Lecture 24 NP-completeness II

Chinmay Nirkhe | CSE 421 Spring 2025

1

Previously in CSE 421...

NP-completeness

- "hardest" problem in NP
- \bullet every problem in NP in poly-time.

• Simple definition: A problem is NP-complete problem if (a) it is in NP and (b) it is the

• Necessary consequence (we will show soon): A problem X is NP-complete iff

• If X has a poly-time algorithm, then every problem in NP has a poly-time algorithm.

• If some problem $Y \in \mathsf{NP}$ does not have a poly-time algorithm, then neither does X.

Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved

NP-completeness

- Proving that a problem Y is the hardest problem in NP requires showing
 - that if there exists a poly-time algorithm \mathscr{A} for solving Y, then for any problem $X \in \mathsf{NP}$, there exists a poly-time algorithm \mathscr{A}' for solving X
 - This is called a reduction. We denote this by $X \leq_p Y$.
- Formally, we say X reduces to Y (denoted $X \leq_p Y$) if any instance x of X can be solved by the following algorithm:
 - In poly(|x|) time, compute y = f(x), an instance of the problem Y
- Run a subroutine to decide if y is a "yes" instance of Y returning the answer exactly This is known as a Karp or many-to-one reduction

Reductions throughout this class

- We've seen reductions many times before in this class
- Anytime you used an algorithm as a subroutine you were performing a reduction
- Examples:
 - Bipartite matching as a flow problem
 - Ship port assignment as a stable matching
 - Little Johnny walking to his mother's house as a shortest path problem

Example of a reduction Subset Sum \leq_{p} **Decision-Knapsack**

- Subset Sum: Give input a_1, \ldots, a_n, T , decide if there exists a subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = T.$
- Decision-Knapsack: Given input $w_1, \ldots, w_n, v_1, \ldots, v_n, W, V$, decide if there exists a subset $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$.
- Reduction: We want to come up with an algorithm \mathscr{A}' for solving Subset Sum from an algorithm \mathcal{A} for solving Knapsack.
 - Given input a_1, \ldots, a_n, T , define $w_i =$
 - Then run \mathscr{A} on $(w_1, ..., w_n, v_1, ..., v_n, W, V)$.

$$v_i \leftarrow a_i$$
 and $W = V \leftarrow T$.

Proving a reduction is correct

- The previous example is a Karp reduction between Subset Sum and D-Knapsack
- To generate a Karp reduction $X \leq_p Y$ between two decision problems X and Y
 - We need to find a **poly-time computable** function $f: X \to Y$ that converts instances x of X into instances f(x) of Y
 - "Yes" \rightarrow "Yes": If for every $x \in X$ that is a "yes", then $f(x) \in Y$ is also a "yes" instance
 - "Yes" \leftarrow "Yes": If for every $f(x') \in Y$ that is a "yes", then $x' \in X$ is also a "yes" instance
 - Equiv. to: If $x'' \in X$ is a "no", then $f(x'') \in Y$ is a "no"

Example of a reduction Subset Sum \leq_p **Decision-Knapsack**

- X
- If

$$x = (\vec{a}, T) \in \text{Subset Sum}, f(x) = (\vec{w} = \vec{v} \leftarrow \vec{a}, W = V \leftarrow T)$$

If x is a "yes" instance, then there exists $S \subseteq [n]$ s.t. $\sum_{i \in S} a_i = T$
• Therefore, $\frac{\sum_{i \in S} w_i = \sum_{i \in S} a_i = T \leq W}{\sum_{i \in S} v_i = \sum_{i \in S} a_i = T \geq V}$. So $f(x)$ is a "yes" instance.

- - instance.

• If f(x) is a "yes" instance, then there exists $S \subseteq [n]$ s.t. $\sum_{i \in S} w_i \ge W$ and $\sum_{i \in S} v_i \le V$. • So $T = V \le \sum_{i \in S} v_i = \sum_{i \in S} a_i \le \sum_{i \in S} w_i \le W = T$, proving that x is a "yes"

NP-completeness

- $X \leq_{\mathcal{D}} Y$.
- **Proof**:
 - (\Leftarrow) If P = NP, then Y has a poly-time algorithm since $Y \in NP$.
 - poly-time algorithm for Y as a subroutine. So $X \in P$. So P = NP.
- Fundamental question: Do there exist "natural" NP-complete problems?

• Formal definition: A problem Y is NP-complete if $Y \in NP$ and for every problem $X \in NP$,

• Theorem: Let Y be a NP-complete problem. Then Y is solvable in poly-time iff P = NP.

• (\implies) Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time using the

A partial list of NP-complete problems

- Boolean function satisfiability, 3-SAT
- 0-1 Integer programming
- Graph problems: Vertex cover, 3-color, independent set, set cover, max cut
- Path and cycle problems: Hamiltonian path, traveling salesman
- Combinatorial optimization problems: Knapsack, Subset sum

The "first" NP-complete problem **Satisfiability**

- Satisfiability: Input: $(\langle \mathscr{A} \rangle, n)$, the description of an algorithm \mathscr{A} and integer n in unary. Output: Whether there exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
- **Theorem:** Satisfiability is NP-complete.
- **Proof**:
 - Satisfiability is in NP as π is a proof of the satisfiability.
 - For any other problem $X \in \mathsf{NP}$, there exists a certifier $\mathscr{V}(x, \pi)$ such that x is a "yes" instance iff there exists a π such that $\mathcal{V}(x, \pi)$ accepts.
 - Let $n = |\pi|$ taken as input by \mathcal{V} .
 - Define $\mathscr{A}(\pi) :=$ as the poly-sized program computing $\mathscr{V}(x,\pi)$ for x "hardcoded".
 - Then x is a "yes" instance iff exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
 - So $X \leq_p Y$, proving NP-completeness.

Proving more NP-complete problems

- **Recipe** for showing that problem Y is NP-complete
 - Step 1: Show that $Y \in NP$.
 - Step 2: Choose a known NP-compete problem X.
 - Step 3: Prove that $X \leq_p Y$.
- Correctness of recipe: We claim that \leq_p is a transitive operation.
 - If $W \leq_p X$ and $X \leq_p Y$ then $W \leq_p Y$.
 - For any problem $W \in NP$, then $W \leq_p Y$, proving that Y is NP-complete.

3-SAT problem

- The 3-SAT problem is the most well known of all NP-complete problems • A boolean formula φ is a 3-SAT formula over variables $x_1, \ldots, x_n \in \{0, 1\}$ if
 - $\varphi = \varphi_1 \land \varphi_2 \land \ldots \land \varphi_k$, the "AND" of k-subformulas
 - Each φ_i is the "OR" of ≤ 3 variables or their negations from x_1, \ldots, x_n .
- Examples: $\Psi(z_1, \ldots, z_q) = (z, \forall q)$
- **Theorem:** 3-SAT is NP-complete.

$$z_2 \bigvee z_3 \land (\neg z_1 \lor \neg z_2 \lor z_1)$$

- Key idea: Show that Satisfiability reduces to 3-SAT.
- **Proof:** We saw that 3-SAT is in NP (the proof is just the satisfying assignment).
 - To show that Satisfiability reduces to 3-SAT, we follow the following outline to convert an instance of Satisfiability into an instance of 3-SAT:
 - Step 1: Convert every input $(\langle \mathscr{A} \rangle, n)$ to Satisfiability into a boolean circuit G.
 - Step 2: Adjust G so that it is nicely structured: Use De Morgan's laws to ensure G consists of only OR and NOT gates, has no double negations.
 - Step 3: Label every input wire and output wire of an OR gate, with a variable z_i .
 - Step 4: Convert each gate of G into a set of clauses in the 3-SAT formula.

- Step 2 elaborated:
 - De Morgan's laws:
 - Switching ANDs to ORs: $(y_1 \land y_2) = \neg (\neg y_1 \lor \neg y_2)$
 - Double negations: $\neg \neg y_1 = y_1$
 - converted into one with only OR and NOT gates

• Decomposing Big ORs: $y_1 \lor y_2 \lor y_3 \lor y_4 = (y_1 \lor y_2) \lor (y_3 \lor y_4)$

• Using these boolean formula transforms, any boolean circuit can be

• Step 3: Label every input wire and z_i .

• Step 3: Label every input wire and output wire of an OR gate, with a variable

Remember that a=> b is equiv. to 7a V b.

• Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.

 $= \left(\left(Z_{4} \vee Z_{5} \right) \Rightarrow Z_{6} \right) \wedge \left(Z_{6} \Rightarrow \left(Z_{4} \vee Z_{5} \right) \right)$ $= \left(Z_{4} \Longrightarrow Z_{6} \right) \wedge \left(Z_{5} \Longrightarrow Z_{6} \right) \wedge \left(Z_{6} \Longrightarrow \left(Z_{4} \lor Z_{5} \right) \right)$ $= (\neg z_4 \vee z_6) \wedge (\neg z_5 \vee z_6) \wedge (\neg z_6 \vee z_4 \vee z_5)$

• Step 4: Convert each gate of G clauses to include in the 3-SAT formula.

struct the following clauses:

$$z_1 > \forall z_3 \land (\neg z_2 \lor z_3) \land (\neg z_3 \lor (\neg z_1) \lor z_2 \land z_3) \land (\neg z_3 \lor (\neg z_1) \lor z_2 \land z_3)$$

 $\forall z_3 \land (\neg z_2 \lor z_3) \land (\neg z_3 \lor \neg z_1 \lor z_2)$

- Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.
- Key lemma: If a 3-CNF φ includes $(\neg a \lor c), (\neg b \lor c), (\neg c \lor a \lor b)$ as clauses, then any satisfying assignment for the ϕ must set c to equal $a \vee b$.
- **Proof**:
 - The clauses imply the following statements: $a \Rightarrow c, b \Rightarrow c, c \Rightarrow (a \lor b)$.
 - The first two combine to $(a \lor b) \Rightarrow c$.
 - Therefore, $c \Leftrightarrow (a \lor b)$.

- Proving that the reduction is correct:
 - The reduction is polynomial time as it takes a constant number of passes over the input to generate (we don't need any answer more specific than this).
 - "Yes" \rightarrow "Yes": If $(\langle \mathscr{A} \rangle, n)$ is a "Yes" instance, then there is an input x of length n such that $\mathscr{A}(x) = 1$. Let z be the value of the wires of the corresponding circuit G. Then z satisfies the 3-SAT φ by construction.
 - "Yes" \leftarrow "Yes": If *z* satisfies the 3-SAT φ , then let *x* be the values assigned by *z* to the inputs. Then G(x) = 1 as each intermediate gate will evaluate to match *z* due to the previous lemma. And $\mathscr{A}(x) = 1$ iff G(x) = 1 so \mathscr{A} is satisfiable.

General suggestions about proving NP-completeness

- There is not a clear cut set of techniques you can always apply
- Proving NP-completeness is a bit of an art

 - You are converting instances of Y into instances of X
 - I.e. every instance of Y is a special case of an instance of X

• To prove problem X is NP-complete, the most difficult step is finding a problem Y which is known to be is NP-complete such that $Y \leq_p X$

- We've seen that Vertex Cover is in NP.
- Let's show that 3-SAT \leq_p Vertex Cover.
- We need to create a graph G and integer k which captures the structure of a 3-SAT formula φ .

$$\mathcal{C} = (\neg x_1 \lor \chi_2 \lor \chi_3) \land (x_1 \lor \neg \chi_2 \lor \chi_3) \land (\neg x_1 \lor \chi_2 \lor \chi_4)$$
$$\neg \chi_2 \qquad \neg \chi_1$$

• Construction: G contains 3 vertices per clause, one per literal. k = 2m where m is the number of clauses in φ .

- We've seen that Vertex Cover is in NP.
- Let's show that 3-SAT \leq_p Vertex Cover.
- We need to create a graph G and integer k which captures the structure of a 3-SAT formula φ .
- Construction:
 - G contains 3 vertices per clause, one per literal. k = 2m where m is the number of clauses in φ .
 - Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation.

$$\mathcal{C} = \left(\neg x_1 \lor x_2 \lor x_3 \right) \land \left(\right)$$

Observe: $X_1 = X_2 = 1$, $X_3 = X_4 = 0$ is a satisfying instance. And the identified vertices form a vertex cover.

then the vertex cover must be size $\geq 2m$.

- **Theorem:** φ is satisfiable iff G has a vertex cover of size $\leq 2m$.
- **Proof**:
 - "Yes" \rightarrow "Yes": If φ is satisfiable, let x be a satisfying assignment.

 - Each "triangle edge" is covered as 2 vertices are selected per triangle.

η X, X_3

• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size 2m.

• Each "negation edge" is covered as not selecting both endpoints would have both x_i and $\neg x_i$ to be true in the satisfying assignment.

- **Theorem:** φ is satisfiable iff G has a vertex cover of size $\leq 2m$.
- **Proof**:
 - - Set the excluded literal in each triangle to be *true*.
 - Since each "negation edge" is covered, the assignment will set at most one of x_i and $\neg x_i$ to be true.
 - Each clause is satisfied as one literate must be excluded in each clause.

 $\neg \chi_{1}$ χ,

• "Yes" \leftarrow "Yes": If G has a vertex cover of size $\leq 2m$, then by previous lemma, the vertex cover is exactly size 2m and selects two vertices per triangle.

