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Lecture 25
NP completeness III
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Previously in CSE 421…
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The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm  and integer  in unary. 
Output: Whether there exists a  such that  and .


• Theorem: Satisfiability is -complete.


• Proof:


• Satisfiability is in  as  is a proof of the satisfiability.


• For any other problem , there exists a certifier  such that  is a “yes” 
instance iff there exists a  such that  accepts.


• Let taken as input by .


• Define as the poly-sized program computing  for  “hardcoded”.


• Then  is a “yes” instance iff exists a  such that  and .


• So , proving  -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π) x

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯
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Today
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Proving more -complete problems𝖭𝖯

• Recipe for showing that problem  is -complete


• Step 1: Show that .


• Step 2: Choose a known -compete problem .


• Step 3: Prove that .


• Correctness of recipe: We claim that  is a transitive operation.


• If  and  then .


• For any problem , then , proving that  is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯
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3-SAT problem

• The 3-SAT problem is the most well known of all -complete problems


• A boolean formula  is a 3-SAT formula over variables  if


• , the “AND” of -subformulas


• Each  is the “OR” of  variables or their negations from .


• Examples: 


• Theorem: 3-SAT is -complete.

𝖭𝖯

φ x1, …, xn ∈ {0,1}

φ = φ1 ∧ φ2 ∧ … ∧ φk k

φj ≤ 3 x1, …, xn

𝖭𝖯

6



Proof that 3-SAT is NP-complete

• Key idea: Show that Satisfiability reduces to 3-SAT.


• Proof: We saw that 3-SAT is in  (the proof is just the satisfying assignment).


• To show that Satisfiability reduces to 3-SAT, we follow the following outline to 
convert an instance of Satisfiability into an instance of 3-SAT:


• Step 1: Convert every input  to Satisfiability into a boolean circuit .


• Step 2: Adjust  so that it is nicely structured: Use De Morgan’s laws to ensure 
 consists of only OR and NOT gates, has no double negations.


• Step 3: Label every input wire and output wire of an OR gate, with a variable .


• Step 4: Convert each gate of  into a set of clauses in the 3-SAT formula.


• Step 5: The circuit must output the value 1 (so that it’s a yes instance)

𝖭𝖯

(⟨𝒜⟩, n) G

G
G

zi

G
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Proof that 3-SAT is NP-complete

• Step 2 elaborated:


• De Morgan’s laws:


• Switching ANDs to ORs: 


• Double negations: 


• Decomposing Big ORs: 


• Using these boolean formula transforms, any boolean circuit can be 
converted into one with only OR and NOT gates 

(y1 ∧ y2) = ¬(¬y1 ∨ ¬y2)

¬¬y1 = y1

y1 ∨ y2 ∨ y3 ∨ y4 = (y1 ∨ y2) ∨ (y3 ∨ y4)
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Proof that 3-SAT is NP-complete

• Step 3: Label every input wire and output wire of an OR gate, with a variable 
.zi
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Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of  into clauses to include in the 3-SAT formula.G
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Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of  clauses to include in the 3-SAT formula.G
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Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of  into clauses to include in the 3-SAT formula.


• Key lemma: If a 3-CNF  includes , ,  as 
clauses, then any satisfying assignment for the  must set  to equal .


• Proof: 


• The clauses imply the following statements: , , .


• The first two combine to .


• Therefore, .

G

φ (¬a ∨ c) (¬b ∨ c) (¬c ∨ a ∨ b)
φ c a ∨ b

a ⇒ c b ⇒ c c ⇒ (a ∨ b)

(a ∨ b) ⇒ c

c ⇔ (a ∨ b)
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Proof that 3-SAT is -complete𝖭𝖯

• Step 5: The circuit must output the value 1 (so that it’s a yes instance)


• Solution: Add a clause  where this is the variable corresponding to the final 
wire in the circuit


• When the circuit has a satisfying input, there is an assignment of values to 
wires such that  is assigned to be 1


• When the circuit has no satisfying input, if all other wires are consistently 
assigned,  is always assigned to be 0

zf

zf

zf
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Proof that 3-SAT is -complete𝖭𝖯

• Proving that the reduction is correct:


• The reduction is polynomial time as it takes a constant number of passes over 
the input to generate (we don’t need any answer more specific than this).


• “Yes”  “Yes”: If  is a “Yes” instance, then there is an input  of length 
 such that . Let  be the value of the wires of the corresponding 

circuit . Then  satisfies the 3-SAT  by construction.


• “Yes”  “Yes”: If  satisfies the 3-SAT , then let  be the values assigned by  
to the inputs. Then  as each intermediate gate will evaluate to match  
due to the previous lemma. And  iff  so  is satisfiable.

→ (⟨𝒜⟩, n) x
n 𝒜(x) = 1 z

G z φ

← z φ x z
G(x) = 1 z

𝒜(x) = 1 G(x) = 1 𝒜
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General suggestions about proving -completeness𝖭𝖯

• There is not a clear cut set of techniques you can always apply


• Proving -completeness is a bit of an art —


• To prove problem  is -complete, the most difficult step is finding a 
problem  which is known to be is -complete such that 


• You are converting instances of  into instances of 


• I.e. every instance of  is a special case of an instance of 

𝖭𝖯

Y 𝖭𝖯
X 𝖭𝖯 X ≤p Y

X Y

X Y
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Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .


• Let’s show that 3-SAT  Vertex Cover.


• We need to create a graph  and integer  which captures the structure of a 3-SAT formula .


• Construction:  contains 3 vertices per clause, one per literal.  where  is the number of clauses in .

𝖭𝖯

≤p

G k φ

G k = 2m m φ
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Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .


• Let’s show that 3-SAT  Vertex Cover.


• We need to create a graph  and integer  which captures the structure of a 3-SAT formula .


• Construction:  

•  contains 3 vertices per clause, one per literal.  where  is the number of clauses in .


• Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation. 

𝖭𝖯

≤p

G k φ

G k = 2m m φ
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Vertex Cover is -complete𝖭𝖯
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Vertex Cover is -complete𝖭𝖯
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Vertex Cover is -complete𝖭𝖯

• Theorem:  is satisfiable iff  has a vertex cover of size .


• Proof:


• “Yes”  “Yes”: If  is satisfiable, let  be a satisfying assignment. 


• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size . 


• Each “triangle edge” is covered as 2 vertices are selected per triangle.


• Each “negation edge” is covered as not selecting both endpoints would have both  and  to be true in the satisfying assignment.

φ G ≤ 2m

→ φ x

2m

xi ¬xi
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Vertex Cover is -complete𝖭𝖯

• Theorem:  is satisfiable iff  has a vertex cover of size .


• Proof:


• “Yes”  “Yes”: If  has a vertex cover of size , then by previous lemma, the vertex cover is exactly size  and selects two vertices per triangle.


• Set the excluded literal in each triangle to be true. 


• Since each “negation edge” is covered, the assignment will set at most one of  and  to be true. 


• Each clause is satisfied as one literate must be excluded in each clause.

φ G ≤ 2m

← G ≤ 2m 2m

xi ¬xi
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3-color is -complete𝖭𝖯

• Input: a graph . Output: If there exists an assignment 
 such that  for every edge 




• 3-Color  as the proof is the assignment 


• We will show that 3-SAT  3-Color


• We have to create a graph  representing a formula 


• Some “part” of the graph will have to represent variables and 
their negations


• Some “part” of the graph will have to represent clauses such 
that the “part” can only be assigned colors if the clause is true 

G = (V, E)
π : V → {R, G, B} π(u) ≠ π(v)
(u, v) ∈ E

∈ 𝖭𝖯 π

≤p

G φ
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3-color is -complete𝖭𝖯

• For every variable  create a vertex  and 


• Let’s build a reduction such that 


• if  is colored GREEN then  should be set to 
be true


• If  is colored RED then  should be set to be 
false


• By connecting triangles  we enforce that 
exactly one of  and  will be colored GREEN 
and RED


• So far the set of satisfying colorings are in bijection 
with assignments of the variables to true or false

zi zi ¬zi

zi zi

zi zi

B, zi, ¬zi
zi ¬zi
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯

26



3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯

29



3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯

35



3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
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3-color is -complete𝖭𝖯
Putting it all together

• Full construction: 


• Construct triangles ( , , ) and  for each variable .


• Construct gadget from vertices  as shown for each clause 


• Properties:


• Every vertex on a triangle must have a different color in a valid coloring


• Let GREEN be the color assigned to , RED assigned to , BLUE assigned to 


• Lem: Exactly one of variable  and  must be assigned GREEN or RED in a valid coloring


• Lem: In a valid coloring, the gadget for  is colorable iff one of  is colored GREEN

T F B (B, zi, ¬zi) zi

(x, y, z, T, F) x ∨ y ∨ z

T F B

zi ¬zi

x ∨ y ∨ z x, y, z
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3-color is -complete𝖭𝖯
Putting it all together

• Reduction proof:


• “Yes”  “Yes”: Let  be a satisfying assignment to 3-SAT .


• Color the vertices of  and  GREEN or RED respectively


• Every clause is satisfied so there exists an assignment of colors for the gadget


• “Yes”  “Yes”: Let GREEN be the color assigned to , RED assigned to , BLUE assigned to 


• Set  to be 1 if assigned color GREEN or 0 if assigned color RED


• Since the gadget for clause  has a valid coloring, at least one of the 3 literals must 
be GREEN and therefore the clause is satisfied

→ z φ

zi ¬zi

← T F B

zi

x ∨ y ∨ z
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