Lecture 3

Overview, greedy algorithms, and graph traversal

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Algorithmic complexity

Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any one arithmetic number in memory takes one time step
 Measuring algorithm efficiency
e Let input be (x{, ..., x,) with each x; representing one arithmetic number

 Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.

Today

Complexity analysis

e Input (xq, ..., x,) of length n.
* Multiple measures of complexity.
 Worst-case: maximum # of steps taken on any input of length n

* Best-case: minimum # of steps taken on any input of length n

 Average-case: average # of steps taken over all input of length n

Complexity analysis

» The complexity of an alg. is a function 7(n) for each input size n € N.

e i.e. Tyor() or T,(n) could be two different functions.
e T:N — N

« We are interested in understanding the overall behavior/shape of 1, not the
exact function.

» Sometimes there is more than one size parameter. 1(n, m) for a n vertex and
m edge graph.

Polynomial time

A notion of efficiency

« A function T(n) is polynomial time if T(n) < cn* + d for some constants

c,k,d> 0.

 Let k be the minimal such value. This is the degree of the dominating
polynomial.

* Polynomial time is known as “efficient” in theoretical CS.

Polynomial time

A notion of efficiency

. A function T(n) is polynomial time if T(n) < cn* + d.
 Why polynomial time?
* Scaling the instance by a constant factor so does the runtime.

 Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

* |.e. polynomial-time is a notion independent of model of computation.
 |deal for theoretical study of what problems are efficient and which are not.
* Problem size grows by constant, then running time also grows by constant.

e If T(n) = cn® + d then T(2n) = c2n)* + d < 25(cn* + d) = 2*T(n).

 Typically, polynomials for common algorithms are small polynomials cn, cnz, cn3, cn® Rarely anything higher.

Big-O notation

Let 7, 2 : Nl — N. Then

» [(n)is O(g(n))if 3 ¢,ny > 0 such that T(n) < cg(n) when n > n,.

. .. I(n)
. I(n)iso(g(n))if Iim =
n—oo g(n)

e [(n)is Q(g(n))if 3 €,ny > 0 such that T(n) > eg(n) when n > n,.

0.

e [(n)is®(g(n))if I'(n)is O(g(n))and T(n) is L2(g2(n)).

Big-O notation

Cartoon

ﬂni/j () 4

N
F\\/L\\/\/‘”

Nn— oo

Big-O notation

Cartoon

jzni/i () 4

Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any bit of memory takes one time step

13

Measuring algorithmic efficiency
The RAM model, Examples

e Sorting a list of integers L = (x, ..., xX,)

* You probably know that sorting can be solved in ®(n1og n) time by algorithms such as merge sort.

- This Is measuring the number of comparisons x; < x; that we are making. RAM model makes this
rigorous.

_ All-pairs shortest path problem: Given a weighted graph G = (V,E) output d,, = min Z w,;, for

p-u~=y (a,b)Ep

every pair of vertices u,v € V.

- Floyd-Warshall alg. Makes O(n°) arithmetic comparisons where n = | V|, m = | E|.

» Requires adjacency matrix access to the graph. Meaning, unit cost to compute w_, forany a,b € V.

14

An introduction to algorithms

An introduction to algorithms

* (Goal is to understand how to analyze and design algorithms
* Jo understand how small changes have big effects on outcomes
* Build a repertoire of techniques for designing algorithms
* |dentifying when to use which family of algorithms
* Course is structured by teaching various families of algorithms
e Section and problem sets will cover example instantiations pertinent to that week

 Midterms and finals will have problems but won’t say which family of algorithms
to use

16

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

. >
0 1 2 3 4 5 6 7 8 9 10 1 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

11 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

a

0] 1 2 3 4 5 6 7/ 8 9 10 11 Time

Interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”
e Output: A maximal set of mutually compatible jobs
e Algorithm:

» Brute-force: Iterate through all 2" possible selections. Check in O(n) time
If selection is (a) feasible and (b) maximal.

 Greedy: Decide a selection criteria and select jobs accordingly.

20

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.

e Counterexample:
unterexamp whet gehy sdecteal by Heis sdesey
/ 1 If

B 78 g FFR o LR)
= & = Vit e A o . (SIS Py
v ” 20 R E V5 B8 PSS e 5
= s E3 7Y B | ,;/4:‘. ' ;-.:‘ ", 4 A P kot Y XL’ B . _“v_. X N \ sl v F- ?.',..f'-' LH ‘Q"':xi*_',r‘v. 7 B ',“
N o/ P v oy .’s" 44 N 7R A¥ 3 25 & I o s A 5 B ey B i I AP] "' A
5 i ¥ o W A b A Py - (82 Sy a4 ,,-."* -4 ,-_,’1'. o 2 i / 2. B
'y s, £ I 5 £ e 2, 147 - JoR X s Y S R & 9
£ i ¢ 3 oL AW b g Y8 S 1 4 ol L = a
< O £ } 7 Chaid R
a e
i

21

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest start time s, of jobs not selected.

 Counterexample:

Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.

 Counterexample: sk Ha ﬁ“*“%’”‘

i ¥ 2 Y

B N 57 LA

LR D S
2P & ¢
S >

23

Greedy algorithms for interval scheduling

 Algorithm: Select the job with shortest duration #; — . of jobs not selected.

 Counterexample:

24

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending #; of jobs not selected.

« Example:

L d S
0 1 2 3 4 5 6 7 8 9 10 11 Time

Greedy algorithms for interval scheduling

 Algorithm: Select the job with earliest ending #; of jobs not selected.

e Proof of correctness:

e Let & C [n] be the set of jobs selected by algorithm and & C [n] be any
other feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

26

Greedy algorithms for interval scheduling

 Claim: The j-th job in & ends at least before the j-th job in & ends.

 Proof: |
Assima CJ&’F CINT\‘QWI\C.HOA’) That ’H’\U V) AQ’"" ool le:}d be dl
Sl ot QUVV\\'C(L\(&"v\r e . QIC\\A‘"C .\
A B -
& A‘obg —> |yl 1 | r} Jl
pbs > [
T c [I

Codmdich o A& o & e b D st seleckd bk onds locpre b B

Greedy algorithms for interval scheduling

« Algorithm: Select the job with earliest ending 7. of jobs not selected.

e Proof of correctness:

e Let & C [n] be the set of jobs selected by algorithm and & C [n] be any other
feasible set of jobs.

 Claim: The j-th job in & ends at least before the j-th job in & ends.

 If # had more jobs than &, we could have added the final job of & to &, a
contradiction to the def. of &.

e So, é has at least as many jobs as #. True for all feasible &, proving optimality.

28

Greedy algorithms for interval scheduling

e Input: start and end times (s;, ¢,) fori = 1,..., n for n “jobs”

e Output: A maximal set of mutually compatible jobs

 Algorithm: Select the job with earliest ending #; of jobs not selected.

 Details: Sort the jobs by earliest end time 7.. Keep track of current end time
of selected jobs 7. Add new job (s, %;) if s; > T'and update T « t..

 Runtime: Sorting + linear time to create list of jobs.

Onlogn) + O(n) = O(nlogn).

29

Greedy algorithms

 Myopic style of argument that makes decisions based on current information.
Does not “look ahead”.

» (Greedy algorithms tend to only work when there is some kind of special
structure to the problem.

 When they do work, they are very efficient.

 When they don’t work, they often give very good approximation algorithms!

30

Weighted interval scheduling

« Same problem as interval scheduling except each job has a value w;. Want to
optimize sum of weights of jobs selected.

 Example: Scheduling rooms for a conference except some speeches pay
more.

« Example: w; = 1. — s.. The value is the length of the job.

31

Weighted interval scheduling

» Input: start and end times (s, £;) and weights w; fori = 1,..., n for n “jobs”

e Output: A set of mutually compatible jobs of maximal weight sum

<0

W_S\“'h ot asiijv\ul.

>
0 1 2 3 4 5 6 7 8 9 10 1 Time

Weighted interval scheduling

» Input: start and end times (s, £;) and weights w; fori = 1,..., n for n “jobs”

e Output: A set of mutually compatible jobs of maximal weight sum

- If all weights w; = 1, then this is regular interval scheduling

* |n general, we need a different technique: Dynamic Programming

 Build up solution from a table of precomputed solutions to smaller
problems

33

Dynamic programming

Principal properties

 Optimal substructure:

* The optimal value of the problem can easily be obtained given the optimal values
of subproblems.

* |n other words, there is a recursive algorithm for the problem which would be fast
If we could just skip the recursive steps.

* Overlapping subproblems:
 The subproblems share sub-subproblems.

* |n other words, if you actually ran that naive recursive algorithm, it would waste a
lot of time solving the same problems over and over again.

34

Bipartite matching

» Agraph G = (V, E) is bipartite iff
» V, the vertices, have two disjoint parts V = X LU Y.
« Everyedge e € £ connectsavertexx € Xanday € Y.

« Aset M C E'is a matching if no two edges in M share a
vertex.

» Goal: Find a matching of maximal size given input bipartite G.

35

© ©

@

Bipartite matching

» Agraph G = (V, E) is bipartite iff
» V, the vertices, have two disjoint parts V = X LU Y.
« Everyedge e € £ connectsavertexx € Xanday € Y.

« Aset M C E'is a matching if no two edges in M share a
vertex.

» Goal: Find a matching of maximal size given input bipartite G.

36

© ©

@

Bipartite matching

« Aset M C E is a matching if no two edges in M share a
vertex.

» Goal: Find a matching of maximal size given input bipartite G.

» Differences from stable matching:
 Limited set of possible partners for each vertex.
e Sides may not be the same size.

* No notion of stability, matching everything may be
Impossible.

37

© ©

@

Bipartite matching

* Applications:
« X represent visitors to websites, Y represent servers they access
« X represents professors, Y represents courses
« X represents taxi riders, Y represents taxis

 If |X| =|Y]| = n,then G has a “perfect matching” if the matching is size n
* Finding bipartite matchings:
* Polynomial-time algorithm using “augumentation” technigque

* Solved via general class of network flow problems and algorithms

38

Independent set

e Givenagraph G = (V, E), asubset I C Vis independent if
there are no edges between vertices of /

e |Input: graph G = (V, E) / \

 Output: Find an independent set of maximal size.

 Models selecting set of non-conflicting scenarios. o
 Example: Assigning frequencies in radio networks ,/ \»
Q
 Example: Scheduling exams with edges represent classes \ /
that share a student. S

39

Independent set

e Givenagraph G = (V, E), asubset I C Vis independent if
there are no edges between vertices of /

.
e |Input: graph G = (V, E) / \
 Output: Find an independent set of maximal size. C
 Models selecting set of non-conflicting scenarios.

b

 Example: Assigning frequencies in radio networks

Q
 Example: Scheduling exams with edges represent classes \
that share a student. Q-

40

Independent set

Generalizes many problems

* (Generalizes Interval Scheduling and Bipartite Matching

* Interval Scheduling o

* Vertices correspond to the jobs ‘ / \

* Edges between jobs that overiap : C
 Bipartite matching -

» Given graph G create a new graph L, called the line-graph a/ \‘

» Independent set in L corresponds to a bipartite matching in G \ / &
D

41

Line Graph Construction

e Fromagraph G = (V,E)toanewgraph G'= (V',E’) where V' = E

» An edge exists in £’ if two vertex/edges ¢;,e, € E = V'share a vertex in V.

e Picture:

e\

><:' /8

42 5 N L’

Line Graph Construction

e Fromagraph G = (V,E)toanewgraph G'= (V',E’) where V' = E

» An edge exists in £ if two vertex/edges ¢;,e, € E = V'share a vertex in V.
9
®
? 3
/ / e

o 1” o 9 |

e Picture:

43

Hardness of independent set

* There is no known polynomial-time algorithm for independent set (even
decision)

e Input: Graph G and integer k > 0

» Output: If there exists I C V independent set such that [/| > k
» Easy to check in poly time if a solution / is both (a) valid and (b) at least size k
» Therefore the problem is in NP - non-deterministic polynomial time.

» Independent set is NP-complete, the hardest problem in NP.

44

Graph traversal

Graph search and traversal

s SO
e

‘ el
/ ~ 0 >
<> <>

Graph search and traversal

* Used to discover the structure of a graph

» “Walk” from a fixed starting vertex s (“the source”) to find all the vertices
reachable from s

Reachable(s):

« Generic traversal algorithm. R < s}

While there exists a (i, V) € R X (V\R)
AddvtoR: R <« RU {v}.
e Find: set R C V reachable from s return R

 Input: Graph G and vertex s € V

47

Reachable(s):

Generic graph traversal r < (s
While there exists a (1, v) € R X (V\R)
AddvitoR: R <« RU {v}.

return R

« Claim: R is exactly the set of reachable vertices.
* Proof: We show both directions. (1): every vertex in R is reachable. (2): every reachable is in R .

* Direction 1. For v € R, there is a path s ~ v. Proved by induction on the generic graph

traversal algorithm: If we added v by edge (u,v) € R X (V\R) thens ~ u — v. .S
» Direction 2. Assume (for 1), there is a vertex v that is reachable but not v & R. (K
« Let p = the path s ~» v and let v’ be the first vertex on p such that v’ & R.. .
 Then u, the predecessor of V', satisfies u € R and (u,v") € R X (V\R). \,v/
e Contradicts the definition of the generic graph traversal. 1..‘
P!

48

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
o Initialize set R < {s} and queue O « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited,
e« 0 <~ QU {u!} and set u to visited.

e« SetR <« RU {u}.

49

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue GZ
S

e Assign a bit to every vertex as visited/not visited.

* Algorithm:

e Initialize set R « {s} and queue O « {s}.

e Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited, O
|
e O « QU {u} and set u to visited. O D\ / /
e« SetR <« RU {u}. O

50

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: Z
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. 3
« While Q isn’t empty, pop v off the queue.
* For every neighbor u of v that is not visited, O

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \O /

51

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited. s
* Algorithm: =
e Initialize set R « {s} and queue O « {s}. c})
« Set all vertices to not visited. Set s as visited. Z
« While Q isn’t empty, pop v off the queue. 7
* For every neighbor u of v that is not visited, ’ @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /

52

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure. Gueme @
e Assign a bit to every vertex as visited/not visited.
e Algorithm: =
——
e Initialize set R < {s} and queue QO « {s}. q
Y
o Set all vertices to not visited. Set s as visited. .
« While Q isn’t empty, pop v off the queue. 7
¥
e For every neighbor u of v that is not visited, @

L
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. @ \O /

53

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

e« SetR <« RU {u}.

gutue GZ

——
—

23—

._L)_-
s
s

7

¥

T

| O

54

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

Fydd

_Q—Dwﬂg\‘{\

o

55

&

/@);

Q

O,
/
©,

N\
@

&

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

UEEREE

Z o =9 0 4

/@);

Q

O,
/
©,

N\
@

&

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

S
&
S
o
53

e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

o btk

e O <« QU {u) and set u to visited.) O

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s.

* Implemented using the queue data structure.

gutue Q

e Assign a bit to every vertex as visited/not visited.

* Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.

e For every neighbor u of v that is not visited,

*) < QU {u} and set u to visited.

« SetR « RU {u}.

S X AR

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

RAERERAT:

| U

® _
/

0/‘
\

&
®

@

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

FPeddagvayg

5 =

/.;
®
®

C
I

S
N\

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

FEPdbd 4 b tad

.

/Q;
®
®

C
I

S
N\

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

S
&
S
o
53

X3P edqbaad

® _
/
&
®

C
I

S
N\

Breadth-first search (BFS)

Used to explore the vertices in R according to their distance from s.

Implemented using the queue data structure.
Assign a bit to every vertex as visited/not visited.

Algorithm:
» Initialize set R < {s} and queue QO « {s}.
« Set all vertices to not visited. Set s as visited.
« While Q isn’t empty, pop v off the queue.
e For every neighbor u of v that is not visited,
e O <« QU {u} and set u to visited.

« SetR « RU {u}.

63

BFS tree jmmkd 57 ‘fTb:cL.ﬁ
whicl. cdam are used

Breadth-first search (BFS)

« Used to explore the vertices in R according to their distance from s. L

O
* Implemented using the queue data structure. @

. . - - |
* Assign a bit to every vertex as visited/not visited. / L,

* Algorithm: Q

e Initialize set R < {s} and queue QO « {s}. ’ O Q
« Set all vertices to not visited. Set s as visited. /
« While Q isn’t empty, pop v off the queue. O L

* For every neighbor u of v that is not visited, O Q 2

O
e 0 < QU {u} and set u to visited. /
e« SetR <« RU {u}. O \Q /

64

