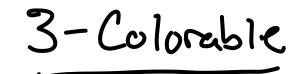
Lecture 26

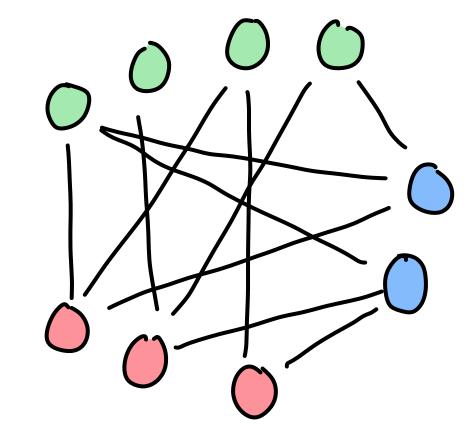
NP completeness IV

Administrative notes

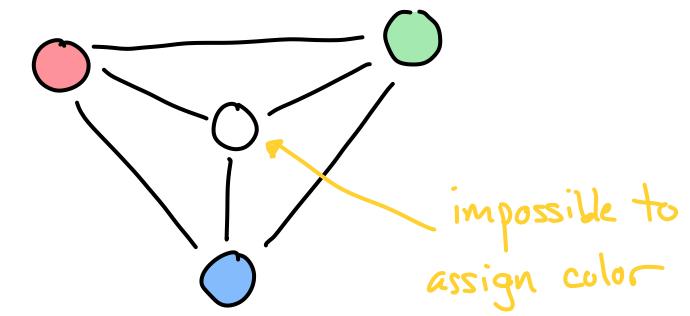
- There will be no after hours Q&A review. Instead, there will be Q&A during Friday's lecture.
- About the final exam:
 - Exactly the same as the midterm except 2 hours.
 - Many practice problems are available to you in your textbooks! The
 assigned readings have practice problems at the ends of the chapters.

- Input: a graph G = (V, E). Output: If there exists an assignment $\pi: V \to \{R, G, B\}$ such that $\pi(u) \neq \pi(v)$ for every edge $(u, v) \in E$
- 3-Color \in NP as the proof is the assignment π
- We will show that $3-SAT \leq_p 3-Color$
 - We have to create a graph G representing a formula φ
 - Some "part" of the graph will have to represent variables and their negations
 - Some "part" of the graph will have to represent clauses such that the "part" can only be assigned colors if the clause is true

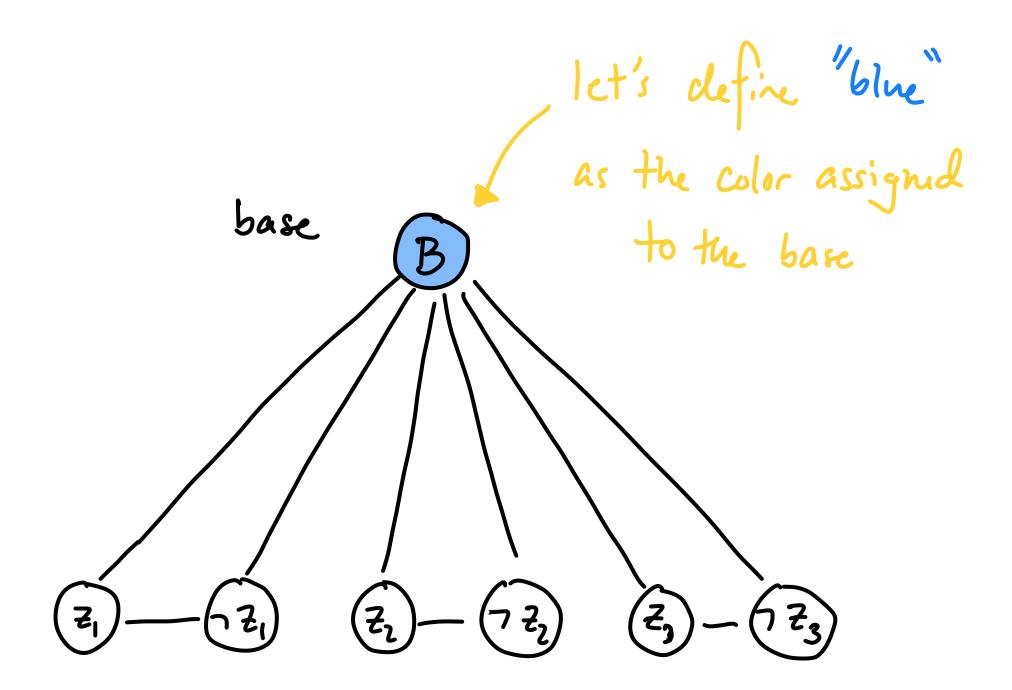


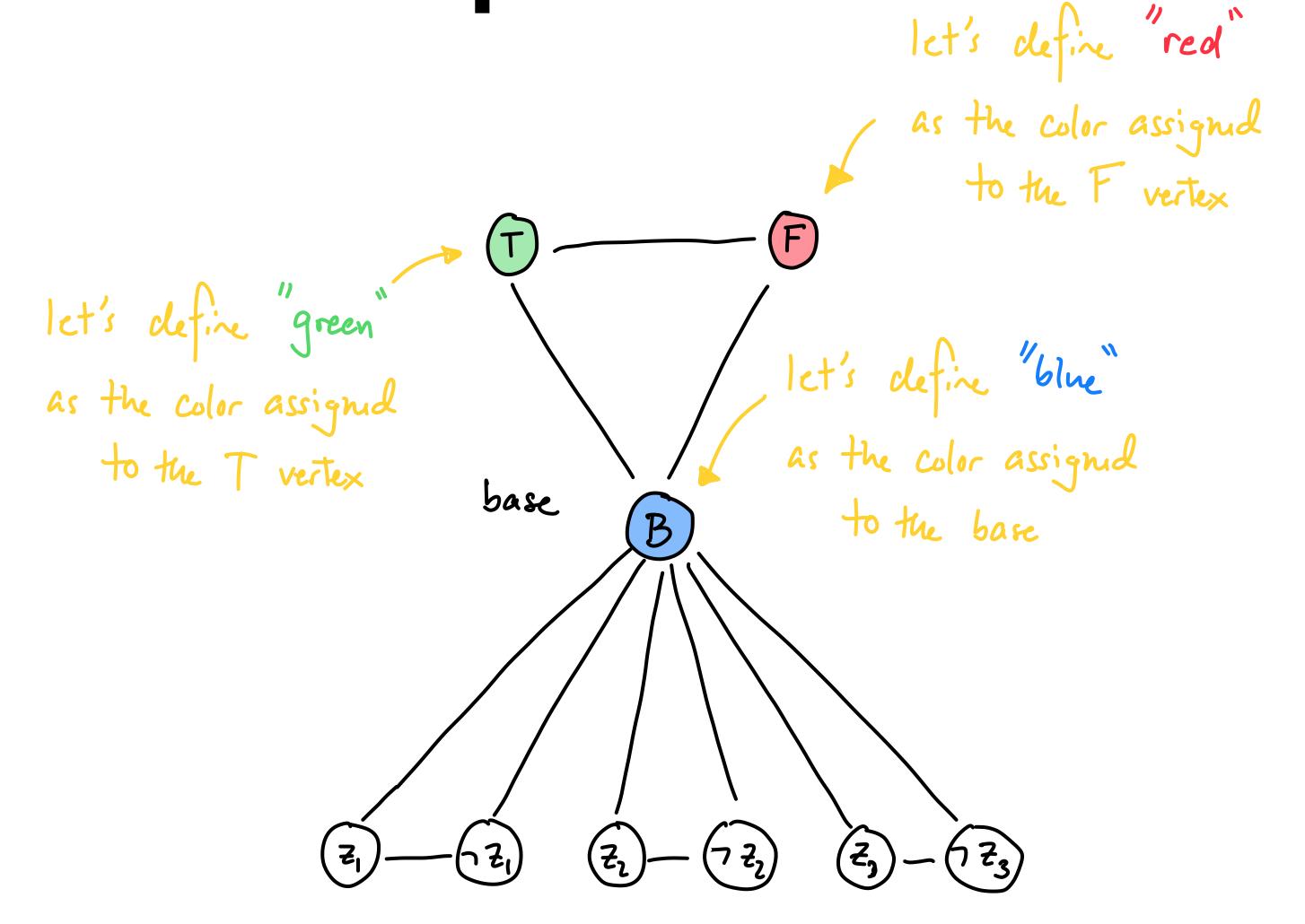


Not 3- colorable



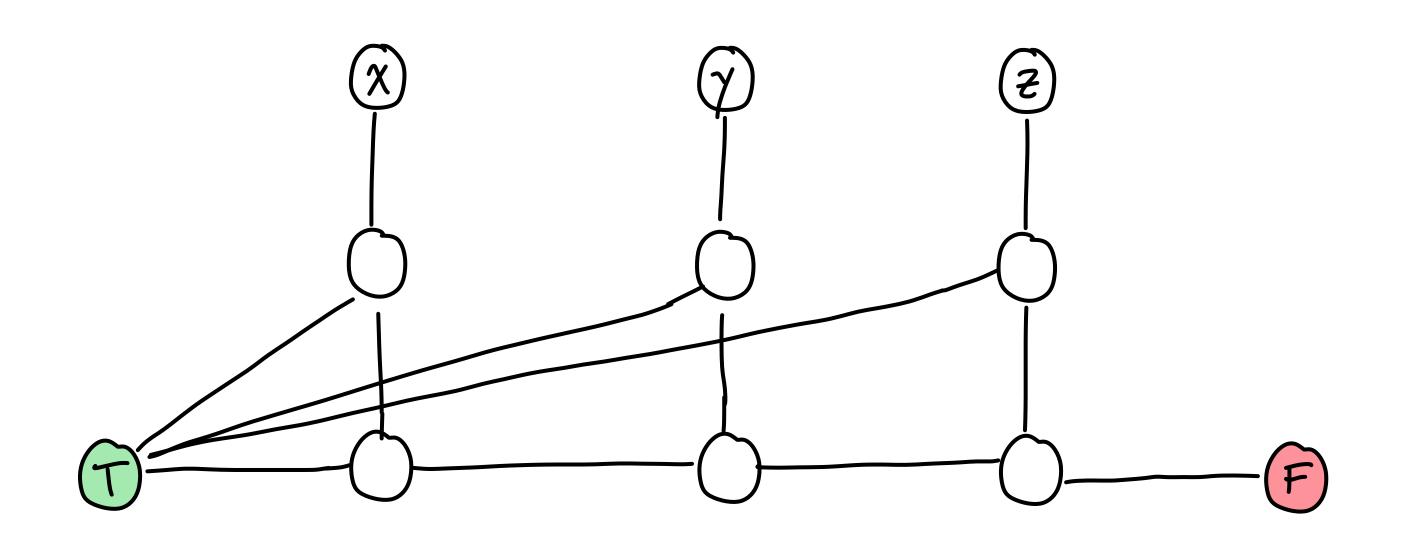
- For every variable z_i create a vertex z_i and $\neg z_i$
- Let's build a reduction such that
 - if z_i is colored GREEN then z_i should be set to be true
 - If z_i is colored RED then z_i should be set to be false
- By connecting triangles $B, z_i, \neg z_i$ we enforce that exactly one of z_i and $\neg z_i$ will be colored GREEN and RED
- So far the set of satisfying colorings are in bijection with assignments of the variables to true or false





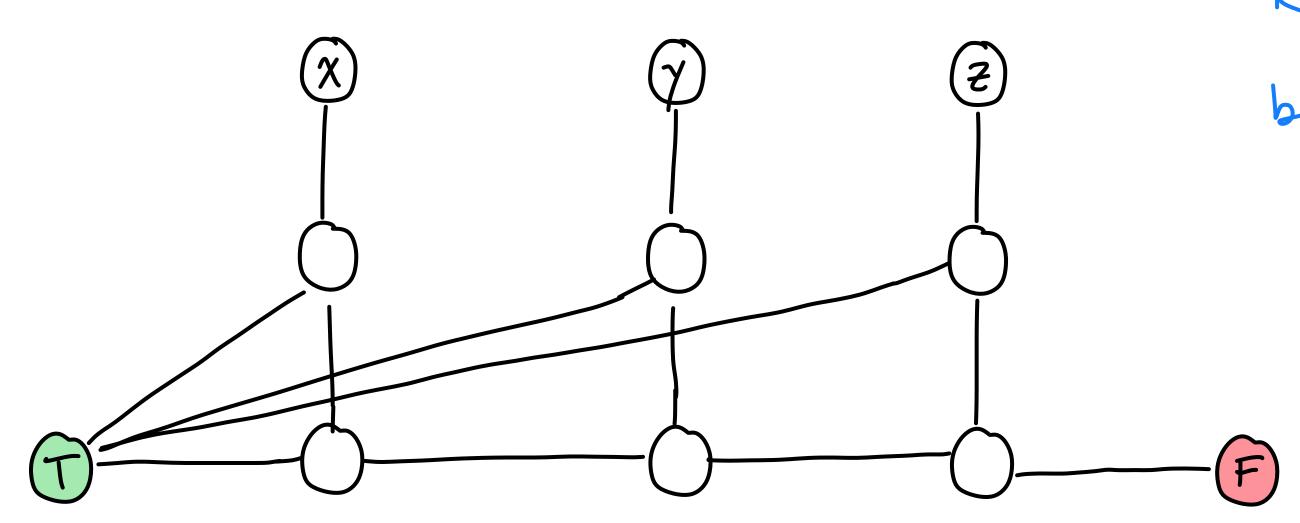
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



We now need to construct a "gadget" per clause x V y V z s.t.

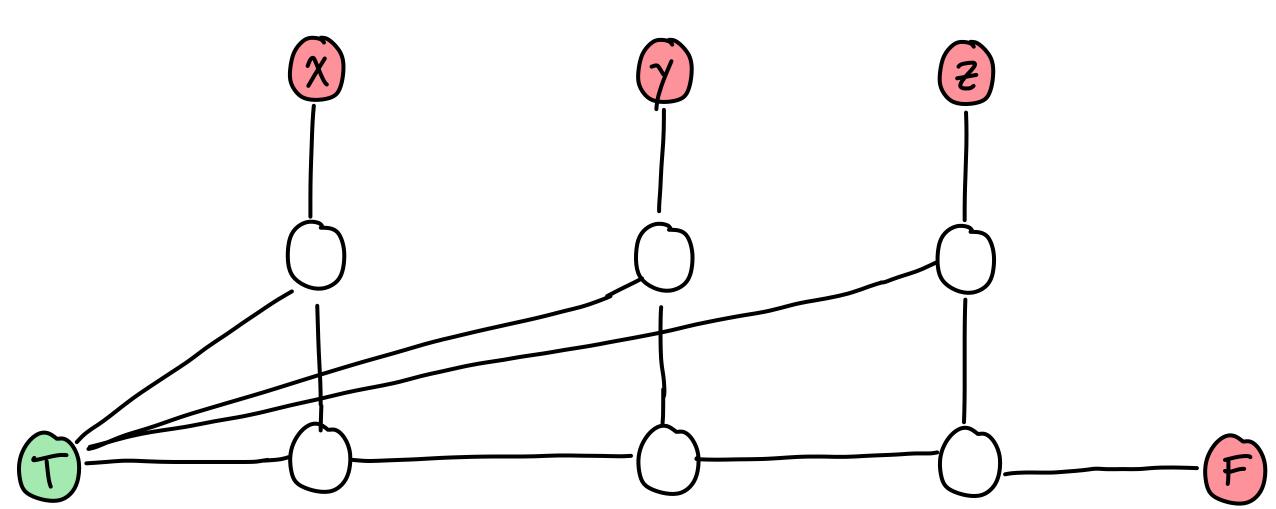
if all 3 corresponding vertices are colored red iff the gadget isn't colorable



Recall every literal must be colored red or green by first construction.

We now need to construct a "gadget" per clause x V y V z s.t.

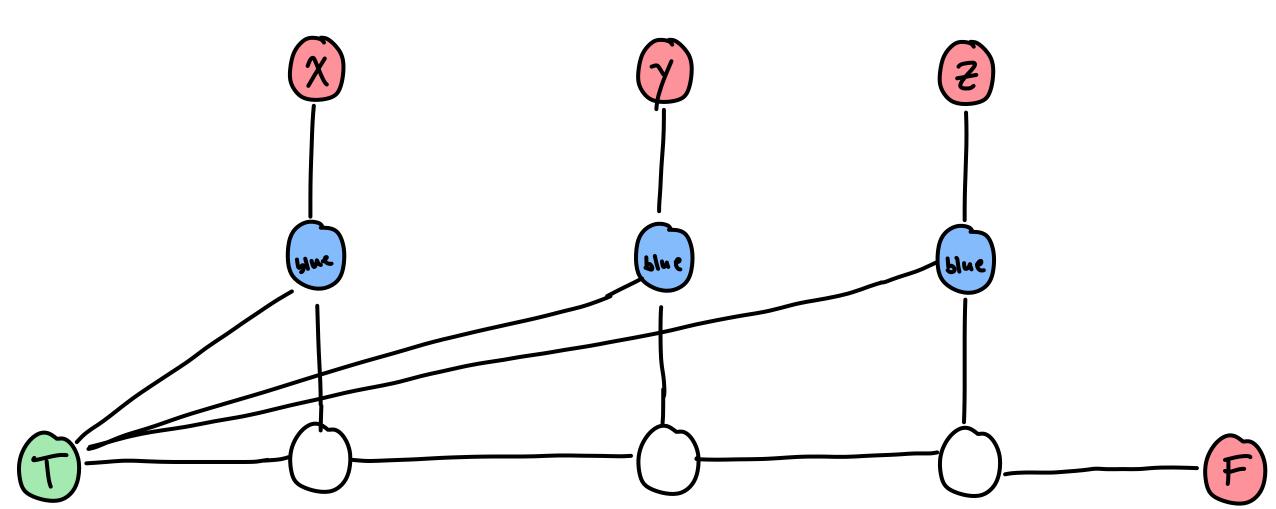
if all 3 corresponding vertices are colored red iff the gadget isn't colorable



Care 1: $\chi_1 \chi_1 \neq are$ all set to red

We now need to construct a "gadget" per clause x V y V z s.t.

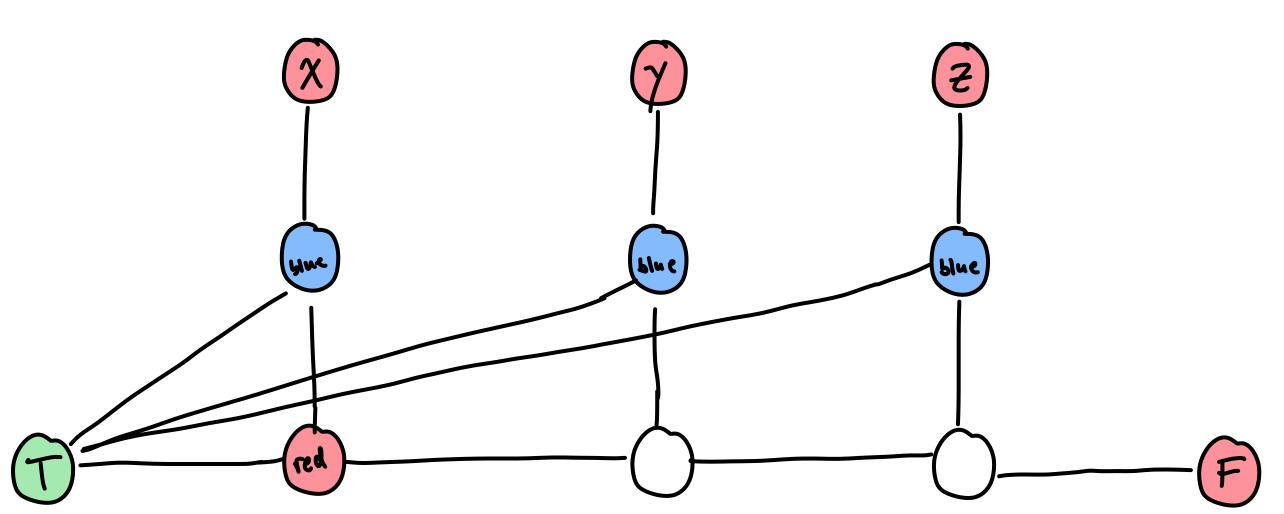
if all 3 corresponding vertices are colored red iff the gadget isn't colorable



Care 1: $\chi_1 \gamma_1 \neq \text{ are all }$ set to red

We now need to construct a "gadget" per clause x V y V z s.t.

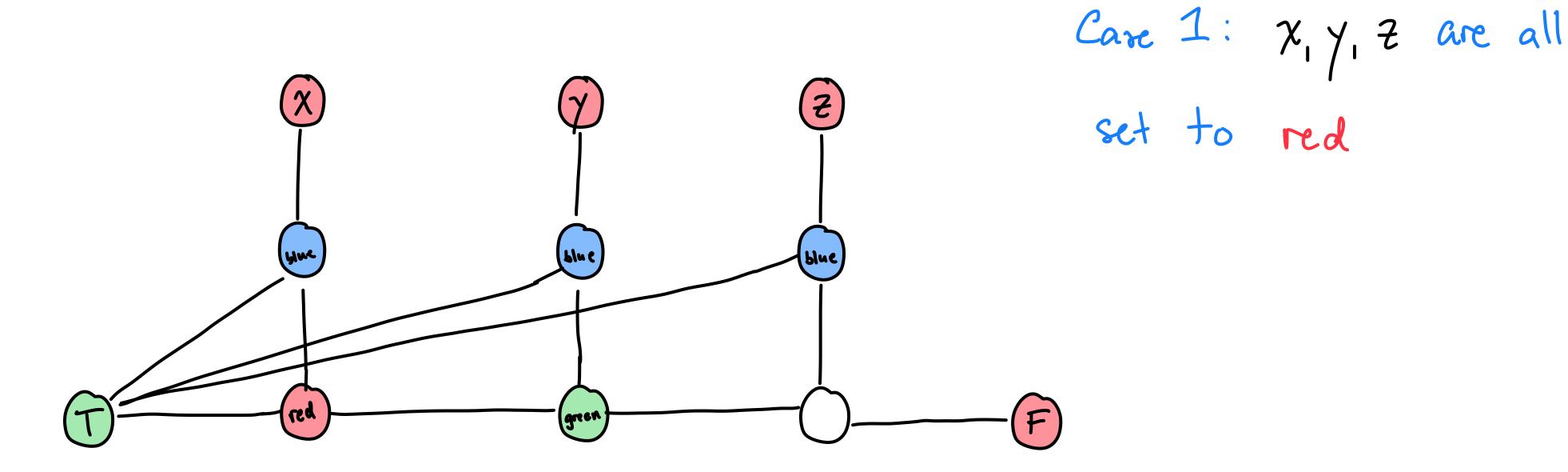
if all 3 corresponding vertices are colored red iff the gadget isn't colorable



Care 1: $\chi_1 \gamma_1 \neq \text{ are all }$ set to red

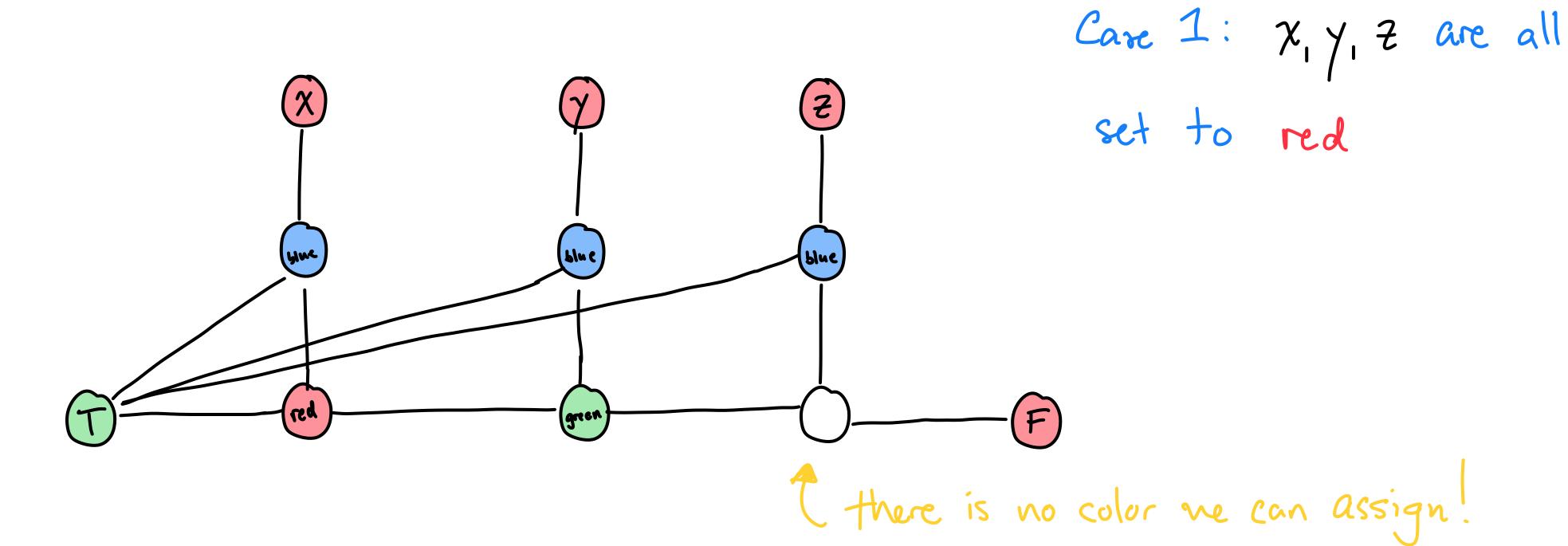
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



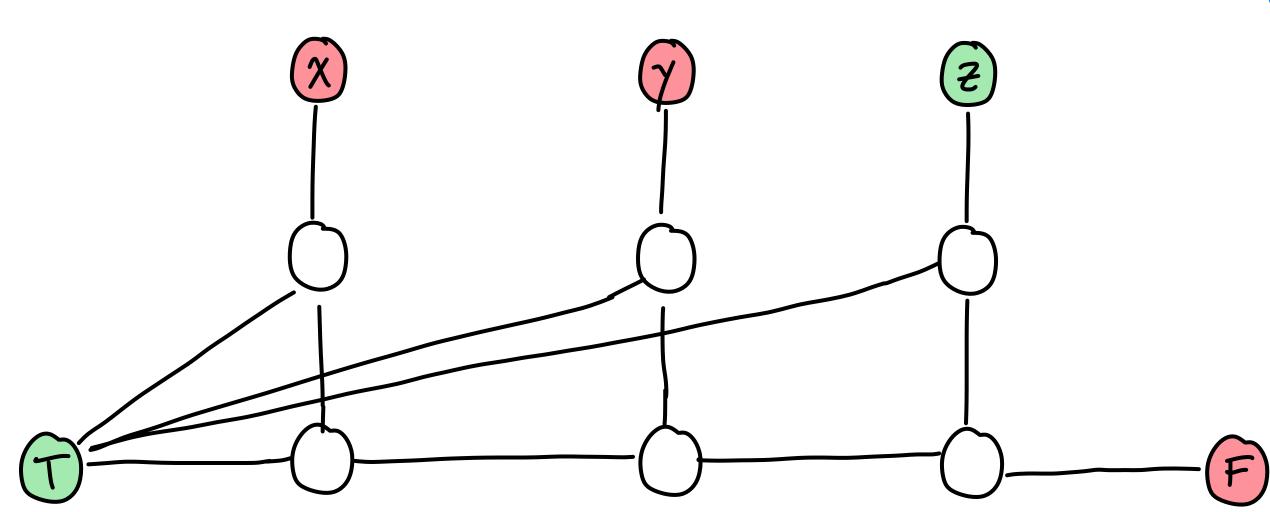
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



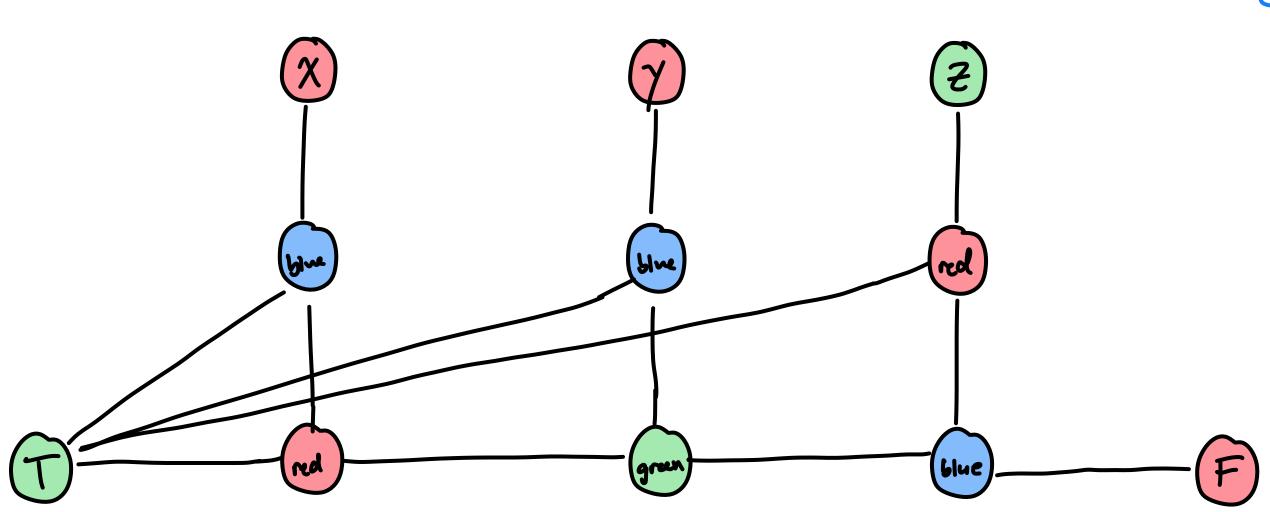
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



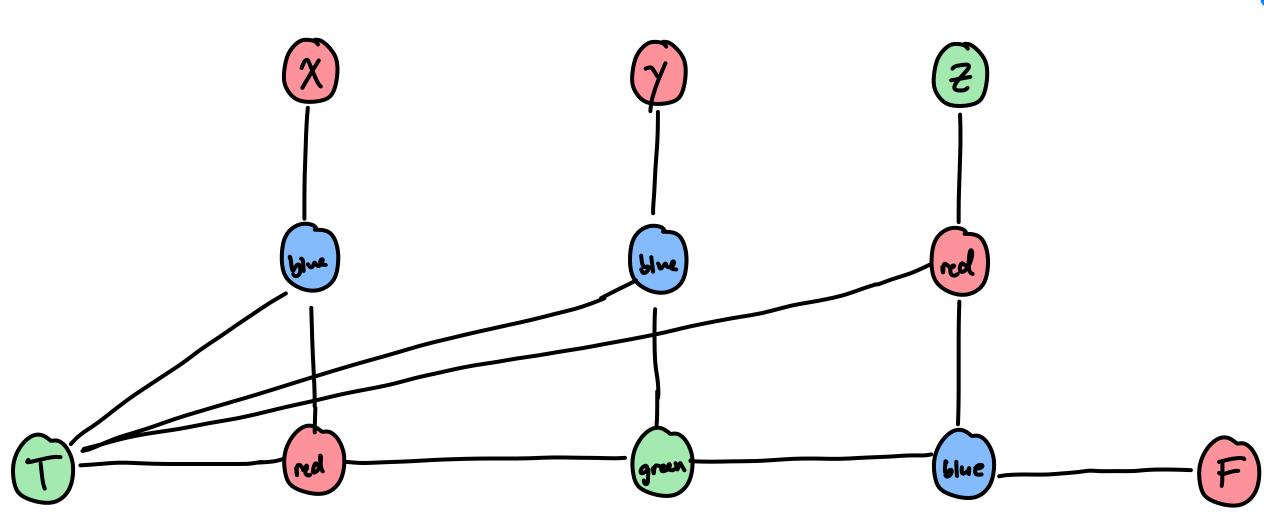
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



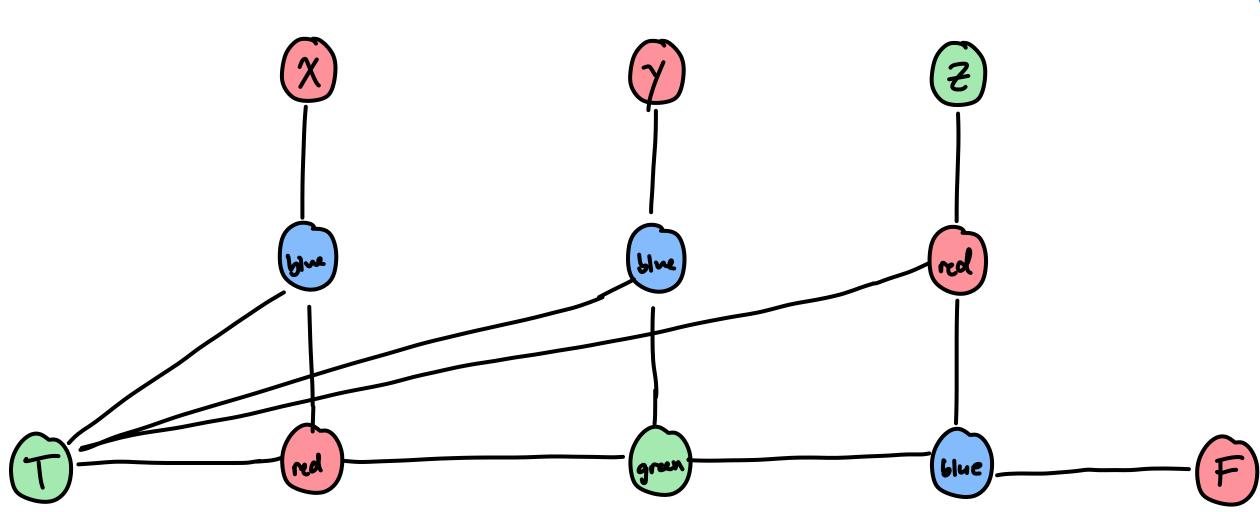
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



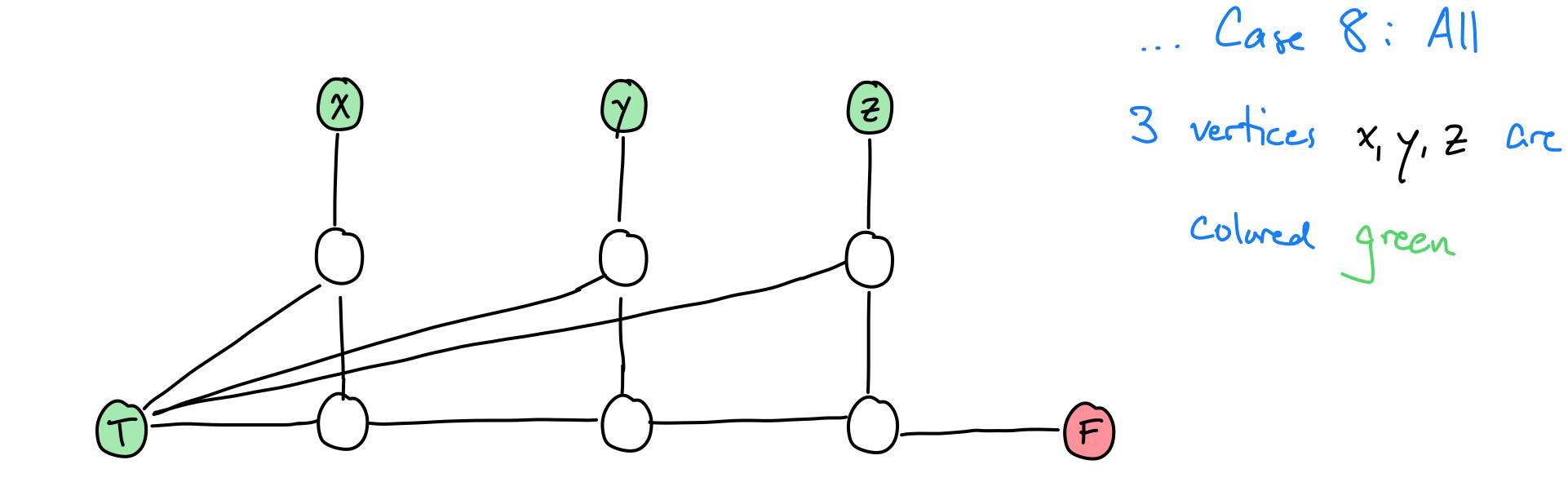
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



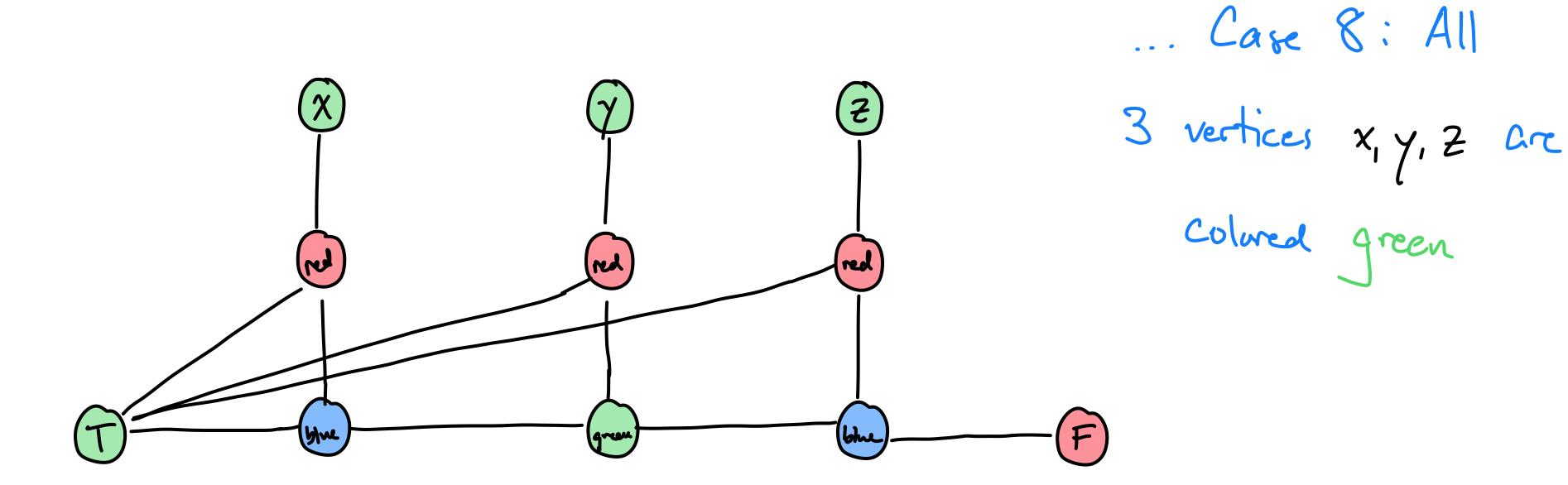
We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



We now need to construct a "gadget" per clause x V y V z s.t.

if all 3 corresponding vertices are colored red iff the gadget isn't colorable



3-color is NP-complete Putting it all together

- Full construction:
 - Construct triangles (T,F,B) and $(B,z_i,\neg z_i)$ for each variable z_i .
 - Construct gadget from vertices (x, y, z, T, F) as shown for each clause $x \lor y \lor z$
- Properties:
 - Every vertex on a triangle must have a different color in a valid coloring
 - Let GREEN be the color assigned to T, RED assigned to F, BLUE assigned to B
 - Lem: Exactly one of variable z_i and $\neg z_i$ must be assigned GREEN or RED in a valid coloring
 - Lem: In a valid coloring, the gadget for $x \lor y \lor z$ is colorable iff one of x, y, z is colored GREEN

3-color is NP-complete Putting it all together

Reduction proof:

- "Yes" \rightarrow "Yes": Let z be a satisfying assignment to 3-SAT φ .
 - Color the vertices of z_i and $\neg z_i$ GREEN or RED respectively
 - Every clause is satisfied so there exists an assignment of colors for the gadget
- "Yes" \leftarrow "Yes": Let GREEN be the color assigned to T, RED assigned to F, BLUE assigned to B
 - Set z_i to be 1 if assigned color GREEN or 0 if assigned color RED
 - Since the gadget for clause $x \lor y \lor z$ has a valid coloring, at least one of the 3 literals must be GREEN and therefore the clause is satisfied

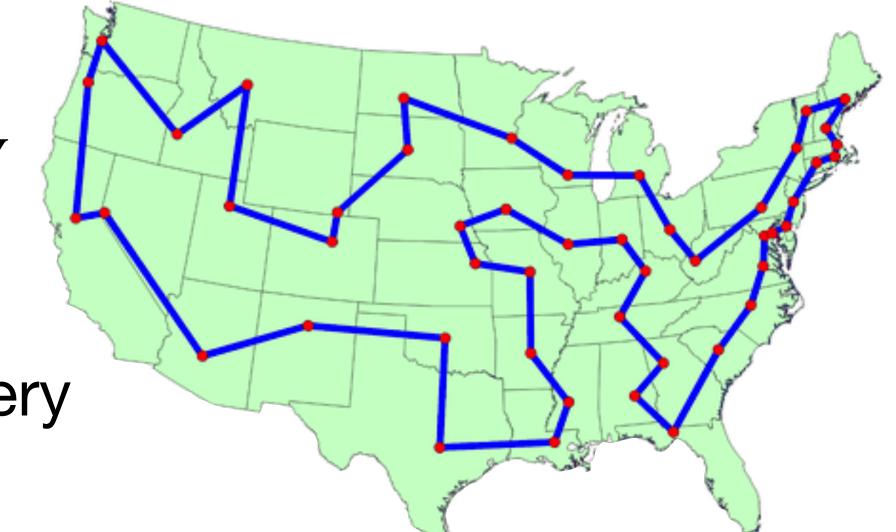
Traveling Salesman problem

• Input: graph G = (V, E), weight function $d: E \to \mathbb{R}^+$, parameter $D \in \mathbb{R}$

• Output: If there exists a path visiting all vertices V such that the net distance traveled $\leq D$.

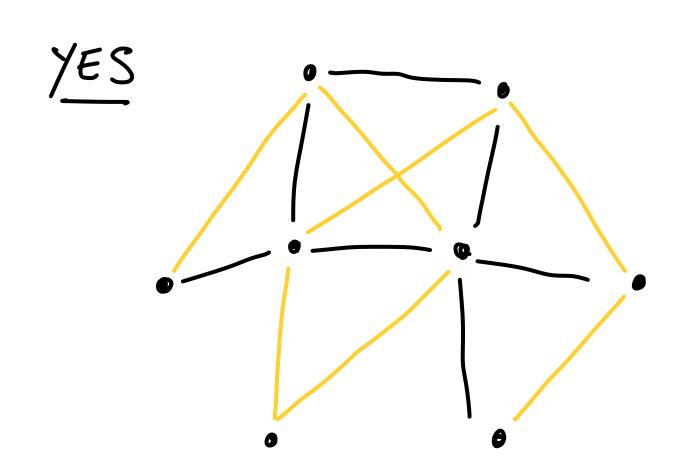
• Traveling Salesman \in NP: Check path π visits every vertex and total length is $\leq D$

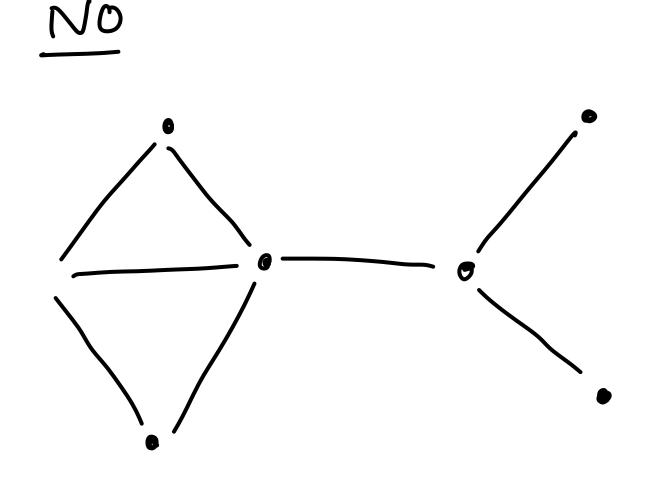
• 3-SAT \leq_p Hamiltonian-Path \leq_p Traveling Salesman

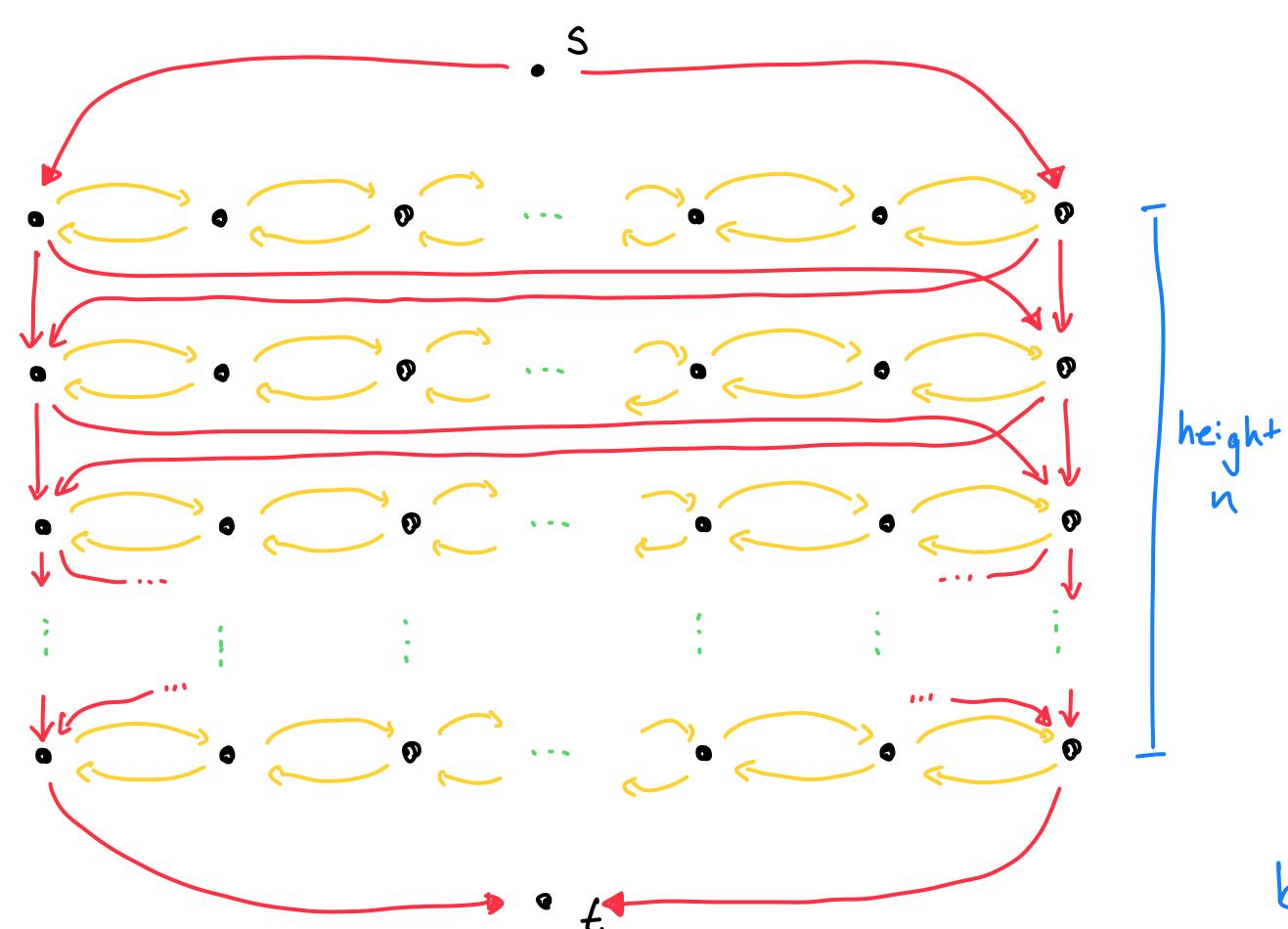


Hamiltonian Path (Directed)

- Input: unweighted directed graph G = (V, E)
- Output: If there exists a path that visits every vertex exactly once
- We saw that it is in NP already
- To prove it is NP-complete, we will need to construct a graph G such that the valid path "encodes" the satisfying assignment to a 3-SAT formula



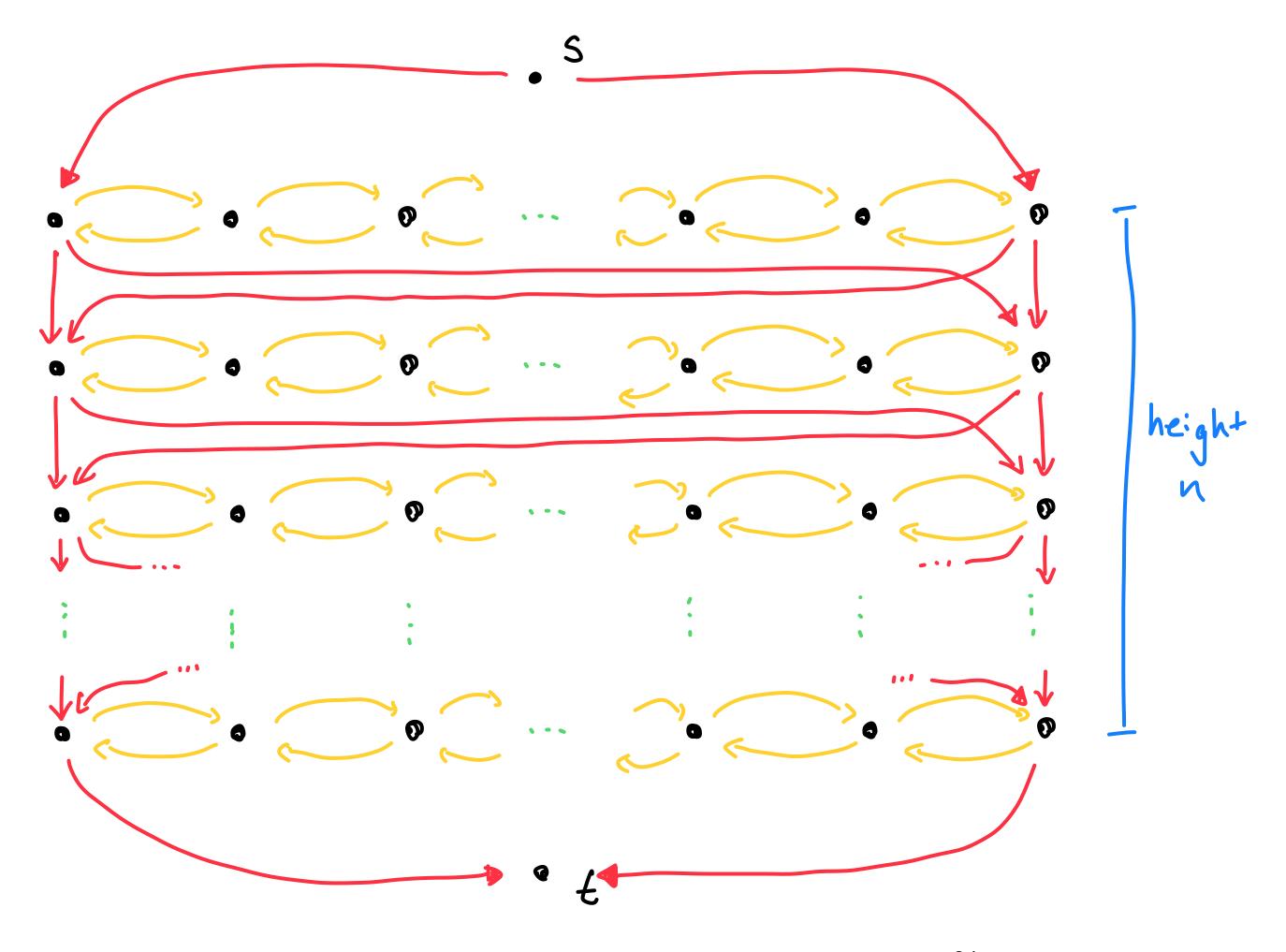




Question: How many different Hamiltonian paths dues this graph have?

Ansner: 2°. Each Ham. path is described by the direction the path takes in each row.

bij. betneen Ham paths and $\chi \in \{0, 1\}^n$.



Intuition for reduction:

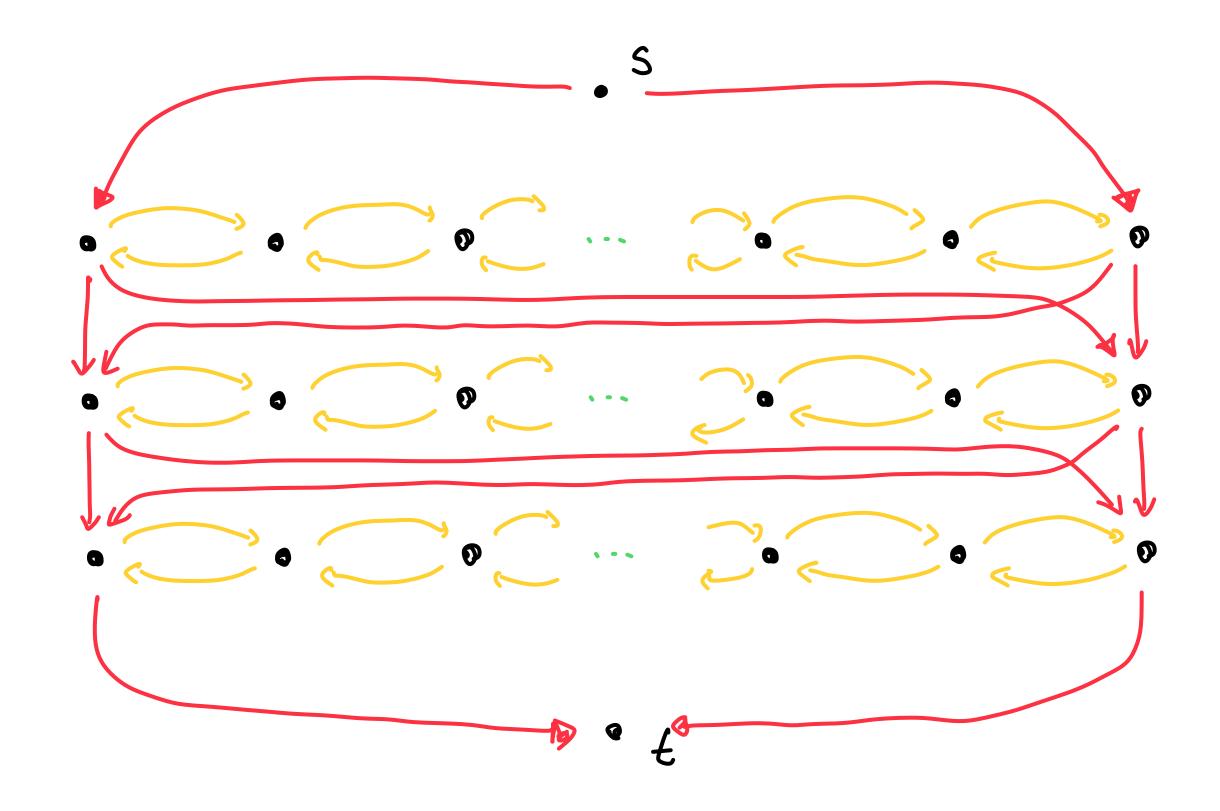
Add gadgets to graph corresponding to clauses in the 3SAT furnila.

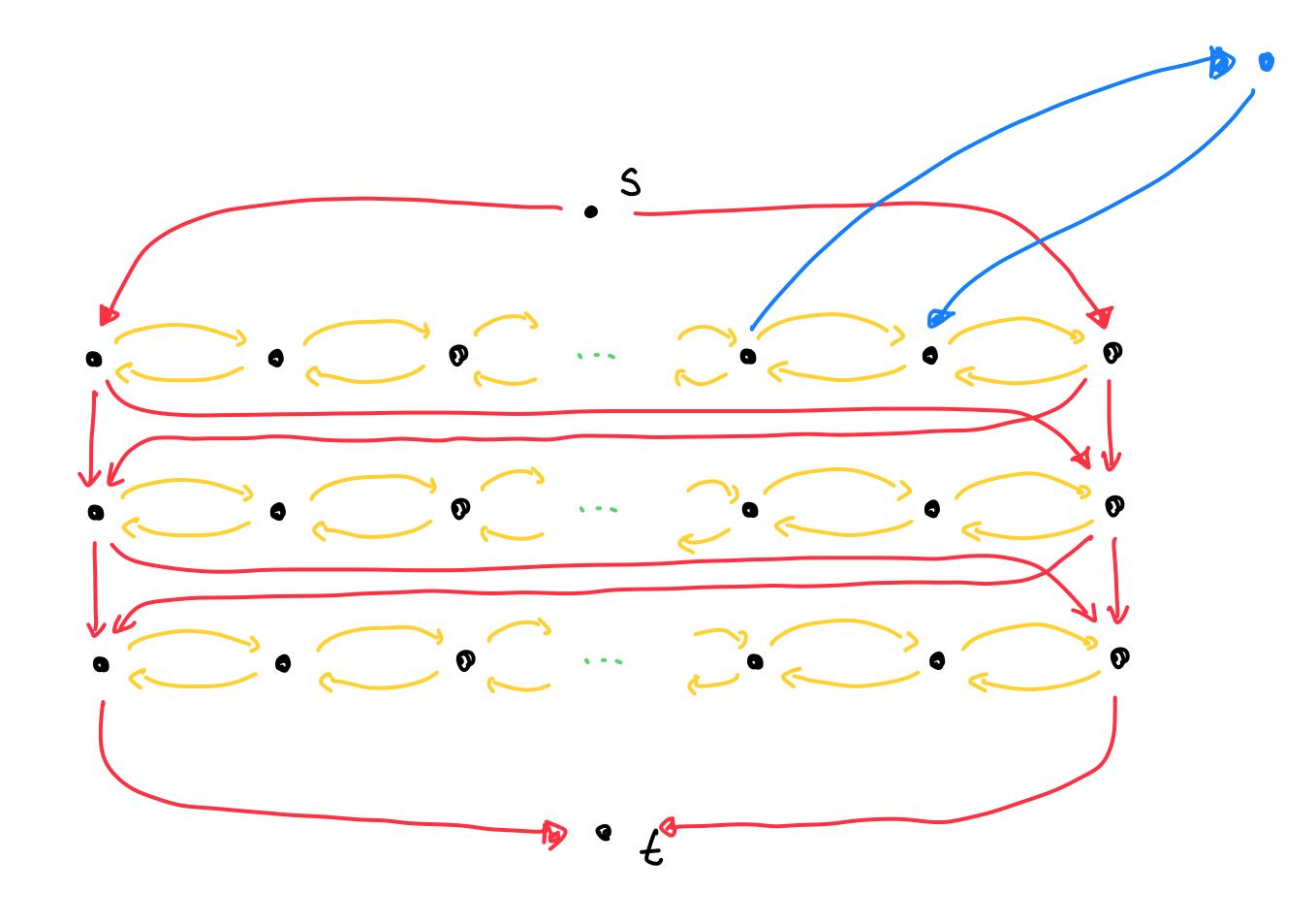
Yes (>) les intuition:

x_i = 1 in 3-SAT formula

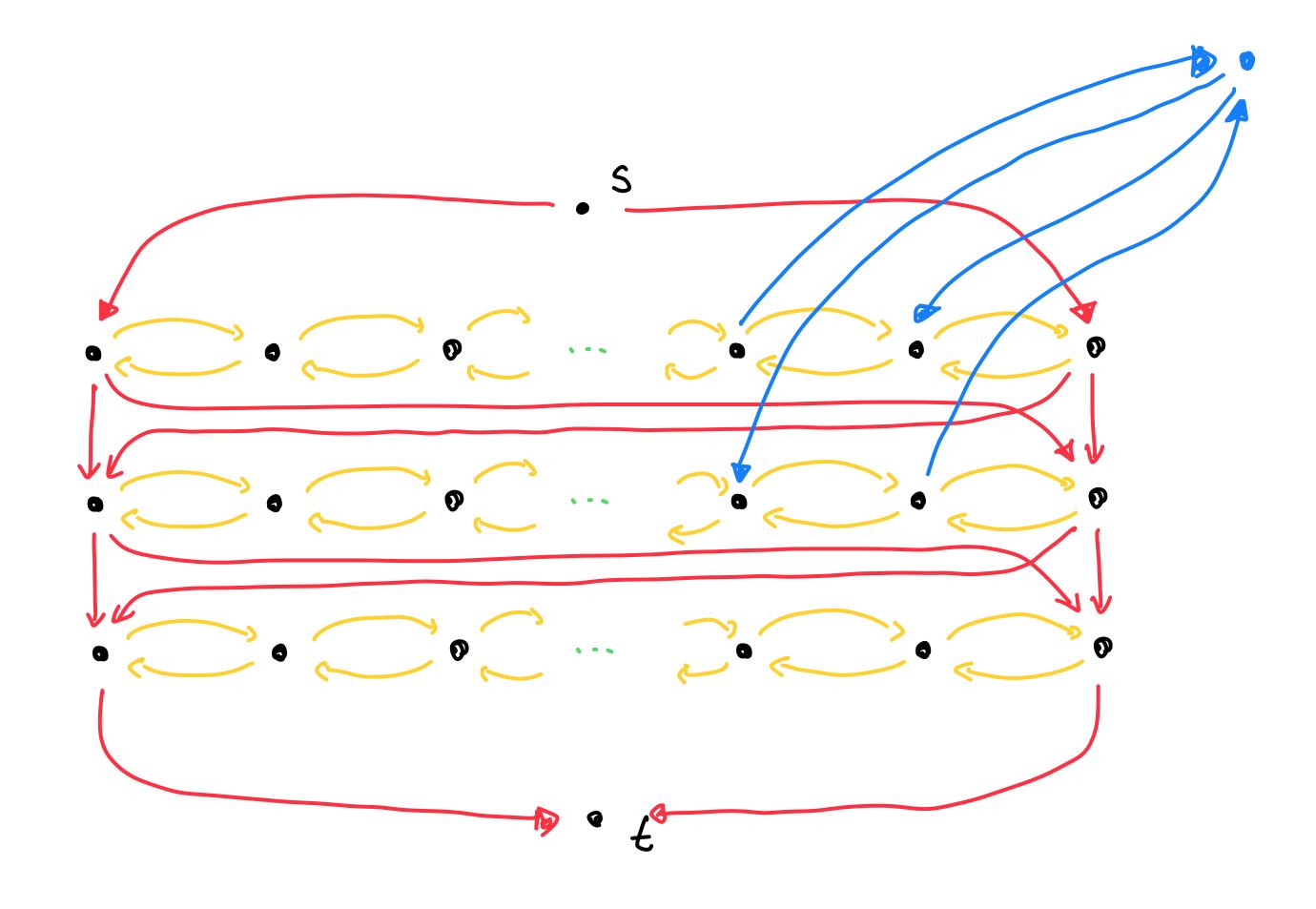
iff

Now i of graph is traversed left to right

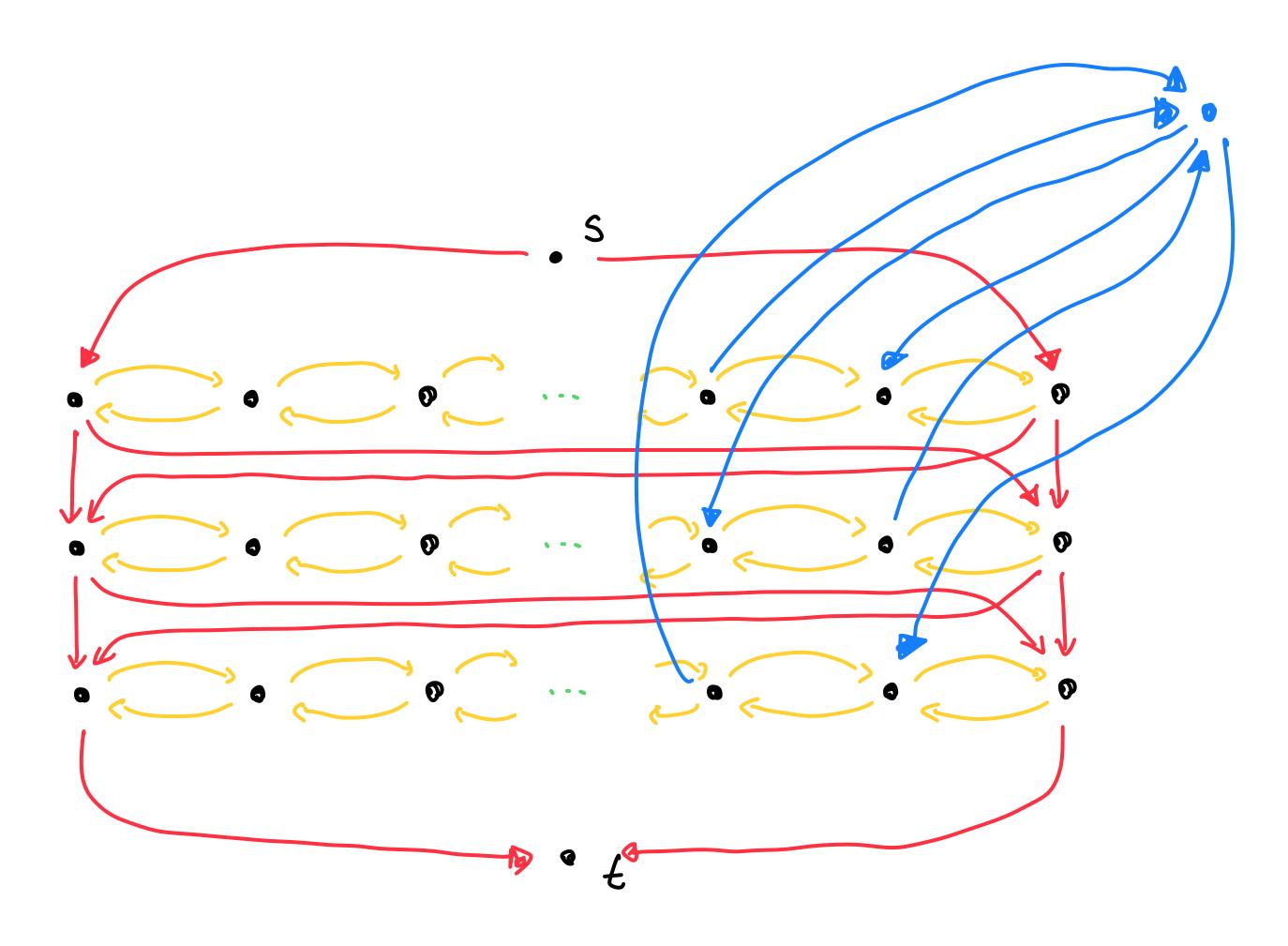




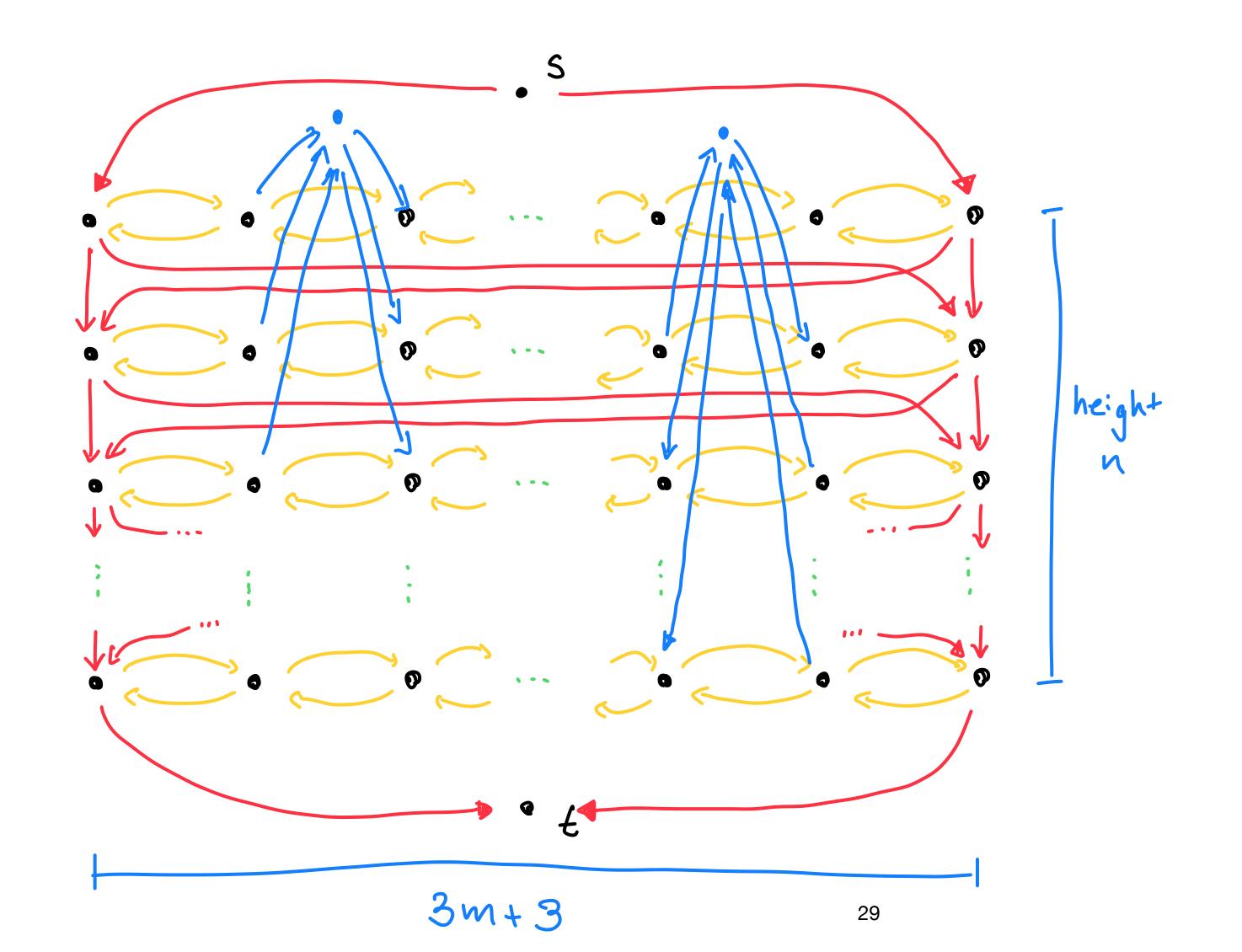
If we include this additional gadget then row I must go left to right to be a Ham cycle. $X_1 = 1$



If we include this additional row 1 must go left to right row 2 must go right to left



$$\chi_1 V \gamma \chi_2 V \chi_3 = 1$$



- Proof of correctness for reduction:
 - Reduction is easy to see that it is poly-time.
 - Graph has 2 + n(3m + 3) + m vertices for formula on n variables and m clauses.
 - Each clause adds 6 edges after standard construction for *n* variables.
 - Remains to prove that "yes" → "yes" and "yes" ← "yes".

- "Yes" \rightarrow "Yes": If φ is satisfiable then a Ham. path exists.
 - Let x be a satisfying assignment for ϕ
 - For each clause φ_i , identify a literal that is set to true (at least one exists).
 - Construct path $s \sim t$ traversing row i from left to right iff $x_i = 1$ except for a diversion to the vertex φ_j if x_i is the identified literal for clause φ_j .
 - Every variable in every row is necessarily visited and each clause variable must be visited since we identify a true literal.

- "Yes" \leftarrow "Yes": If a Ham. path exists φ is satisfiable.
 - Any Ham. path must be from s to t since s is a source and t is a sink.
 - Set $x_i = 1$ iff the leftmost vertex of row i is visited before the rightmost vertex
 - Since each vertex φ_j is visited, some literal in that clause must be set to be true as φ_j is only visited iff the direction of the path is equiv. to a literal in the clause being set to true
 - Therefore, all clauses φ_i are satisfied by the assignment given by x

Decision problems = Optimization problems

- Optimization problem: Find the shortest path for the traveling salesman to visit all the cities.
- Decision problem: Decide if there exists a path of length $\leq D$ for the traveling salesman to visit all the cities.
- Theorem: There exists an efficient algorithm for optimization iff there exists an efficient algorithm for decision.
- Proof:
 - (\Longrightarrow): Let $\mathscr{A}_{\mathrm{opt}}$ solve optimization. To solve decision, run $\mathscr{A}_{\mathrm{opt}}$ and calculate D^* . Answer if $D^* \leq D$.
 - (=):
 - Let $\mathscr{A}_{\text{dec}}(D)$ solve decision for parameter D.
 - $D_{\max} := \sum_e d(e)$. Starting from $D \leftarrow D_{\max}/2$ use $\mathcal{A}_{\text{dec}}(D)$ to "binary search" to calculate D^* .
 - If $D^* \leq D$, then $\mathscr{A}_{\text{dec}}(D)$ outputs true and if $D > D^*$, then $\mathscr{A}_{\text{dec}}(D)$ outputs false.
 - . Tota runtime is $O\left(\log(D_{\max})T_{\mathscr{A}_{\mathrm{dec}}}\right)$ which is polynomial in input length.