
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 4
Breadth- and depth-first search, topological sort

1

Graph search and traversal

• Used to discover the structure of a graph

• “Walk” from a fixed starting vertex (“the source”) to find all the vertices
reachable from

• Generic traversal algorithm.

• Input: Graph and vertex

• Find: set reachable from

s
s

G s ∈ V

R ⊆ V s
2

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

3

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

4

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

5

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

6

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

7

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

8

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

9

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

10

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

11

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

12

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

13

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

14

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

15

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

16

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

17

Breadth-first search (BFS)

• Used to explore the vertices in according to their distance from .

• Implemented using the queue data structure.

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

18

Graph search and traversal

• Used to discover the structure of a graph

• “Walk” from a fixed starting vertex (“the source”) to find all the vertices
reachable from

• Generic traversal algorithm.

• Input: Graph and vertex

• Find: set reachable from

s
s

G s ∈ V

R ⊆ V s
19

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

Generic graph traversal finds correct R

• Claim: is exactly the set of reachable vertices.

• Proof: We show both directions. (1): every vertex in is reachable. (2): every reachable is in

• Direction 1. For , there is a path . Proved by induction on the generic graph
traversal algorithm: If we added by edge then .

• Direction 2. Assume (for), there is a vertex that is reachable but not .

• Let the path and let be the first vertex on such that

• Then , the predecessor of , satisfies and .

• Contradicts the definition of the generic graph traversal.

R

R R .

v ∈ R s ↝ v
v (u, v) ∈ R × (V∖R) s ↝ u → v

⊥ v v ∉ R

p = s ↝ v v′ p v′ ∉ R .

u v′ u ∈ R (u, v′) ∈ R × (V∖R)

20

Reachable():

 
While there exists a  
 Add to : . 
return

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R

Connected components

• For a undirected graph , a connected component is a maximal set
such that

• For all pairs , there exists a path

• There are no edges between and .

• Then, iff in the same connected component

G C ⊆ V

u, v ∈ C u ↝ v

C V∖C

u ↝ v u, v

21

Connected components

• Algorithm for computing connected components:

• Idea: Let Create an array
smallest numbered vertex connected to . A
canonical name for the connected component.

• Then and are connected iff .
Better than storing all pairs of paths .

V = {1,…, n} . A(u) =
u

u v A(u) = A(v)
p(u, v)

22

Connected components

• Algorithm for computing connected components:

• Initialize all vertex as not visited.

• For till ,

• If is not visited, then run subroutine BFS() and set for every vertex visited
by the BFS and mark each vertex as visited.

• Total runtime: because

• Each vertex is visited once by outer routine and the BFS runs are disjoint and observes
each edge a constant number of times.

• Could have run any generic graph traversal actually as long as it is efficient

s ← 1 n

s s A(u) ← s

O(n + m)

23

Depth-first search

• Breadth-first search visits all the neighbors before diving in deeper

• Depth-first search visits as deep as possible

• The trees formed by the visiting order look quite different!

• Generated by different data structures but similar algorithm!

• BFS: Queue — first in, first out

• DFS: Stack — first in, last out

24

Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

25

Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and stack

• Set all vertices to not visited.

• While isn’t empty, pop off the stack.

• If is not visited, set to visited

• For every neighbor of that is not visited,

• .

• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}

26

Depth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and stack

• Set all vertices to not visited.

• While isn’t empty, pop off the stack.

• If is not visited, set to visited

• For every neighbor of that is not visited,

• .

• Set .

R ← {s} S ← {s} .

S v

v v

u v

S ← S ∪ {u}

R ← R ∪ {u}

27

Breadth-first search (BFS)

• Assign a bit to every vertex as visited/not visited.

• Algorithm:

• Initialize set and queue

• Set all vertices to not visited. Set as visited.

• While isn’t empty, pop off the queue.

• For every neighbor of that is not visited,

• and set to visited.

• Set .

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}

28

Spanning trees

• A spanning tree is a tree (no cycles) for a connected component such
that every vertex in the component touches .

• BFS and DFS both generate spanning trees but they are different!

T ⊆ E
T

29

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

30

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

31

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

32

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

33

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

34

Understanding the DFS spanning tree

• What do the edges not included in the spanning tree look like?

35

Def. A back edge is
an edge that
connects a vertex to
an ancestor that is
not it’s parent in the
tree.

No cross edges in DFS
(for undirected graphs)

• Claim: During DFS(), every vertex marked “visited” is a descendant of in the DFS
tree .

• Claim: For every edge , either is an edge in , or else or is an
ancestor of the other in .

• Proof:

• DFS is called recursively as we explore. Wlog, assume DFS() is called before
DFS().

• Case 1: was marked “not visited” when edge is examined. Then
 (see figure).

• Case 2: was marked “visited” when edge is examined. Was visited in
some other branch of the DFS() call. So is a descendant of .

x x
T

(x, y) ∈ E (x, y) T x y
T

x
y

y (x, y)
(x, y) ∈ T

y (x, y)
x y x

36

Applications of graph traversal

37

Bipartiteness testing
Application of graph traversal

• Recall, a graph is bipartite iff we can split such that every edge is
between .

• Equivalently, a graph is bipartite if we can color every vertex either red or blue
such that each edge is between a red and a blue vertex.

• Input: Undirected graph

• Output: A coloring if is bipartite; else “not bipartite”

V = X ⊔ Y
(x, y) ∈ X × Y

G

c : V → {red, blue} G

38

Bipartite graph property

• Claim: A graph is bipartite iff it contains no odd cycles.

• Proof:

• If it contains an odd cycle, we can’t color the cycle let alone the
rest of the graph.

• If it contains no odd cycles, run BFS starting from some vertex .

• Color according to length from in BFS tree with even = red,
odd = blue.

• If there exists an edge between colors, we found an odd
cycle.

s

s

39

Bipartiteness testing

• Claim: A graph is bipartite iff it contains no odd cycles.

• Algorithm:

• Start BFS from some vertex . Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark as red and add to queue .

• Pop vertex from queue .

• Check all neighbors of and make sure they are either “not visited” or the
opposite color of .

• If not, abort and output “not bipartite”.

• If so, add the “not visited” neighbors to the queue and color them with
opposite color.

• If queue is empty, output coloring generated.

• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)

40

Bipartiteness testing

• Claim: A graph is bipartite iff it contains no odd cycles.

• Algorithm:

• Start BFS from some vertex . Instead of marking vertices as visited or not, marked
them as “red”, “blue”, or “not visited”. Mark as red and add to queue .

• Pop vertex from queue .

• Check all neighbors of and make sure they are either “not visited” or the
opposite color of .

• If not, abort and output “not bipartite”.

• If so, add the “not visited” neighbors to the queue and color them with
opposite color.

• If queue is empty, output coloring generated.

• Runtime: Same as BFS, .

s
s s Q

u Q

v u
u

v Q

Q

O(n + m)

41

BFS edge property

• The BFS algorithm generates a tree starting from root .

• Let layer be the set of vertices distance from in .

• Claim: The edges only occur between adjacent layers or the same
layer.

• Proof: If there is an edge , then should have been
in because it was added to the queue after was analyzed.

• Therefore, “bad edges” for bipartite testing only occur within the
same layer. This finds an odd cycle.

T s

Li ⊆ V i s T

E

(u, v) ∈ Li × Li+2 v
Li+1 u

42

Directed graphs

43

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

44

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

45

Depth-first search on directed graphs

• Same as DFS on undirected
graphs except we only add
neighbor if an edge points
from .

• DFS starting from will visit all
vertices reachable by a
directed path .

v
u → v

s
u

s ↝ u

46

DFS edge nomenclature

47

Back edge

Connects vertex to its
ancestor in DFS tree

DFS edge nomenclature

48

Back edge

Connects vertex to its
ancestor in DFS tree

Forward edge

Connects vertex to its
descendant in DFS tree

DFS edge nomenclature

49

Back edge

Connects vertex to its
ancestor in DFS tree

Forward edge

Connects vertex to its
descendant in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

DFS edge nomenclature

50

Back edge

Connects vertex to its
ancestor in DFS tree

Forward edge

Connects vertex to its
descendant in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

Tree edge

The edges in the DFS tree

Unvisited edge

The edges not visited during DFS

DFS edge nomenclature

51

Back edge

Connects vertex to its
ancestor in DFS tree

Forward edge

Connects vertex to its
descendant in DFS tree

Cross edge

Connects vertices across branches. Always high low in DFS tree→

Tree edge

The edges in the DFS tree

Unvisited edge

The edges not visited during DFS

Fact: Every cycle in a directed graph must
contain a back edge.

Strongly connected components

• Vertices and are strongly connected iff they are on a directed cycle. I.e.
there is a directed path and a directed path .

• Every directed graph’s vertices can be partitioned into strongly connected
components where all pairs of vertices in the component are strongly
connected

• Strongly connected components (SCCs) can be stored efficiently just like
connected components

• SCCs can be found by extending DFS algorithm in time

u v
u ↝ v v ↝ u

O(n + m)

52

Strongly connected components

53

Strongly connected components

54

Directed acyclic graphs

• A directed graph is acyclic iff it has no directed cycles

• Also referred to as a DAG

• If we shrink every strongly connected component to a vertex, this converts
the directed graph into a DAG

G

55

Topological sorting of graphs

• Input: a directed acyclic graph DAG

• Output: An injective numbering such that edges only go from lower
numbered to higher numbered vertices. 
 
i.e. for , we must have .

• Applications

• Vertices represents tasks and edges represent prerequisites

• Topological sorts gives a sequential ordering for how to solve the system

• For general graphs, generate DAG by shrinking SCCs and then process SCCs in the order
given by topological sort.

G = (V, E)

N : V ↪ {1,…, n}

u → v N(u) < N(v)

56

In-degree and out-degree

57

In-degree zero vertices

• Claim: Every DAG has at least one vertex of in-degree 0.

• Proof:

• Assume every vertex has in-degree .

• Starting with any vertex pick an in-edge and go in reverse to .
Repeat.

• Since there are only vertices, eventually a vertex will be repeated. This
means there is a cycle, a contradiction.

≥ 1

v u → v u

n

58

Algorithm for topological sort

• Any vertex of in-degree 0 can be numbered as 1

• Can run DFS starting from

• Alternative simpler idea:

• If we remove and assign , then the rest is still a DAG

• Then, there is a new vertex of in-degree 0

• Repeat, until all vertices are exhausted

v1

v1

v1 N(v1) = 1

v2

59

Implementing topological sort

60

Implementing topological sort

61

Implementing topological sort

62

Implementing topological sort

63

Implementing topological sort

64

Implementing topological sort

65

Implementing topological sort

• Issue is finding the next vertex that has in-degree 0. Can be algorithmically
slow.

• Observe that when we remove the vertex , the in-degree of only the out-
neighbors of will decrease.

vj
vj

66

Implementing topological sort

• Algorithm:

• Iterate through all vertices and set in-degree of each vertex. Initialize queue
with vertices such that . Set .

• While is non-empty, pop vertex off queue

• Set

• Decrease for every neighbor s.t. If , add to
.

• Runtime: Each edge is visited only once. So time.

d(v) = Q
d(v) = 0 j ← 1

Q u

N(u) = j . j ← j + 1.

d(v) ← d(v) − 1 v u → v . d(v) = 0 v
Q

O(n + m)
67

