
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 25
NP completeness III

1

Previously in CSE 421…

2

The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm and integer in unary.
Output: Whether there exists a such that and .

• Theorem: Satisfiability is -complete.

• Proof:

• Satisfiability is in as is a proof of the satisfiability.

• For any other problem , there exists a certifier such that is a “yes”
instance iff there exists a such that accepts.

• Let taken as input by .

• Define as the poly-sized program computing for “hardcoded”.

• Then is a “yes” instance iff exists a such that and .

• So , proving -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π) x

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯

3

Today

4

Proving more -complete problems𝖭𝖯

• Recipe for showing that problem is -complete

• Step 1: Show that .

• Step 2: Choose a known -compete problem .

• Step 3: Prove that .

• Correctness of recipe: We claim that is a transitive operation.

• If and then .

• For any problem , then , proving that is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯

5

3-SAT problem

• The 3-SAT problem is the most well known of all -complete problems

• A boolean formula is a 3-SAT formula over variables if

• , the “AND” of -subformulas

• Each is the “OR” of variables or their negations from .

• Examples:

• Theorem: 3-SAT is -complete.

𝖭𝖯

φ x1, …, xn ∈ {0,1}

φ = φ1 ∧ φ2 ∧ … ∧ φk k

φj ≤ 3 x1, …, xn

𝖭𝖯

6

Proof that 3-SAT is NP-complete

• Key idea: Show that Satisfiability reduces to 3-SAT.

• Proof: We saw that 3-SAT is in (the proof is just the satisfying assignment).

• To show that Satisfiability reduces to 3-SAT, we follow the following outline to
convert an instance of Satisfiability into an instance of 3-SAT:

• Step 1: Convert every input to Satisfiability into a boolean circuit .

• Step 2: Adjust so that it is nicely structured: Use De Morgan’s laws to ensure
 consists of only OR and NOT gates, has no double negations.

• Step 3: Label every input wire and output wire of an OR gate, with a variable .

• Step 4: Convert each gate of into a set of clauses in the 3-SAT formula.

• Step 5: The circuit must output the value 1 (so that it’s a yes instance)

𝖭𝖯

(⟨𝒜⟩, n) G

G
G

zi

G

7

Proof that 3-SAT is NP-complete

• Step 2 elaborated:

• De Morgan’s laws:

• Switching ANDs to ORs:

• Double negations:

• Decomposing Big ORs:

• Using these boolean formula transforms, any boolean circuit can be
converted into one with only OR and NOT gates

(y1 ∧ y2) = ¬(¬y1 ∨ ¬y2)

¬¬y1 = y1

y1 ∨ y2 ∨ y3 ∨ y4 = (y1 ∨ y2) ∨ (y3 ∨ y4)

8

Proof that 3-SAT is NP-complete

• Step 3: Label every input wire and output wire of an OR gate, with a variable
.zi

9

Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of into clauses to include in the 3-SAT formula.G

10

Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of clauses to include in the 3-SAT formula.G

11

Proof that 3-SAT is -complete𝖭𝖯

• Step 4: Convert each gate of into clauses to include in the 3-SAT formula.

• Key lemma: If a 3-CNF includes , , as
clauses, then any satisfying assignment for the must set to equal .

• Proof:

• The clauses imply the following statements: , , .

• The first two combine to .

• Therefore, .

G

φ (¬a ∨ c) (¬b ∨ c) (¬c ∨ a ∨ b)
φ c a ∨ b

a ⇒ c b ⇒ c c ⇒ (a ∨ b)

(a ∨ b) ⇒ c

c ⇔ (a ∨ b)
12

Proof that 3-SAT is -complete𝖭𝖯

• Step 5: The circuit must output the value 1 (so that it’s a yes instance)

• Solution: Add a clause where this is the variable corresponding to the final
wire in the circuit

• When the circuit has a satisfying input, there is an assignment of values to
wires such that is assigned to be 1

• When the circuit has no satisfying input, if all other wires are consistently
assigned, is always assigned to be 0

zf

zf

zf

13

Proof that 3-SAT is -complete𝖭𝖯

• Proving that the reduction is correct:

• The reduction is polynomial time as it takes a constant number of passes over
the input to generate (we don’t need any answer more specific than this).

• “Yes” “Yes”: If is a “Yes” instance, then there is an input of length
 such that . Let be the value of the wires of the corresponding

circuit . Then satisfies the 3-SAT by construction.

• “Yes” “Yes”: If satisfies the 3-SAT , then let be the values assigned by
to the inputs. Then as each intermediate gate will evaluate to match
due to the previous lemma. And iff so is satisfiable.

→ (⟨𝒜⟩, n) x
n 𝒜(x) = 1 z

G z φ

← z φ x z
G(x) = 1 z

𝒜(x) = 1 G(x) = 1 𝒜
14

General suggestions about proving -completeness𝖭𝖯

• There is not a clear cut set of techniques you can always apply

• Proving -completeness is a bit of an art —

• To prove problem is -complete, the most difficult step is finding a
problem which is known to be is -complete such that

• You are converting instances of into instances of

• I.e. every instance of is a special case of an instance of

𝖭𝖯

Y 𝖭𝖯
X 𝖭𝖯 X ≤p Y

X Y

X Y

15

Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .

• Let’s show that 3-SAT Vertex Cover.

• We need to create a graph and integer which captures the structure of a 3-SAT formula .

• Construction: contains 3 vertices per clause, one per literal. where is the number of clauses in .

𝖭𝖯

≤p

G k φ

G k = 2m m φ

16

Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .

• Let’s show that 3-SAT Vertex Cover.

• We need to create a graph and integer which captures the structure of a 3-SAT formula .

• Construction:

• contains 3 vertices per clause, one per literal. where is the number of clauses in .

• Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation.

𝖭𝖯

≤p

G k φ

G k = 2m m φ

17

Vertex Cover is -complete𝖭𝖯

18

Vertex Cover is -complete𝖭𝖯

19

Vertex Cover is -complete𝖭𝖯

• Theorem: is satisfiable iff has a vertex cover of size .

• Proof:

• “Yes” “Yes”: If is satisfiable, let be a satisfying assignment.

• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size .

• Each “triangle edge” is covered as 2 vertices are selected per triangle.

• Each “negation edge” is covered as not selecting both endpoints would have both and to be true in the satisfying assignment.

φ G ≤ 2m

→ φ x

2m

xi ¬xi

20

Vertex Cover is -complete𝖭𝖯

• Theorem: is satisfiable iff has a vertex cover of size .

• Proof:

• “Yes” “Yes”: If has a vertex cover of size , then by previous lemma, the vertex cover is exactly size and selects two vertices per triangle.

• Set the excluded literal in each triangle to be true.

• Since each “negation edge” is covered, the assignment will set at most one of and to be true.

• Each clause is satisfied as one literate must be excluded in each clause.

φ G ≤ 2m

← G ≤ 2m 2m

xi ¬xi

21

3-color is -complete𝖭𝖯

• Input: a graph . Output: If there exists an assignment
 such that for every edge

• 3-Color as the proof is the assignment

• We will show that 3-SAT 3-Color

• We have to create a graph representing a formula

• Some “part” of the graph will have to represent variables and
their negations

• Some “part” of the graph will have to represent clauses such
that the “part” can only be assigned colors if the clause is true

G = (V, E)
π : V → {R, G, B} π(u) ≠ π(v)
(u, v) ∈ E

∈ 𝖭𝖯 π

≤p

G φ

22

3-color is -complete𝖭𝖯

• For every variable create a vertex and

• Let’s build a reduction such that

• if is colored GREEN then should be set to
be true

• If is colored RED then should be set to be
false

• By connecting triangles we enforce that
exactly one of and will be colored GREEN
and RED

• So far the set of satisfying colorings are in bijection
with assignments of the variables to true or false

zi zi ¬zi

zi zi

zi zi

B, zi, ¬zi
zi ¬zi

23

3-color is -complete𝖭𝖯

24

3-color is -complete𝖭𝖯

25

3-color is -complete𝖭𝖯

26

3-color is -complete𝖭𝖯

27

3-color is -complete𝖭𝖯

28

3-color is -complete𝖭𝖯

29

3-color is -complete𝖭𝖯

30

3-color is -complete𝖭𝖯

31

3-color is -complete𝖭𝖯

32

3-color is -complete𝖭𝖯

33

3-color is -complete𝖭𝖯

34

3-color is -complete𝖭𝖯

35

3-color is -complete𝖭𝖯

36

3-color is -complete𝖭𝖯

37

3-color is -complete𝖭𝖯
Putting it all together

• Full construction:

• Construct triangles (, ,) and for each variable .

• Construct gadget from vertices as shown for each clause

• Properties:

• Every vertex on a triangle must have a different color in a valid coloring

• Let GREEN be the color assigned to , RED assigned to , BLUE assigned to

• Lem: Exactly one of variable and must be assigned GREEN or RED in a valid coloring

• Lem: In a valid coloring, the gadget for is colorable iff one of is colored GREEN

T F B (B, zi, ¬zi) zi

(x, y, z, T, F) x ∨ y ∨ z

T F B

zi ¬zi

x ∨ y ∨ z x, y, z

38

3-color is -complete𝖭𝖯
Putting it all together

• Reduction proof:

• “Yes” “Yes”: Let be a satisfying assignment to 3-SAT .

• Color the vertices of and GREEN or RED respectively

• Every clause is satisfied so there exists an assignment of colors for the gadget

• “Yes” “Yes”: Let GREEN be the color assigned to , RED assigned to , BLUE assigned to

• Set to be 1 if assigned color GREEN or 0 if assigned color RED

• Since the gadget for clause has a valid coloring, at least one of the 3 literals must
be GREEN and therefore the clause is satisfied

→ z φ

zi ¬zi

← T F B

zi

x ∨ y ∨ z

39

