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Lecture 3
Overview, greedy algorithms, and graph traversal
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Previously in CSE 421…
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Algorithmic complexity
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Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model


• Each simple operation (arithmetic, evaluating if loop criteria, call, increment 
counter, etc.) takes one time step


• Accessing any one arithmetic number in memory takes one time step


• Measuring algorithm efficiency


• Let input be  with each  representing one arithmetic number


• Runtime of algorithm is the number of “simple operations” taken to compute 
algorithm in RAM model.

(x1, …, xn) xi
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Today
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Complexity analysis

• Input  of length .


• Multiple measures of complexity.


• Worst-case: maximum # of steps taken on any input of length 


• Best-case: minimum # of steps taken on any input of length 


• Average-case: average # of steps taken over all input of length 

(x1, …, xn) n

n

n

n
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Complexity analysis

• The complexity of an alg. is a function  for each input size .


• i.e.  or  could be two different functions.


• 


• We are interested in understanding the overall behavior/shape of , not the 
exact function.


• Sometimes there is more than one size parameter.  for a  vertex and 
 edge graph.

T(n) n ∈ ℕ

Tworst(n) Tavg(n)

T : ℕ → ℕ

T

T(n, m) n
m
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Polynomial time
A notion of efficiency

• A function  is polynomial time if  for some constants 



• Let  be the minimal such value. This is the degree of the dominating 
polynomial.


• Polynomial time is known as “efficient” in theoretical CS.

T(n) T(n) ≤ cnk + d
c, k, d > 0.

k
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Polynomial time
A notion of efficiency

• A function  is polynomial time if .


• Why polynomial time?


• Scaling the instance by a constant factor so does the runtime.


• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of 
computation can also be computed in polynomial time a different physically realizable model.


• I.e. polynomial-time is a notion independent of model of computation.


• Ideal for theoretical study of what problems are efficient and which are not.


• Problem size grows by constant, then running time also grows by constant. 


• If  then .


• Typically, polynomials for common algorithms are small polynomials . Rarely anything higher.

T(n) T(n) ≤ cnk + d

T(n) = cnk + d T(2n) = c(2n)k + d ≤ 2k(cnk + d) = 2kT(n)

cn, cn2, cn3, cn4
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Big-O notation

Let . Then


•  is  if  such that  when .


•  is  if 


•  is  if  such that  when .


•  is  if  is  and  is .

T, g : ℕ → ℕ

T(n) O(g(n)) ∃ c, n0 > 0 T(n) ≤ cg(n) n ≥ n0

T(n) o(g(n)) lim
n→∞

T(n)
g(n)

= 0.

T(n) Ω(g(n)) ∃ ϵ, n0 > 0 T(n) ≥ ϵg(n) n ≥ n0

T(n) Θ(g(n)) T(n) O(g(n)) T(n) Ω(g(n))
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Big-O notation
Cartoon
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Big-O notation
Cartoon
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Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model


• Each simple operation (arithmetic, evaluating if loop criteria, call, increment 
counter, etc.) takes one time step


• Accessing any bit of memory takes one time step
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Measuring algorithmic efficiency
The RAM model, Examples

• Sorting a list of integers 


• You probably know that sorting can be solved in  time by algorithms such as merge sort. 


• This is measuring the number of comparisons  that we are making. RAM model makes this 
rigorous.


• All-pairs shortest path problem: Given a weighted graph  output  for 

every pair of vertices .


• Floyd-Warshall alg. Makes  arithmetic comparisons where . 


• Requires adjacency matrix access to the graph. Meaning, unit cost to compute  for any 

L = (x1, …, xn)

Θ(n log n)

xi < xj

G = (V, E) duv = min
p:u↝v ∑

(a,b)∈p

wab

u, v ∈ V

O(n3) n = |V | , m = |E |

wab a, b ∈ V .
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An introduction to algorithms
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An introduction to algorithms

• Goal is to understand how to analyze and design algorithms


• To understand how small changes have big effects on outcomes


• Build a repertoire of techniques for designing algorithms


• Identifying when to use which family of algorithms


• Course is structured by teaching various families of algorithms


• Section and problem sets will cover example instantiations pertinent to that week


• Midterms and finals will have problems but won’t say which family of algorithms 
to use
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs

(si, ti) i = 1,…, n n
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Interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: 

• Brute-force: Iterate through all  possible selections. Check in  time 
if selection is (a) feasible and (b) maximal.


• Greedy: Decide a selection criteria and select jobs accordingly.

(si, ti) i = 1,…, n n

2n O(n)
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time  of jobs not selected.


• Counterexample:

si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest start time  of jobs not selected.


• Counterexample:

si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration  of jobs not selected.


• Counterexample:

ti − si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with shortest duration  of jobs not selected.


• Counterexample:

ti − si
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected.


• Example:

ti
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected.


• Proof of correctness:


• Let  be the set of jobs selected by algorithm and  be any 
other feasible set of jobs.


• Claim: The -th job in  ends at least before the -th job in  ends.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ
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Greedy algorithms for interval scheduling

• Claim: The -th job in  ends at least before the -th job in  ends. 

• Proof: 

j ℰ j ℱ
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Greedy algorithms for interval scheduling

• Algorithm: Select the job with earliest ending  of jobs not selected.


• Proof of correctness:


• Let  be the set of jobs selected by algorithm and  be any other 
feasible set of jobs.


• Claim: The -th job in  ends at least before the -th job in  ends.


• If  had more jobs than , we could have added the final job of  to , a 
contradiction to the def. of . 


• So,  has at least as many jobs as . True for all feasible , proving optimality.

ti

ℰ ⊆ [n] ℱ ⊆ [n]

j ℰ j ℱ

ℱ ℰ ℱ ℰ
ℰ

ℰ ℱ ℱ
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Greedy algorithms for interval scheduling

• Input: start and end times  for  for  “jobs”


• Output: A maximal set of mutually compatible jobs


• Algorithm: Select the job with earliest ending  of jobs not selected.


• Details: Sort the jobs by earliest end time . Keep track of current end time 
of selected jobs . Add new job  if  and update .


• Runtime: Sorting + linear time to create list of jobs. 
.

(si, ti) i = 1,…, n n

ti

ti
T (si, ti) si ≥ T T ← ti

O(n log n) + O(n) = O(n log n)

29



Greedy algorithms

• Myopic style of argument that makes decisions based on current information. 
Does not “look ahead”.


• Greedy algorithms tend to only work when there is some kind of special 
structure to the problem.


• When they do work, they are very efficient.


• When they don’t work, they often give very good approximation algorithms!
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Weighted interval scheduling

• Same problem as interval scheduling except each job has a value . Want to 
optimize sum of weights of jobs selected.


• Example: Scheduling rooms for a conference except some speeches pay 
more.


• Example: . The value is the length of the job.

wi

wi = ti − si
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Weighted interval scheduling

• Input: start and end times  and weights  for  for  “jobs”


• Output: A set of mutually compatible jobs of maximal weight sum

(si, ti) wi i = 1,…, n n
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Weighted interval scheduling

• Input: start and end times  and weights  for  for  “jobs”


• Output: A set of mutually compatible jobs of maximal weight sum


• If all weights , then this is regular interval scheduling


• In general, we need a different technique: Dynamic Programming 

• Build up solution from a table of precomputed solutions to smaller 
problems

(si, ti) wi i = 1,…, n n

wi = 1
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Dynamic programming
Principal properties

• Optimal substructure:  

• The optimal value of the problem can easily be obtained given the optimal values 
of subproblems. 


• In other words, there is a recursive algorithm for the problem which would be fast 
if we could just skip the recursive steps.


• Overlapping subproblems:  

• The subproblems share sub-subproblems. 


• In other words, if you actually ran that naïve recursive algorithm, it would waste a 
lot of time solving the same problems over and over again.
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Bipartite matching

• A graph  is bipartite iff


• , the vertices, have two disjoint parts .


• Every edge  connects a vertex  and a .


• A set  is a matching if no two edges in  share a 
vertex.


• Goal: Find a matching of maximal size given input bipartite .

G = (V, E)

V V = X ⊔ Y

e ∈ E x ∈ X y ∈ Y

M ⊆ E M

G
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Bipartite matching

• A graph  is bipartite iff


• , the vertices, have two disjoint parts .
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Bipartite matching

• A set  is a matching if no two edges in  share a 
vertex.


• Goal: Find a matching of maximal size given input bipartite .


• Differences from stable matching:


• Limited set of possible partners for each vertex.


• Sides may not be the same size.


• No notion of stability, matching everything may be 
impossible.

M ⊆ E M

G
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Bipartite matching

• Applications:


•  represent visitors to websites,  represent servers they access


•  represents professors,  represents courses


•  represents taxi riders,  represents taxis


• If , then  has a “perfect matching” if the matching is size 


• Finding bipartite matchings:  

• Polynomial-time algorithm using “augumentation” technique


• Solved via general class of network flow problems and algorithms 

X Y

X Y

X Y

|X | = |Y | = n G n
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Independent set

• Given a graph , a subset  is independent if 
there are no edges between vertices of 


• Input: graph 


• Output: Find an independent set of maximal size.


• Models selecting set of non-conflicting scenarios.


• Example: Assigning frequencies in radio networks


• Example: Scheduling exams with edges represent classes 
that share a student.

G = (V, E) I ⊆ V
I

G = (V, E)
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• Generalizes Interval Scheduling and Bipartite Matching 

• Interval Scheduling 

• Vertices correspond to the jobs


• Edges between jobs that overlap


• Bipartite matching


• Given graph  create a new graph  called the line-graph


• Independent set in  corresponds to a bipartite matching in 

G LG

LG G

Independent set
Generalizes many problems
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Line Graph Construction

• From a graph  to a new graph  where 


• An edge exists in  if two vertex/edges  share a vertex in .


• Picture:

G = (V, E) G′ = (V′ , E′ ) V′ = E

E′ e1, e2 ∈ E = V′ V

42



Line Graph Construction

• From a graph  to a new graph  where 


• An edge exists in  if two vertex/edges  share a vertex in .


• Picture:

G = (V, E) G′ = (V′ , E′ ) V′ = E

E′ e1, e2 ∈ E = V′ V
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Hardness of independent set

• There is no known polynomial-time algorithm for independent set (even 
decision)


• Input: Graph  and integer 


• Output: If there exists  independent set such that 


• Easy to check in poly time if a solution  is both (a) valid and (b) at least size 


• Therefore the problem is in  - non-deterministic polynomial time. 

• Independent set is -complete, the hardest problem in .

G k ≥ 0

I ⊆ V | I | ≥ k

I k

𝖭𝖯

𝖭𝖯 𝖭𝖯
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Graph traversal
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Graph search and traversal
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Graph search and traversal

• Used to discover the structure of a graph


• “Walk” from a fixed starting vertex  (“the source”) to find all the vertices 
reachable from 


• Generic traversal algorithm. 

• Input: Graph  and vertex 


• Find: set  reachable from 

s
s

G s ∈ V

R ⊆ V s
47

Reachable(  ): 

 
While there exists a  
    Add  to : . 
return 

s

R ← {s}
(u, v) ∈ R × (V∖R)

v R R ← R ∪ {v}
R



Generic graph traversal finds correct R

• Claim:  is exactly the set of reachable vertices.


• Proof: We show both directions. (1): every vertex in  is reachable. (2): every reachable is in 


• Direction 1. For , there is a path . Proved by induction on the generic graph 
traversal algorithm: If we added  by edge  then .


• Direction 2. Assume (for ), there is a vertex  that is reachable but not . 


• Let the path  and let  be the first vertex on  such that 


• Then , the predecessor of , satisfies  and .


• Contradicts the definition of the generic graph traversal.

R

R R .

v ∈ R s ↝ v
v (u, v) ∈ R × (V∖R) s ↝ u → v

⊥ v v ∉ R

p = s ↝ v v′ p v′ ∉ R .

u v′ u ∈ R (u, v′ ) ∈ R × (V∖R)
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    Add  to : . 
return 

s

R ← {s}
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v R R ← R ∪ {v}
R



Breadth-first search (BFS)

• Used to explore the vertices in  according to their distance from .


• Implemented using the queue data structure.


• Assign a bit to every vertex as visited/not visited.


• Algorithm:


• Initialize set  and queue 


• Set all vertices to not visited. Set  as visited.


• While  isn’t empty, pop  off the queue.


• For every neighbor  of  that is not visited,


•  and set  to visited.


• Set .

R s

R ← {s} Q ← {s} .

s

Q v

u v

Q ← Q ∪ {u} u

R ← R ∪ {u}
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