Lecture 25 NP completeness III

Chinmay Nirkhe | CSE 421 Spring 2025

1

Previously in CSE 421...

The "first" NP-complete problem **Satisfiability**

- Satisfiability: Input: $(\langle \mathscr{A} \rangle, n)$, the description of an algorithm \mathscr{A} and integer n in unary. Output: Whether there exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
- **Theorem:** Satisfiability is NP-complete.
- **Proof**:
 - Satisfiability is in NP as π is a proof of the satisfiability.
 - For any other problem $X \in \mathsf{NP}$, there exists a certifier $\mathscr{V}(x, \pi)$ such that x is a "yes" instance iff there exists a π such that $\mathcal{V}(x, \pi)$ accepts.
 - Let $n = |\pi|$ taken as input by \mathcal{V} .
 - Define $\mathscr{A}(\pi) :=$ as the poly-sized program computing $\mathscr{V}(x,\pi)$ for x "hardcoded".
 - Then x is a "yes" instance iff exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
 - So $X \leq_p Y$, proving NP-completeness.

Proving more NP-complete problems

- **Recipe** for showing that problem Y is NP-complete
 - Step 1: Show that $Y \in NP$.
 - Step 2: Choose a known NP-compete problem X.
 - Step 3: Prove that $X \leq_p Y$.
- Correctness of recipe: We claim that \leq_p is a transitive operation.
 - If $W \leq_p X$ and $X \leq_p Y$ then $W \leq_p Y$.
 - For any problem $W \in NP$, then $W \leq_p Y$, proving that Y is NP-complete.

3-SAT problem

- The 3-SAT problem is the most well known of all NP-complete problems • A boolean formula φ is a 3-SAT formula over variables $x_1, \ldots, x_n \in \{0, 1\}$ if
 - $\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$, the "AND" of k-subformulas
 - Each φ_i is the "OR" of ≤ 3 variables or their negations from x_1, \ldots, x_n .
- Examples: $\Psi(z_1, \ldots, z_q) = (z, \forall q)$
- **Theorem:** 3-SAT is NP-complete.

$$z_2 \bigvee z_3 \land (\neg z_1 \lor \neg z_2 \lor z_1)$$

- Key idea: Show that Satisfiability reduces to 3-SAT.
- **Proof:** We saw that 3-SAT is in NP (the proof is just the satisfying assignment).
 - To show that Satisfiability reduces to 3-SAT, we follow the following outline to convert an instance of Satisfiability into an instance of 3-SAT:
 - Step 1: Convert every input $(\langle \mathscr{A} \rangle, n)$ to Satisfiability into a boolean circuit G.
 - Step 2: Adjust *G* so that it is nicely structured: Use De Morgan's laws to ensure *G* consists of only OR and NOT gates, has no double negations.
 - Step 3: Label every input wire and output wire of an OR gate, with a variable z_i .
 - Step 4: Convert each gate of G into a set of clauses in the 3-SAT formula.
 - Step 5: The circuit must output the value 1 (so that it's a yes instance)

- Step 2 elaborated:
 - De Morgan's laws:
 - Switching ANDs to ORs: $(y_1 \land y_2) = \neg (\neg y_1 \lor \neg y_2)$
 - Double negations: $\neg \neg y_1 = y_1$
 - converted into one with only OR and NOT gates

• Decomposing Big ORs: $y_1 \lor y_2 \lor y_3 \lor y_4 = (y_1 \lor y_2) \lor (y_3 \lor y_4)$

Using these boolean formula transforms, any boolean circuit can be

• Step 3: Label every input wire and z_i .

• Step 3: Label every input wire and output wire of an OR gate, with a variable

Remember that a=> b is equiv. to 7a V b.

• Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.

 $= \left(\left(Z_{4} \vee Z_{5} \right) \Rightarrow Z_{6} \right) \wedge \left(Z_{6} \Rightarrow \left(Z_{4} \vee Z_{5} \right) \right)$ $= \left(Z_{4} \Longrightarrow Z_{6} \right) \wedge \left(Z_{5} \Longrightarrow Z_{6} \right) \wedge \left(Z_{6} \Longrightarrow \left(Z_{4} \lor Z_{5} \right) \right)$ $= (\neg z_4 \vee z_6) \wedge (\neg z_5 \vee z_6) \wedge (\neg z_6 \vee z_4 \vee z_5)$

• Step 4: Convert each gate of G clauses to include in the 3-SAT formula.

struct the following clauses:

$$z_1 > V z_3 \land (\neg z_2 \lor z_3) \land (\neg z_3 \lor (\neg z_1) \lor z_2 \land z_3) \land (\neg z_3 \lor (\neg z_1) \lor z_2 \land z_3)$$

 $\lor z_3 \land (\neg z_2 \lor z_3) \land (\neg z_3 \lor \neg z_1 \lor z_2)$

- Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.
- Key lemma: If a 3-CNF φ includes $(\neg a \lor c), (\neg b \lor c), (\neg c \lor a \lor b)$ as clauses, then any satisfying assignment for the ϕ must set c to equal $a \vee b$.
- **Proof**:
 - The clauses imply the following statements: $a \Rightarrow c, b \Rightarrow c, c \Rightarrow (a \lor b)$.
 - The first two combine to $(a \lor b) \Rightarrow c$.
 - Therefore, $c \Leftrightarrow (a \lor b)$.

- Step 5: The circuit must output the value 1 (so that it's a yes instance)
- Solution: Add a clause z_f where this is the variable corresponding to the final wire in the circuit
 - When the circuit has a satisfying input, there is an assignment of values to wires such that z_f is assigned to be 1
 - When the circuit has no satisfying input, if all other wires are consistently assigned, z_f is always assigned to be 0

- Proving that the reduction is correct:
 - The reduction is polynomial time as it takes a constant number of passes over the input to generate (we don't need any answer more specific than this).
 - "Yes" \rightarrow "Yes": If $(\langle \mathscr{A} \rangle, n)$ is a "Yes" instance, then there is an input x of length n such that $\mathscr{A}(x) = 1$. Let z be the value of the wires of the corresponding circuit G. Then z satisfies the 3-SAT φ by construction.
 - "Yes" \leftarrow "Yes": If *z* satisfies the 3-SAT φ , then let *x* be the values assigned by *z* to the inputs. Then G(x) = 1 as each intermediate gate will evaluate to match *z* due to the previous lemma. And $\mathscr{A}(x) = 1$ iff G(x) = 1 so \mathscr{A} is satisfiable.

General suggestions about proving NP-completeness

- There is not a clear cut set of techniques you can always apply
- Proving NP-completeness is a bit of an art

 - You are converting instances of X into instances of Y
 - I.e. every instance of X is a special case of an instance of Y

• To prove problem Y is NP-complete, the most difficult step is finding a problem X which is known to be is NP-complete such that $X \leq_p Y$

- We've seen that Vertex Cover is in NP.
- Let's show that 3-SAT \leq_p Vertex Cover.
- We need to create a graph G and integer k which captures the structure of a 3-SAT formula φ .

$$\mathcal{C} = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$$

• Construction: G contains 3 vertices per clause, one per literal. k = 2m where m is the number of clauses in φ .

- We've seen that Vertex Cover is in NP.
- Let's show that 3-SAT \leq_p Vertex Cover.
- We need to create a graph G and integer k which captures the structure of a 3-SAT formula φ .
- Construction:
 - G contains 3 vertices per clause, one per literal. k = 2m where m is the number of clauses in φ .
 - Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation.

$$\mathcal{C} = \left(\neg x_1 \lor x_2 \lor x_3 \right) \land \left(\right)$$

 $(x_1 \vee \neg x_2 \vee x_3) \wedge (\neg x_1 \vee x_2 \vee x_4)$ $\neg \chi_2$ ר א_ו χ_1 Х,

Observe: $X_1 = X_2 = 1$, $X_3 = X_4 = 0$ is a satisfying instance. And the identified vertices form a vertex cover.

then the vertex cover must be size $\geq 2m$.

- **Theorem:** φ is satisfiable iff G has a vertex cover of size $\leq 2m$.
- **Proof**:
 - "Yes" \rightarrow "Yes": If φ is satisfiable, let x be a satisfying assignment.

 - Each "triangle edge" is covered as 2 vertices are selected per triangle.

η X, X 3

• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size 2m.

• Each "negation edge" is covered as not selecting both endpoints would have both x_i and $\neg x_i$ to be true in the satisfying assignment.

- **Theorem:** φ is satisfiable iff G has a vertex cover of size $\leq 2m$.
- **Proof**:
 - - Set the excluded literal in each triangle to be *true*.
 - Since each "negation edge" is covered, the assignment will set at most one of x_i and $\neg x_i$ to be true.
 - Each clause is satisfied as one literate must be excluded in each clause.

ר א, X_3

• "Yes" \leftarrow "Yes": If G has a vertex cover of size $\leq 2m$, then by previous lemma, the vertex cover is exactly size 2m and selects two vertices per triangle.

- Input: a graph G = (V, E). Output: If there exists an assignment $\pi: V \to \{R, G, B\}$ such that $\pi(u) \neq \pi(v)$ for every edge $(u, v) \in E$
- 3-Color \in NP as the proof is the assignment π
- We will show that 3-SAT \leq_p 3-Color
 - We have to create a graph G representing a formula φ
 - Some "part" of the graph will have to represent variables and their negations
 - Some "part" of the graph will have to represent clauses such that the "part" can only be assigned colors if the clause is true

- For every variable z_i create a vertex z_i and $\neg z_i$
- Let's build a reduction such that
 - if z_i is colored GREEN then z_i should be set to be true
 - If z_i is colored RED then z_i should be set to be false
- By connecting triangles $B, z_i, \neg z_i$ we enforce that exactly one of z_i and $\neg z_i$ will be colored GREEN and RED
- So far the set of satisfying colorings are in bijection with assignments of the variables to true or false

let's define red as the color assigned to the F vertex let's define "blue" as the color assigned to the base B $(\overline{z_1})$ $(-\overline{z_1})$ $(\overline{z_1})$ $(-\overline{z_2})$ $(\overline{z_3})$ $(-\overline{z_3})$

Case 1: $\chi_1 \chi_1 Z$ are all set to red

Case 1: $\chi_1 \chi_1 Z$ are all set to red

Case 1: $\chi_1 \chi_1 Z$ are all set to red

Case 1: $\chi_1 \chi_1 Z$ are all set to red

Case 2: X, y are colored red and Z is colored green

Case 2: X, y are colored red and Z is colored green (June)

F

6140

green

Case 2: X, y are colored red and Z is colored green (June)

F

(6140)

(green)

Case 2: X, y are colored red and Z is colored green (June)

F)

blue

green

3-color is NP-complete Putting it all together

- Full construction:
 - Construct triangles (*T*,*F*,*B*) and (*B*, z_i , $\neg z_i$) for each variable z_i .
 - Construct gadget from vertices (x, y, z, T, F) as shown for each clause $x \lor y \lor z$
- Properties:
 - Every vertex on a triangle must have a different color in a valid coloring
 - Let GREEN be the color assigned to T, RED assigned to F, BLUE assigned to B
 - Lem: Exactly one of variable z_i and $\neg z_i$ must be assigned GREEN or RED in a valid coloring
 - Lem: In a valid coloring, the gadget for $x \lor y \lor z$ is colorable iff one of x, y, z is colored GREEN

3-color is NP-complete Putting it all together

- Reduction proof:
 - "Yes" \rightarrow "Yes": Let *z* be a satisfying assignment to 3-SAT φ .
 - Color the vertices of z_i and $\neg z_i$ GREEN or RED respectively
 - Every clause is satisfied so there exists an assignment of colors for the gadget
 - "Yes" \leftarrow "Yes": Let GREEN be the color assigned to T, RED assigned to F, BLUE assigned to B
 - Set z_i to be 1 if assigned color GREEN or 0 if assigned color RED
 - Since the gadget for clause x \vee y \vee z has a valid coloring, at least one of the 3 literals must be GREEN and therefore the clause is satisfied

