u v A(u) = A(v)
p(u, v)
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Connected components 

• Algorithm for computing connected components:


• Initialize all vertex as not visited.


• For  till ,


• If  is not visited, then run subroutine BFS(  ) and set  for every vertex visited 
by the BFS and mark each vertex as visited.


• Total runtime:  because


• Each vertex is visited once by outer routine and the BFS runs are disjoint and observes 
each edge a constant number of times.


• Could have run any generic graph traversal actually as long as it is efficient

s ← 1 n

s s A(u) ← s

O(n + m)
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Depth-first search

• Breadth-first search visits all the neighbors before diving in deeper


• Depth-first search visits as deep as possible


• The trees formed by the visiting order look quite different!


• Generated by different data structures but similar algorithm!


• BFS: Queue — first in, first out 

• DFS: Stack — first in, last out
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Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and queue 


• Set all vertices to not visited. Set  as visited.


• While  isn’t empty, pop  off the queue.


• For every neighbor  of  that is not visited,


•  and set  to visited.


• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}
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Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and stack 


• Set all vertices to not visited.


• While  isn’t empty, pop  off the stack.


• If  is not visited, set  to visited


• For every neighbor  of  that is not visited,


• .


• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}
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Spanning trees

• A spanning tree  is a tree (no cycles) for a connected component such 
that every vertex in the component touches .


• BFS and DFS both generate spanning trees but they are different!

T ⊆ E
T
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Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

30



Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

31



Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

32



Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

33



Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

34



Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?
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Def. A back edge is 
an edge that 
connects a vertex to 
an ancestor that is 
not it’s parent in the 
tree.



No cross edges in DFS
(for undirected graphs) 

• Claim: During DFS( ), every vertex marked “visited” is a descendant of  in the DFS 
tree .


• Claim: For every edge , either  is an edge in , or else  or  is an 
ancestor of the other in .


• Proof:


• DFS is called recursively as we explore. Wlog, assume DFS( ) is called before 
DFS( ).


• Case 1:  was marked “not visited” when  edge is examined. Then 
 (see figure).


• Case 2:  was marked “visited” when  edge is examined. Was visited in 
some other branch of the DFS( ) call. So  is a descendant of .  

x x
T

(x, y) ∈ E (x, y) T x y
T

x
y

y (x, y)
(x, y) ∈ T

y (x, y)
x y x
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Applications of graph traversal
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Bipartiteness testing
Application of graph traversal

• Recall, a graph is bipartite iff we can split  such that every edge is 
between .


• Equivalently, a graph is bipartite if we can color every vertex either red or blue 
such that each edge is between a red and a blue vertex.


• Input: Undirected graph 


• Output: A coloring if  is bipartite; else “not bipartite” 

V = X ⊔ Y
(x, y) ∈ X × Y

G

c : V → {red, blue} G
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Bipartite graph property

• Claim: A graph is bipartite iff it contains no odd cycles.


• Proof:


• If it contains an odd cycle, we can’t color the cycle let alone the 
rest of the graph.


• If it contains no odd cycles, run BFS starting from some vertex . 


• Color according to length from  in BFS tree with even = red, 
odd = blue.


• If there exists an edge between colors, we found an odd 
cycle.

s

s
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Bipartiteness testing 

• Claim: A graph is bipartite iff it contains no odd cycles.


• Algorithm:


• Start BFS from some vertex . Instead of marking vertices as visited or not, marked 
them as “red”, “blue”, or “not visited”. Mark  as red and add  to queue .


• Pop vertex  from queue . 


• Check all neighbors  of  and make sure they are either “not visited” or the 
opposite color of . 


• If not, abort and output “not bipartite”.


• If so, add the “not visited” neighbors  to the queue  and color them with 
opposite color.


• If queue  is empty, output coloring generated.


• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)
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s
s s Q

u Q

v u
u

v Q

Q

O(n + m)
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BFS edge property

• The BFS algorithm generates a tree  starting from root .


• Let layer  be the set of vertices distance  from  in .


• Claim: The edges  only occur between adjacent layers or the same 
layer.


• Proof: If there is an edge , then  should have been 
in  because it was added to the queue after  was analyzed. 


• Therefore, “bad edges” for bipartite testing only occur within the 
same layer. This finds an odd cycle.

T s

Li ⊆ V i s T

E

(u, v) ∈ Li × Li+2 v
Li+1 u
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Directed graphs
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Depth-first search on directed graphs

• Same as DFS on undirected 
graphs except we only add 
neighbor  if an edge points 
from .


• DFS starting from  will visit all 
vertices  reachable by a 
directed path .

v
u → v

s
u

s ↝ u
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DFS edge nomenclature
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Back edge 

Connects vertex to its 
ancestor in DFS tree
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DFS edge nomenclature
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Back edge 

Connects vertex to its 
ancestor in DFS tree

Forward edge 

Connects vertex to its 
descendant in DFS tree

Cross edge 

Connects vertices across branches. Always high  low in DFS tree→

Tree edge 

The edges in the DFS tree

Unvisited edge 

The edges not visited during DFS

Fact: Every cycle in a directed graph must 
contain a back edge.



Strongly connected components

• Vertices  and  are strongly connected iff they are on a directed cycle. I.e. 
there is a directed path  and a directed path .


• Every directed graph’s vertices can be partitioned into strongly connected 
components where all pairs of vertices in the component are strongly 
connected 

• Strongly connected components (SCCs) can be stored efficiently just like 
connected components


• SCCs can be found by extending DFS algorithm in  time

u v
u ↝ v v ↝ u

O(n + m)
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Strongly connected components
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Strongly connected components

54



Directed acyclic graphs

• A directed graph  is acyclic iff it has no directed cycles


• Also referred to as a DAG


• If we shrink every strongly connected component to a vertex, this converts 
the directed graph into a DAG

G
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Topological sorting of graphs

• Input: a directed acyclic graph DAG 


• Output: An injective numbering  such that edges only go from lower 
numbered to higher numbered vertices. 
 
i.e. for , we must have .


• Applications


• Vertices represents tasks and edges represent prerequisites


• Topological sorts gives a sequential ordering for how to solve the system


• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order 
given by topological sort.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)
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In-degree and out-degree
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In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.


• Proof:


• Assume every vertex has in-degree .


• Starting with any vertex  pick an in-edge  and go in reverse to . 
Repeat.


• Since there are only  vertices, eventually a vertex will be repeated. This 
means there is a cycle, a contradiction.

≥ 1

v u → v u

n
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Algorithm for topological sort

• Any vertex  of in-degree 0 can be numbered as 1


• Can run DFS starting from 


• Alternative simpler idea:


• If we remove  and assign , then the rest is still a DAG


• Then, there is a new vertex  of in-degree 0


• Repeat, until all vertices are exhausted 

v1

v1

v1 N(v1) = 1

v2
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Implementing topological sort
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Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically 
slow.


• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of  will decrease.

vj
vj
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Implementing topological sort

• Algorithm: 

• Iterate through all vertices and set in-degree of each vertex. Initialize queue  
with vertices such that . Set . 


• While  is non-empty, pop vertex  off queue


• Set 


• Decrease  for every neighbor  s.t. If , add  to 
.


• Runtime: Each edge is visited only once. So  time.

d(v) = Q
d(v) = 0 j ← 1

Q u

N(u) = j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v
Q

O(n + m)
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