
CSE 421

Introduction to Algorithms

Lecture 27: Dealing with NP-completeness:
Approximation Algorithms
Local Search
Exponential-time Algorithms

1

What to do if the problem you want to solve is NP-hard

2nd thing to try if your problem is a minimization or maximization problem

• Try to find a polynomial-time worst-case approximation algorithm

• For a minimization problem

• Find a solution with value ≤ 𝑲 times the optimum

• For a maximization problem

• Find a solution with value ≥ 𝟏/𝑲 times the optimum

Want 𝑲 to be as close to 𝟏 as possible.

2

Travelling-Salesperson Problem (TSP)

Travelling-Salesperson Problem (TSP):

 Given: a set of 𝒏 cities 𝒗𝟏, … , 𝒗𝒏 and distance function 𝒅 that gives distance
 𝒅(𝒗𝒊, 𝒗𝒋) between each pair of cities

 Find the shortest tour that visits all 𝒏 cities.

MetricTSP:

 The distance function 𝒅 satisfies the triangle inequality:

 𝒅 𝒖, 𝒘 ≤ 𝒅 𝒖, 𝒗 + 𝒅(𝒗, 𝒘)

 Proper tour: visit each city exactly once.

3

Minimum Spanning Tree Approximation: Factor of 2

4

TSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler tour covers each edge twice
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

This visits each node more than once, so not a proper tour.

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler Tour of doubled MST:

5

Why did this work?

• We found an Euler tour on a graph that used the edges of the
original graph (possibly repeated).

• The weight of the tour was the total weight of the new graph.

• Suppose now

• All edges possible

• Weights satisfy the triangle inequality (MetricTSP)

6

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Euler tour covers each edge twice
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

Euler Tour of doubled MST:

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

7

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

Euler tour covers each edge twice
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

8

MetricTSP: Minimum Spanning Tree Factor 2 Approximation

Any tour contains a spanning tree
so 𝑴𝑺𝑻 𝑮 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

So 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻 𝑮 ≤ 𝟐 𝑻𝑶𝑼𝑹𝑶𝑷𝑻(𝑮)

Final:

Instead: take shortcut to next unvisited vertex on the Euler tour
By triangle inequality this can only be shorter.

Euler tour covers each edge twice
so 𝑻𝑶𝑼𝑹𝑴𝑺𝑻 𝑮 = 𝟐 𝑴𝑺𝑻(𝑮)

9

Christofides Algorithm: A factor 3/2 approximation

Any subgraph of the weighted complete graph that has an Euler Tour will work also!

Fact: To have an Euler Tour it suffices to have all degrees even.

Christofides Algorithm:
• Compute an MST 𝑻

• Find the set 𝑶 of odd-degree vertices in 𝑻

• Add a minimum-weight perfect matching* 𝑴 on the vertices in 𝑶 to 𝑻 to make every vertex
have even degree

• There are an even number of odd-degree vertices!

• Use an Euler Tour 𝑬 in 𝑻 ∪ 𝑴 and then shortcut as before

Theorem: 𝑪𝒐𝒔𝒕 𝑬 ≤ 𝟏. 𝟓 𝑻𝑶𝑼𝑹𝑶𝑷𝑻

*Requires finding optimal matchings in general graphs, not just bipartite ones

10

Christofides Approximation

Any tour contains a spanning tree
so 𝑴𝑺𝑻 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻

We just need to show that the matching 𝑴
has 𝒄𝒐𝒔𝒕 𝑴 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻/𝟐

11

Christofides Approximation

𝟐 𝒄𝒐𝒔𝒕 𝑴 ≤ 𝒄𝒐𝒔𝒕 𝑴𝟏 + 𝒄𝒐𝒔𝒕 𝑴𝟐 ≤ 𝑻𝑶𝑼𝑹𝑶𝑷𝑻

Any tour costs at least the cost of two matchings 𝑴𝟏 and 𝑴𝟐 on 𝑶

Tour

12

Christofides Approximation Final Tour

Total 𝒄𝒐𝒔𝒕 𝑬 ≤ 𝟑 𝑻𝑶𝑼𝑹𝑶𝑷𝑻/𝟐

13

Max-3SAT Approximation

Max-3SAT: Given a 3CNF formula 𝑭 find a truth assignment that satisfies
 the maximum possible # of clauses of 𝑭.

Observation: A single clause on 3 variables only rules out 𝟏/𝟖 of the possible truth
assignments since each literal has to be false to be ruled out.

 ⇒ a random truth assignment will satisfy the clause with probability 𝟕/𝟖.

So in expectation, if 𝑭 has 𝒎 clauses, a random assignment satisfies 𝟕𝒎/𝟖 of them.

A greedy algorithm can achieve this: Choose most frequent literal appearing in
clauses that are not yet satisfied and set it to true.

If 𝐏 ≠ 𝐍𝐏 no better approximation is possible

14

Knapsack Problem

Each item has a value 𝒗𝒊 and a weight 𝒘𝒊.

Maximize σ𝒊∈𝑺 𝒗𝒊 with σ𝒊∈𝑺 𝒘𝒊 ≤ 𝑾.

Theorem: For any 𝜺 > 𝟎 there is an algorithm that produces a solution
within (𝟏 + 𝜺) factor of optimal for the Knapsack problem with running
time 𝑂(𝒏𝟐/𝜺𝟐)

 “Polynomial-Time Approximation Scheme” or PTAS

Algorithm: Maintain the high order bits in the dynamic programming
 solution.

15

Approximation Algorithms using Linear Programming

The generic approach to creating approximation algorithms for 𝐍𝐏-optimization
problems using Linear Programming:

1. Express the original problem as an Integer Program (ILP) or 01-Program (01-LP)

2. Keep same linear constraints but remove the integer requirement to get an LP.
(Called the “LP relaxation”.)

3. Solve the LP to yield a fractional solution

4. “Round” the fractional solution to an integer solution that satisfies all constraints.

Prove a bound on the ratio of the integer solution to the fractional LP solution

Observation: The LP optimum has at least as good an objective function value as the
original problem since the LP allows all the ILP solutions plus some other fractional
ones.

16

Recall: Greedy Approximation for Vertex-Cover

On input 𝑮 = (𝑽, 𝑬)

𝑾 ← ∅

𝑬′ ← 𝑬

while 𝑬′ ≠ ∅

select any 𝒆 = 𝒖, 𝒗 ∈ 𝑬′

𝑾 ← 𝑾 ∪ {𝒖, 𝒗}

𝑬′ ← 𝑬′ ∖ {edges 𝒆 ∈ 𝑬′ that touch 𝒖 or 𝒗}

Claim: At most a factor 𝟐 larger than the optimal vertex-cover
size.

Proof: Edges selected don’t share any vertices so any vertex-
cover must choose at least one of 𝒖 or 𝒗 each time.

17

Weighted Vertex Cover

Weighted Vertex Cover:

 Given graph 𝑮 = (𝑽, 𝑬) with each vertex 𝒗 having a weight 𝒘𝒗 ≥ 𝟎.

 Find a vertex cover 𝑪 ⊆ 𝑽 of 𝑮 that minimizes σ𝒗∈𝑪 𝒘𝒗.

The greedy approximation approach doesn’t work for this weighted
version because for each edge, one of the two endpoints might have
much larger weight than the other.

18

Weighted Vertex-Cover as an Integer Program

Variables 𝒙𝒗 for 𝒗 ∈ 𝑽

 Minimize σ𝒗∈𝑽 𝒘𝒗 ⋅ 𝒙𝒗

 subject to

 𝒙𝒖 + 𝒙𝒗 ≥ 𝟏 for each edge 𝒖, 𝒗 ∈ 𝑬

 𝒙𝒗 ∈ {𝟎, 𝟏} for each node 𝒗 ∈ 𝑽

The last line is equivalent to:

 𝟎 ≤ 𝒙𝒗 ≤ 𝟏 for each node 𝒗 ∈ 𝑽

 𝒙𝒗 integral for each node 𝒗 ∈ 𝑽

Write 𝑶𝑷𝑻 for the optimum cover weight

LP relaxation:

 Minimize σ𝒗∈𝑽 𝒘𝒗 ⋅ 𝒙𝒗

 subject to

 𝒙𝒖 + 𝒙𝒗 ≥ 𝟏 for each edge 𝒖, 𝒗 ∈ 𝑬

 𝟎 ≤ 𝒙𝒗 ≤ 𝟏 for each node 𝒗 ∈ 𝑽

Write 𝑶𝑷𝑻𝑳𝑷 for the optimum LP value

How do we round a LP solution achieving
this value?

19

LP-Rounding to Approximate Weighted Vertex Cover

1. Solve the LP Relaxation

a) Solution gives values 𝒙𝒗 ∈ [𝟎, 𝟏] for each 𝒗 ∈ 𝑽

b) 𝒙𝒖 + 𝒙𝒗 ≥ 𝟏 for each edge (𝒖, 𝒗)

2. Round: Define 𝑪 ⊆ 𝑽 to be {𝒗 ∶ 𝒙𝒗 ≥ 𝟏/𝟐}

3. Observe that 𝑪 is a vertex cover:

• By 1 b), for each edge (𝒖, 𝒗), at least one of 𝒙𝒖 ≥ 𝟏/𝟐 or 𝒙𝒗 ≥ 𝟏/𝟐 is true so
either 𝒖 ∈ 𝑪 or 𝒗 ∈ 𝑪.

4. Since 𝒙𝒗 ≥ 𝟏/𝟐 for every 𝒗 ∈ 𝑪, the total weight of 𝑪 is
 σ𝒗∈𝑪 𝒘𝒗 ≤ σ𝒗∈𝑪 𝒘𝒗 ⋅ (𝟐𝒙𝒗)

 = 𝟐 σ𝒗∈𝑪 𝒘𝒗 ⋅ 𝒙𝒗≤ 𝟐 σ𝒗∈𝑽 𝒘𝒗 ⋅ 𝒙𝒗= 𝟐 𝑶𝑷𝑻𝑳𝑷 ≤ 𝟐 𝑶𝑷𝑻.

20

Factor 2 approximation!

More on LP and Related Approximation Methods

More sophisticated methods for rounding variables 𝒙𝒊 ∈ 𝟎, 𝟏

• Randomized: View each 𝒙𝒊 as a probability and independently produce

 solution 𝒚𝒊 = ቊ
𝟏 with probability 𝒙𝒊

𝟎 with probability 𝟏 − 𝒙𝒊

• Correlated random sampling. Apply the above but “correlate” choices somehow

Instead of LP relaxations, use “Semi-Definite Programming (SDP)”
relaxations.

• SDPs generalize LPs. They can also be solved efficiently using Ellipsoid and
Interior Point Methods. They are a special case of convex programming.

• Currently yield the best approximations known for many 𝐍𝐏-hard problems.

21

What to do if the problem you want to solve is NP-hard

𝐍𝐏-completeness is a worst-case notion...

• Try an algorithm that is provably fast “on average”.

• To even show this one needs a model of what a typical instance is.

• Typically, people consider “random graphs”

• e.g. all graphs with a given # of edges are equally likely

• In this case one can sometimes show that many NP-hard problems are
easy

• Problems:

• real data doesn’t look like the random graphs

• distributions of real data aren’t analyzable

22

Hardness of Approximation

Polynomial-time approximation algorithms for 𝐍𝐏-hard optimization problems

can sometimes be ruled out unless 𝐏 = 𝐍𝐏.

Easy example:

Coloring: Given a graph 𝑮 = (𝑽, 𝑬) find the smallest 𝒌 such that 𝑮 has a
𝒌-coloring.

Because 𝟑-coloring is 𝐍𝐏-hard, no approximation ratio better than 𝟒/𝟑 is possible unless 𝐏 = 𝐍𝐏
because you would have to be able to figure out if a 𝟑-colorable graph can be colored in < 𝟒
colors. i.e. if it can be 𝟑-colored.

• We now know a huge amount about the hardness of approximating
𝐍𝐏 optimization problems if 𝐏 ≠ 𝐍𝐏.

• Approximation factors are very different even for closely related problems like
Vertex-Cover and Independent-Set.

23

Approximation Algorithms/Hardness of Approximation

Research has classified many problems based on what kinds of polytime
approximations are possible if 𝐏 ≠ 𝐍𝐏

• Best: (𝟏 + 𝜺) factor for any 𝜺 > 𝟎. (PTAS)

• packing and some scheduling problems, TSP in plane

• Some fixed constant factor > 𝟏. e.g. 𝟐, 𝟑/𝟐, 𝟖/𝟕, 𝟏𝟎𝟎

• Vertex Cover, Max-3SAT, MetricTSP, other scheduling problems

• Exact best factors or very close upper/lower bounds known for many problems.

• Θ(log 𝒏) factor

• Set Cover, Graph Partitioning problems

• Worst: Ω(𝒏𝟏−𝜺) factor for every 𝜺 > 𝟎.

• Clique, Independent-Set, Coloring

24

Heuristic Algorithms

These algorithms typically do not have proven bounds on solution quality:

The most important of these methods are based on variants of

Local search:

• Need a notion of two solutions being neighbors

Start at an arbitrary solution 𝑺

While there is a neighbor 𝑻 of 𝑺 that is better than 𝑺

 𝑺𝑻

25

e.g., Neighboring solutions for TSP

Solution 𝑺 Solution 𝑻

Two solutions are neighbors*
iff there is a pair of edges you can
swap to transform one to the other

*These are called 2-OPT neighbors. There are other more sophisticated neighbor structures

26

Variants of Local Search

Basic local search (greedy)
• Usually fast but often gets stuck in a local optimum that is far from the

global optimum

• With some notions of neighbor structure even this can take a long time in
the worst case

Randomized local search:
Start local search several times from random starting points and take the best
answer found overall.

• More expensive than plain local search but usually much better answers. It
is usual easy to control the time spent so this is almost always better to do.

27

Variants of Local Search

Metropolis Algorithm
Like randomized local search except that at each step one always chooses a random
neighbor but doesn’t always move to it:

 e.g. Always move to the neighbor if it is better but move to a worse neighbor
 with some fixed probability depending on how much worse it is.

 (Fixed inverse temperature.) cf. CSE 312 Markov Chain Knapsack assignment.

Advantage: If local optima are not too deep/steep, will not get stuck there.
However can still get stuck

Often used in practice. Drawback: Each run can be much longer than local search
but one can hope to try to make it up with solution quality. A good option to
compare with randomized local search. It is unclear which will be better in a given
circumstance.

28

Variants of Local Search

Simulated Annealing
Like Metropolis algorithm but probability of going to a worse neighbor is set to
decrease with time on a “cooling schedule” as, presumably, solution is closer to
optimal

(analogy with slow cooling to get to lowest energy state in a crystal (or in
forging a metal)

Much slower to converge than Metropolis.

Most improvement occurs at some fixed temperature.

Answers usually not much better than Metropolis, if at all, so not generally worth
the extra compute time.

29

What to do if the problem you want to solve is NP-hard

Maybe you only need to solve it if the solution size is small...
• What if you only need find cliques or vertex covers of constant size?

• For both Clique and Vertex Cover, the obvious brute force

algorithm would have time 𝚯(𝒏𝒌): try all subsets of size 𝒌.

• For Clique the best algorithms known are all 𝒏𝛀(𝒌)

• However, Vertex Cover has a much better algorithm with

The theory of fixed parameter tractability looks at 𝐍𝐏 problems using a
second parameter 𝒌 in addition to input size 𝒏 and seeks algorithms

with running times 𝒇 𝒌 ⋅ 𝒏𝑶 𝟏 where 𝒇 might be exponential.

• More later

30

What to do if the problem you want to solve is NP-hard

Try to make an exponential-time solution as efficient as possible.

e.g. Try to search the space of possible hints/certificates in a more efficient way and
hope that it is quick enough.

Backtracking search

e.g., for SAT, search through the 𝟐𝒏 possible truth assignments...

...but set the truth values one-by-one so we can able to figure out whole parts
of the space to avoid,

e.g. Given 𝑭 = (¬𝒙𝟏 ∨ 𝒙𝟐) ∧ ¬𝒙𝟐 ∨ 𝒙𝟑 ∧ 𝒙𝟒 ∨ ¬𝒙𝟑 ∧ (𝒙𝟏 ∨ 𝒙𝟒)

after setting 𝒙𝟏 = 𝟏 and 𝒙𝟐 = 𝟎 we don’t even need to set 𝒙𝟑 or 𝒙𝟒 to
know that it won’t satisfy 𝑭.

Next Class: Much more clever backtracking search for SAT solutions

31

Exponential-Time Algorithms

Branch-and-bound search for optimization problems:

• Branch: Use backtracking search through a tree representing partial solutions

• Bound: In addition to keeping track of the best full solution found so far, at each step
produce a bound on the quality of the best possible completion of the current
partial solution

• If that best possible completion is worse than the best full solution found so far,
prune the search and backtrack instead.

Example: In backtracking search for MetricTSP one can use linear programming to
 provide lower bounds

Note: An excellent exact solver for MetricTSP called Concorde combines branch-
and-bound and LP/ILP methods and will solve problems involving thousands of cities.

32

Other Heuristic Algorithms you might hear about

Genetic algorithms:
• View each solution as a string (analogy with DNA)

• Maintain a population of good solutions

• Allow random mutations of single characters of individual solutions

• Combine two solutions by taking part of one and part of another (analogy
with crossover in sexual reproduction)

• Get rid of solutions that have the worst values and make multiple copies of
solutions that have the best values (analogy with natural selection -- survival
of the fittest).

Usually very slow. In the rare cases when they produce answers with better
objective function values than other methods they tend to produce very brittle
solutions – that are very bad with respect to small changes to the requirements.

33

Deep Neural Nets and NP-hardness?

• Artificial neural networks

• based on very elementary model of human neurons

• Set up a circuit of artificial neurons

• each artificial neuron is an analog circuit gate whose
computation depends on a set of connection strengths

• Train the circuit

• Adjust the connection strengths of the neurons by giving
many positive & negative training examples and seeing if it
behaves correctly

• The network is now ready to use

Despite their wide array of applications, they have not been shown to
be useful for NP-hard problems.

34

Quantum Computing and NP-hardness?

Use physical processes at the quantum level to implement “weird” kinds of circuit gates
based on unitary transformations

• Quantum objects can be in a “superposition” of many pure states at once

• Can have 𝒏 objects together in a superposition of 𝟐𝒏 states

• Each quantum circuit gate operates on the whole superposition of states at once

• Inherent parallelism but classical randomized algorithms have a similar
parallelism: not enough on its own

• Advantage over classical: copies interfere with each other.

• Exciting direction - theoretically able to factor efficiently.
 Major practical problems wrt errors, decoherence to be overcome.

• Small brute force improvement but unlikely to produce exponential advantage for NP.

35

	Slide 1: CSE 421 Introduction to Algorithms
	Slide 2: What to do if the problem you want to solve is NP-hard
	Slide 3: Travelling-Salesperson Problem (TSP)
	Slide 4: Minimum Spanning Tree Approximation: Factor of 2
	Slide 5: TSP: Minimum Spanning Tree Factor 2 Approximation
	Slide 6: Why did this work?
	Slide 7: MetricTSP: Minimum Spanning Tree Factor 2 Approximation
	Slide 8: MetricTSP: Minimum Spanning Tree Factor 2 Approximation
	Slide 9: MetricTSP: Minimum Spanning Tree Factor 2 Approximation
	Slide 10: Christofides Algorithm: A factor 3/2 approximation
	Slide 11: Christofides Approximation
	Slide 12: Christofides Approximation
	Slide 13: Christofides Approximation Final Tour
	Slide 14: Max-3SAT Approximation
	Slide 15: Knapsack Problem
	Slide 16: Approximation Algorithms using Linear Programming
	Slide 17: Recall: Greedy Approximation for Vertex-Cover
	Slide 18: Weighted Vertex Cover
	Slide 19: Weighted Vertex-Cover as an Integer Program
	Slide 20: LP-Rounding to Approximate Weighted Vertex Cover
	Slide 21: More on LP and Related Approximation Methods
	Slide 22: What to do if the problem you want to solve is NP-hard
	Slide 23: Hardness of Approximation
	Slide 24: Approximation Algorithms/Hardness of Approximation
	Slide 25: Heuristic Algorithms
	Slide 26: e.g., Neighboring solutions for TSP
	Slide 27: Variants of Local Search
	Slide 28: Variants of Local Search
	Slide 29: Variants of Local Search
	Slide 30: What to do if the problem you want to solve is NP-hard
	Slide 31: What to do if the problem you want to solve is NP-hard
	Slide 32: Exponential-Time Algorithms
	Slide 33: Other Heuristic Algorithms you might hear about
	Slide 34: Deep Neural Nets and NP-hardness?
	Slide 35: Quantum Computing and NP-hardness?

