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Lecture 24
NP-completeness II
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Previously in CSE 421…
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-completeness𝖭𝖯

• Simple definition: A problem is -complete problem if (a) it is in  and (b) it is the 
“hardest” problem in 


• Necessary consequence (we will show soon): A problem  is -complete iff


• If  has a poly-time algorithm, then every problem in  has a poly-time algorithm.


• If some problem  does not have a poly-time algorithm, then neither does . 


• Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved 
every problem in  in poly-time.

𝖭𝖯 𝖭𝖯
𝖭𝖯

X 𝖭𝖯

X 𝖭𝖯

Y ∈ 𝖭𝖯 X

𝖭𝖯
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-completeness𝖭𝖯

• Proving that a problem  is the hardest problem in  requires showing


• that if there exists a poly-time algorithm  for solving , then for any problem , there exists 
a poly-time algorithm  for solving 


• This is called a reduction. We denote this by .


• Formally, we say  reduces to  (denoted ) if any instance  of  can be solved by the following 
algorithm:


• In  time, compute , an instance of the problem 


• Run a subroutine to decide if  is a “yes” instance of  — returning the answer exactly


• This is known as a Karp or many-to-one reduction

Y 𝖭𝖯

𝒜 Y X ∈ 𝖭𝖯
𝒜′ X

X ≤p Y

X Y X ≤p Y x X

poly( |x | ) y = f(x) Y

y Y
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Reductions throughout this class

• We’ve seen reductions many times before in this class


• Anytime you used an algorithm as a subroutine — you were performing a 
reduction


• Examples:


• Bipartite matching as a flow problem


• Ship port assignment as a stable matching


• Little Johnny walking to his mother’s house as a shortest path problem
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Today
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Example of a reduction
Subset Sum  Decision-Knapsack≤p

• Subset Sum: Give input , decide if there exists a subset  such that 
.


• Decision-Knapsack: Given input , decide if there exists a 
subset  such that  and .


• Reduction: We want to come up with an algorithm  for solving Subset Sum from an 
algorithm  for solving Knapsack.


• Given input , define  and .


• Then run  on ( ).

a1, …, an, T S ⊆ [n]
∑i∈S ai = T

w1, …, wn, v1, …, vn, W, V
S ⊆ [n] ∑i∈S wi ≤ W ∑i∈S vi ≥ V

𝒜′ 

𝒜

a1, …, an, T wi = vi ← ai W = V ← T

𝒜 w1, …, wn, v1, …, vn, W, V
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Proving a reduction is correct

• The previous example is a Karp reduction between Subset Sum 
and D-Knapsack


• To generate a Karp reduction  between two decision 
problems  and 


• We need to find a poly-time computable function  
that converts instances  of  into instances  of 


• “Yes”  “Yes”: If for every  that is a “yes”, then  
is also a “yes” instance


• “Yes”  “Yes”: If for every  that is a “yes”, then  
is also a “yes” instance


• Equiv. to: If  is a “no”, then  is a “no”

X ≤p Y
X Y

f : X → Y
x X f(x) Y

→ x ∈ X f(x) ∈ Y

← f(x′ ) ∈ Y x′ ∈ X

x′ ′ ∈ X f(x′ ′ ) ∈ Y
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Example of a reduction
Subset Sum  Decision-Knapsack≤p

• Subset Sum,   


• If  is a “yes” instance, then there exists  s.t. 


• Therefore,  So  is a “yes” instance.


• If  is a “yes” instance, then there exists  s.t.  and .


• So , proving that  is a “yes” 
instance.

x = ( ⃗a, T) ∈ f(x) = ( ⃗w = ⃗v ← ⃗a, W = V ← T)

x S ⊆ [n] ∑i∈S ai = T

∑i∈S wi = ∑i∈S ai = T ≤ W,

∑i∈S vi = ∑i∈S ai = T ≥ V .
f(x)

f(x) S ⊆ [n] ∑i∈S wi ≥ W ∑i∈S vi ≤ V

T = V ≤ ∑i∈S vi = ∑i∈S ai ≤ ∑i∈S wi ≤ W = T x
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-completeness𝖭𝖯

• Formal definition: A problem  is -complete if  and for every problem , 
. 


• Theorem: Let  be a -complete problem. Then  is solvable in poly-time iff .


• Proof:  

• ( ) If , then  has a poly-time algorithm since .


• ( ) Let  be any problem in . Since , we can solve  in poly-time using the 
poly-time algorithm for  as a subroutine. So . So . 


• Fundamental question: Do there exist “natural” -complete problems?

Y 𝖭𝖯 Y ∈ 𝖭𝖯 X ∈ 𝖭𝖯
X ≤p Y

Y 𝖭𝖯 Y 𝖯 = 𝖭𝖯

⟸ 𝖯 = 𝖭𝖯 Y Y ∈ 𝖭𝖯

⟹ X 𝖭𝖯 X ≤p Y X
Y X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯
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A partial list of -complete problems𝖭𝖯

• Boolean function satisfiability, 3-SAT


• 0-1 Integer programming


• Graph problems: Vertex cover, 3-color, independent set, set cover, max cut


• Path and cycle problems: Hamiltonian path, traveling salesman


• Combinatorial optimization problems: Knapsack, Subset sum
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The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm  and integer  in unary. 
Output: Whether there exists a  such that  and .


• Theorem: Satisfiability is -complete.


• Proof:


• Satisfiability is in  as  is a proof of the satisfiability.


• For any other problem , there exists a certifier  such that  is a “yes” 
instance iff there exists a  such that  accepts.


• Let taken as input by .


• Define as the poly-sized program computing  for  “hardcoded”.


• Then  is a “yes” instance iff exists a  such that  and .


• So , proving  -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π) x

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯
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Proving more -complete problems𝖭𝖯

• Recipe for showing that problem  is -complete


• Step 1: Show that .


• Step 2: Choose a known -compete problem .


• Step 3: Prove that .


• Correctness of recipe: We claim that  is a transitive operation.


• If  and  then .


• For any problem , then , proving that  is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯
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3-SAT problem

• The 3-SAT problem is the most well known of all -complete problems


• A boolean formula  is a 3-SAT formula over variables  if


• , the “AND” of -subformulas


• Each  is the “OR” of  variables or their negations from .


• Examples: 


• Theorem: 3-SAT is -complete.

𝖭𝖯

φ x1, …, xn ∈ {0,1}

φ = φ1 ∧ φ2 ∧ … ∧ φk k

φj ≤ 3 x1, …, xn

𝖭𝖯
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Proof that 3-SAT is NP-complete

• Key idea: Show that Satisfiability reduces to 3-SAT.


• Proof: We saw that 3-SAT is in  (the proof is just the satisfying assignment).


• To show that Satisfiability reduces to 3-SAT, we follow the following outline to convert an 
instance of Satisfiability into an instance of 3-SAT:


• Step 1: Convert every input  to Satisfiability into a boolean circuit .


• Step 2: Adjust  so that it is nicely structured: Use De Morgan’s laws to ensure  consists of 
only OR and NOT gates, has no double negations.


• Step 3: Label every input wire and output wire of an OR gate, with a variable .


• Step 4: Convert each gate of  into a set of clauses in the 3-SAT formula.

𝖭𝖯

(⟨𝒜⟩, n) G

G G

zi

G
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Proof that 3-SAT is NP-complete

• Step 2 elaborated:


• De Morgan’s laws:


• Switching ANDs to ORs: 


• Double negations: 


• Decomposing Big ORs: 


• Using these boolean formula transforms, any boolean circuit can be 
converted into one with only OR and NOT gates 

(y1 ∧ y2) = ¬(¬y1 ∨ ¬y2)

¬¬y1 = y1

y1 ∨ y2 ∨ y3 ∨ y4 = (y1 ∨ y2) ∨ (y3 ∨ y4)
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Proof that 3-SAT is NP-complete

• Step 3: Label every input wire and output wire of an OR gate, with a variable 
.zi
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Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of  into clauses to include in the 3-SAT formula.G
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Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of  clauses to include in the 3-SAT formula.G
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Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of  into clauses to include in the 3-SAT formula.


• Key lemma: If a 3-CNF  includes , ,  as 
clauses, then any satisfying assignment for the  must set  to equal .


• Proof: 


• The clauses imply the following statements: , , .


• The first two combine to .


• Therefore, .

G

φ (¬a ∨ c) (¬b ∨ c) (¬c ∨ a ∨ b)
φ c a ∨ b

a ⇒ c b ⇒ c c ⇒ (a ∨ b)

(a ∨ b) ⇒ c

c ⇔ (a ∨ b)
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Proof that 3-SAT is NP-complete

• Proving that the reduction is correct:


• The reduction is polynomial time as it takes a constant number of passes over 
the input to generate (we don’t need any answer more specific than this).


• “Yes”  “Yes”: If  is a “Yes” instance, then there is an input  of length 
 such that . Let  be the value of the wires of the corresponding 

circuit . Then  satisfies the 3-SAT  by construction.


• “Yes”  “Yes”: If  satisfies the 3-SAT , then let  be the values assigned by  
to the inputs. Then  as each intermediate gate will evaluate to match  
due to the previous lemma. And  iff  so  is satisfiable.

→ (⟨𝒜⟩, n) x
n 𝒜(x) = 1 z

G z φ

← z φ x z
G(x) = 1 z

𝒜(x) = 1 G(x) = 1 𝒜
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General suggestions about proving -completeness𝖭𝖯

• There is not a clear cut set of techniques you can always apply


• Proving -completeness is a bit of an art —


• To prove problem  is -complete, the most difficult step is finding a 
problem  which is known to be is -complete such that 


• You are converting instances of  into instances of 


• I.e. every instance of  is a special case of an instance of 

𝖭𝖯

X 𝖭𝖯
Y 𝖭𝖯 Y ≤p X

Y X

Y X
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Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .


• Let’s show that 3-SAT  Vertex Cover.


• We need to create a graph  and integer  which captures the structure of a 3-SAT formula .


• Construction:  contains 3 vertices per clause, one per literal.  where  is the number of clauses in .

𝖭𝖯

≤p

G k φ

G k = 2m m φ
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Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .


• Let’s show that 3-SAT  Vertex Cover.


• We need to create a graph  and integer  which captures the structure of a 3-SAT formula .


• Construction:  

•  contains 3 vertices per clause, one per literal.  where  is the number of clauses in .


• Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation. 

𝖭𝖯

≤p

G k φ

G k = 2m m φ
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Vertex Cover is -complete𝖭𝖯
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Vertex Cover is -complete𝖭𝖯
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Vertex Cover is -complete𝖭𝖯

• Theorem:  is satisfiable iff  has a vertex cover of size .


• Proof:


• “Yes”  “Yes”: If  is satisfiable, let  be a satisfying assignment. 


• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size . 


• Each “triangle edge” is covered as 2 vertices are selected per triangle.


• Each “negation edge” is covered as not selecting both endpoints would have both  and  to be true in the satisfying assignment.

φ G ≤ 2m

→ φ x

2m

xi ¬xi
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Vertex Cover is -complete𝖭𝖯

• Theorem:  is satisfiable iff  has a vertex cover of size .


• Proof:


• “Yes”  “Yes”: If  has a vertex cover of size , then by previous lemma, the vertex cover is exactly size  and selects two vertices per triangle.


• Set the excluded literal in each triangle to be true. 


• Since each “negation edge” is covered, the assignment will set at most one of  and  to be true. 


• Each clause is satisfied as one literate must be excluded in each clause.

φ G ≤ 2m

← G ≤ 2m 2m

xi ¬xi
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