Lecture 24

NP-completeness Il

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

NP-completeness

« Simple definition: A problem is NP-complete problem if (a) it is in NP and (b) it is the
“hardest” problem in NP

 Necessary consequence (we will show soon): A problem X is NP-complete iff
 If X has a poly-time algorithm, then every problem in NP has a poly-time algorithm.

 If some problem Y € NP does not have a poly-time algorithm, then neither does X.

 Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved
every problem in NP in poly-time.

NP-completeness

» Proving that a problem Y is the hardest problem in NP requires showing

» that if there exists a poly-time algorithm & for solving Y, then for any problem X € NP, there exists
a poly-time algorithm &/’ for solving X

« This is called a reduction. We denote this by X <, Y.

« Formally, we say X reduces to Y (denoted X <, Y) if any instance x of X can be solved by the following
algorithm:

» In poly(|x]|) time, compute y = f(x), an instance of the problem Y

« Run a subroutine to decide if y is a “yes” instance of ¥ — returning the answer exactly

* This is known as a Karp or many-to-one reduction

Reductions throughout this class

 We’ve seen reductions many times before in this class

* Anytime you used an algorithm as a subroutine — you were performing a
reduction

 Examples:
* Bipartite matching as a flow problem
e Ship port assignment as a stable matching

o Little Johnny walking to his mother’s house as a shortest path problem

Today

Example of a reduction

Subset Sum < Decision-Knapsack

« Subset Sum: Give input ay, ..., a,, T, decide if there exists a subset § C [n] such that
Y. a;=T.
ey !

« Decision-Knapsack: Given input wy, ..., w,, vy, ..., v,, W, V, decide if there exists a

subset S C [n] suchthat). .w; < Wand > _.v,>V.

» Reduction: We want to come up with an algorithm &’ for solving Subset Sum from an
algorithm & for solving Knapsack.

« Giveninputay,...,a,,1,definew, =v, < agand W=V « T.

e Thenrun & on Wy, ..., W , Vi, ...,v., W V).

14

Proving a reduction is correct

 The previous example is a Karp reduction between Subset Sum
and D-Knapsack

To generate a Karp reduction X Sp Y between two decision
problems X and Y

« We need to find a poly-time computable functionf: X — Y
that converts instances x of X into instances f(x) of Y

¢ “Yes” — “Yes”: If for every x € X thatis a “yes”, thenf(x) € Y
IS also a “yes” instance

¢ “Yes” « “Yes”: If for every f(x’) € Y that is a “yes”, thenx' € X
IS also a “yes” instance

« Equiv. to: If x” € X is a “no”, then f(x") € Yis a “no”

Example of a reduction

Subset Sum < Decision-Knapsack

e x=(a,T) € SubsetSum, f(x) =(W =v << a, W=V «T)

. If x is a “yes” instance, then there exists S C [n] s.t.). =T

€S di
icsWi= Qujes @i =T < W, o
. Therefore, So f(x) is a “yes” instance.

QiicsVi= Qs @i =T2V.

. If f(x) is a “yes” instance, then there exists § C [n] sit.), _ w; > Wand), _ v, <V

. SoT=V< Zl Vi S Zl <G < Zl W; < W =T, proving that x is a “yes”
iInstance.

NP-completeness

» Formal definition: A problem Y is NP-complete if Y € NP and for every problem X € NP,
X<'Y.
—=p

 Theorem: Let Y be a NP-complete problem. Then Y is solvable in poly-time iff P = NP.
* Proof:
¢ (<) If P = NP, then Y has a poly-time algorithm since ¥ € NP.

« (=) Let X be any problem in NP. Since X <, Y, we can solve X in poly-time using the
poly-time algorithm for Y as a subroutine. So X € P. So P = NP.

 Fundamental question: Do there exist “natural” NP-complete problems?

10

A partial list of NP-complete problems

* Boolean function satisfiability, 3-SAT

* 0-1 Integer programming

 Graph problems: Vertex cover, 3-color, independent set, set cover, max cut
 Path and cycle problems: Hamiltonian path, traveling salesman

 Combinatorial optimization problems: Knapsack, Subset sum

11

The “first” NP-complete problem
Satisfiability

« Satisfiability: Input: ((&/), n), the description of an algorithm &/ and integer 7 in unary.
Output: Whether there exists a 7 such that &/(7) = 1 and | 7| = n.

+ Theorem: Satisfiability is NP-complete. input :

* Proof:
[T
« Satisfiability is in NP as 7 is a proof of the satisfiability.

instance iff there exists a & such that 7' (x, 7) accepts.

 For any other problem X € NP, there exists a certifier 7"(x, 7) such that x is a “yes” \

e Letn = | m|taken as input by 7.
« Define &/ (7) := as the poly-sized program computing 7" (x, x) for x “hardcoded”.
« Then x is a “yes” instance iff exists a 7 such that &/(7x) = 1 and | x| = n.

« S0 X <, Y, proving NP-completeness.

12

Proving more NP-complete problems

* Recipe for showing that problem Y is NP-complete
» Step 1: Show that ¥ € NP.
« Step 2: Choose a known NP-compete problem X.

« Step 3: Prove that X <, Y.
« Correctness of recipe: We claim that Sp IS a transitive operation.
. Istannngp Y then WSP Y.

» For any problem W € NP, then W <, Y, proving that Y is NP-complete.

13

3-SAT problem

» The 3-SAT problem is the most well known of all NP-complete problems

» A boolean formula ¢ is a 3-SAT formula over variables x, ...,x, € {0,1} if
s P =@ APy A ... A\ @, the “AND” of k-subformulas

« Each ®; is the “OR” of < 3 variables or their negations from x, ..., x, .

* Examples: Y(z,,..,2,)= (g, va2,V 333 /\<"' 2V 7LV 21>

« Theorem: 3-SAT is NP-complete.

14

Proof that 3-SAT is NP-complete

 Key idea: Show that Satisfiability reduces to 3-SAT.

* Proof: We saw that 3-SAT is in NP (the proof is just the satisfying assignment).

* To show that Satisfiability reduces to 3-SAT, we follow the following outline to convert an
instance of Satisfiability into an instance of 3-SAT:

» Step 1: Convert every input ({(&f), n) to Satisfiability into a boolean circuit G.

« Step 2: Adjust G so that it is nicely structured:

» Step 3: Label every input wire and output wire of an OR gate, with a variable z..

« Step 4: Convert each gate of G into a set of clauses in the 3-SAT formula.

15

Proof that 3-SAT is NP-complete

e Step 2 elaborated:

 De Morgan’s laws;
. Switching ANDs to ORs: (y; A ,) = =1(=y; V =1y,)
» Double negations: =y, =y,

e Decomposing BigORs: y, Vy, Vy; Vy, = (y1 V yz) \' (}’3 \4 Y4)

* Using these boolean formula transforms, any boolean circuit can be
converted into one with only OR and NOT gates

16

Proof that 3-SAT is NP-complete

o Step 3: Label every input wire and output wire of an OR gate, with a variable

$ie
Ex o\w\P‘aS :
2 2 tq
3 £
| |
V
§ A &
@ C
Z\ ZZ Z\, 2&’ :‘2; 2_7

Proof that 3-SAT is NP-complete

» Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.

Considen, ’\‘LA %ubt\j OKJ«‘(Z. We. wWent ZZ‘ &> Z,T V Z¢

z(— ((;l V2.)=>D 24) /\ (z(= (zc, V zf)>

% = (zﬂ-:?lé.)/\ ¥;:'>%é>/\<2(=><2q\/?r>>

Z\' -Zr = <—7 z‘I\/‘Zg> A(ﬁz\(\/-Zé> /\(‘124 \/ 2.1 \/25>

Proof that 3-SAT is NP-complete

» Step 4: Convert each gate of G clauses to include in the 3-SAT formula.

Considen, Ho %‘luﬁ OK\th,

Proof that 3-SAT is NP-complete

» Step 4: Convert each gate of G into clauses to include in the 3-SAT formula.

» Keylemma: If a3-CNF ¢ includes (maVc),(mbVc),(mcVaVb)as
clauses, then any satisfying assignment for the @ must set ¢ to equal a Vv b.

* Proof:
» The clauses imply the following statements: a = ¢, b = ¢, ¢ = (a VvV b).
 The first two combine to (a V b) = c.

» Therefore, c © (a Vv b).

20

Proof that 3-SAT is NP-complete

* Proving that the reduction is correct:

* The reduction is polynomial time as it takes a constant number of passes over
the input to generate (we don’t need any answer more specific than this).

» “Yes” — “Yes”: If ({(), n) is a “Yes” instance, then there is an input x of length
n such that &/(x) = 1. Let z be the value of the wires of the corresponding
circuit G. Then z satisfies the 3-SAT ¢ by construction.

o “Yes” « "Yes”: If z satisfies the 3-SAT @, then let x be the values assigned by 7
to the inputs. Then G(x) = 1 as each intermediate gate will evaluate to match z
due to the previous lemma. And & (x) = 1 iff G(x) = 1 so & is satisfiable.

21

General suggestions about proving NP-completeness

 There is not a clear cut set of technigues you can always apply
» Proving NP-completeness is a bit of an art —

» To prove problem X is NP-complete, the most difficult step is finding a
problem Y which is known to be is NP-complete such that Y <, X

* You are converting instances of Y into instances of X

 |.e. every instance of Y is a special case of an instance of X

22

Vertex Cover is NP-complete

 \We’ve seen that Vertex Cover is in NP.

o Let’s show that 3-SAT gp Vertex Cover.

» We need to create a graph G and integer k which captures the structure of a 3-SAT formula @.

» Construction: G contains 3 vertices per clause, one per literal. kK = 2m where m is the number of clauses in ¢.
{ = (ﬂlx\\/‘XL\/(X.Sv/\CXI\/'—'X?.\/‘X3)/\(’—"X|\/'XZ\/9(?>

7’)(,

ANANAN

23

Vertex Cover is NP-complete

We’ve seen that Vertex Cover is in NP.

Let’s show that 3-SAT Sp Vertex Cover.

We need to create a graph G and integer k which captures the structure of a 3-SAT formula .

Construction:

« G contains 3 vertices per clause, one per literal. kK = 2m where m is the number of clauses in ¢.

 Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation.

¢ = (A% Vo V)N (Vax V)N (axVxVs,)

\\ x / \\x

24

—7'>(,

/N

J 7(7_ 9

Vertex Cover is NP-complete

¢ = (A Vo V)N (Van V)N (axVxVs,)

X, = 7(,

SN NN

X, X4

Vertex Cover is NP-complete

: \ |
Obsevaton: Iff a /N exsts in Hre gragh Fren o least L of e verFices wunt be

incauded In a vertox covel.

Cg("a\\w ; \{\ a jm‘\)\'\' has M o((iso;n%- ‘\‘vii:j\c.s /\, /\. Lo /\
| P —

~

N

Hran Al veltex Coves must e Size 2 Iwm

26

Vertex Cover is NP-complete

« Theorem: @ is satisfiable iff G has a vertex cover of size < 2m.

 Proof:
« “Yes” — “Yes”: If @ is satisfiable, let x be a satisfying assignment.

« For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size 2m.

« Each “triangle edge” is covered as 2 vertices are selected per triangle.

« Each “negation edge” is covered as not selecting both endpoints would have both X; and —x; to be true in the satisfying assignment.

Y = (‘W’X\\/‘)(L\/‘X3>/\(7(,\/’77(1\/7(3)/\<—77(|\/sz9(?>

N /N

27

-77(,

N\

J 7(7_ 91

Vertex Cover is NP-complete

« Theorem: @ is satisfiable iff G has a vertex cover of size < 2m.

 Proof:

¢ “Yes” « “Yes”: If G has a vertex cover of size < 2m, then by previous lemma, the vertex cover is exactly size 2m and selects two vertices per triangle.

« Set the excluded literal in each triangle to be true.

» Since each “negation edge” is covered, the assignment will set at most one of x; and —x; to be true.

 Each clause is satisfied as one literate must be excluded in each clause.

Y = (‘W’X\\/‘)(L\/‘X3>/\(7(,\/’77(1\/7(3)/\<—77(|\/sz9(?>

- X,
/ A\
) \
X, X

28

X, =)(,

N\

J 7(7_ 9

