
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 24
NP-completeness II

1

Previously in CSE 421…

2

-completeness𝖭𝖯

• Simple definition: A problem is -complete problem if (a) it is in and (b) it is the
“hardest” problem in

• Necessary consequence (we will show soon): A problem is -complete iff

• If has a poly-time algorithm, then every problem in has a poly-time algorithm.

• If some problem does not have a poly-time algorithm, then neither does .

• Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved
every problem in in poly-time.

𝖭𝖯 𝖭𝖯
𝖭𝖯

X 𝖭𝖯

X 𝖭𝖯

Y ∈ 𝖭𝖯 X

𝖭𝖯

3

-completeness𝖭𝖯

• Proving that a problem is the hardest problem in requires showing

• that if there exists a poly-time algorithm for solving , then for any problem , there exists
a poly-time algorithm for solving

• This is called a reduction. We denote this by .

• Formally, we say reduces to (denoted) if any instance of can be solved by the following
algorithm:

• In time, compute , an instance of the problem

• Run a subroutine to decide if is a “yes” instance of — returning the answer exactly

• This is known as a Karp or many-to-one reduction

Y 𝖭𝖯

𝒜 Y X ∈ 𝖭𝖯
𝒜′ X

X ≤p Y

X Y X ≤p Y x X

poly(|x |) y = f(x) Y

y Y

4

Reductions throughout this class

• We’ve seen reductions many times before in this class

• Anytime you used an algorithm as a subroutine — you were performing a
reduction

• Examples:

• Bipartite matching as a flow problem

• Ship port assignment as a stable matching

• Little Johnny walking to his mother’s house as a shortest path problem

5

Today

6

Example of a reduction
Subset Sum Decision-Knapsack≤p

• Subset Sum: Give input , decide if there exists a subset such that
.

• Decision-Knapsack: Given input , decide if there exists a
subset such that and .

• Reduction: We want to come up with an algorithm for solving Subset Sum from an
algorithm for solving Knapsack.

• Given input , define and .

• Then run on ().

a1, …, an, T S ⊆ [n]
∑i∈S ai = T

w1, …, wn, v1, …, vn, W, V
S ⊆ [n] ∑i∈S wi ≤ W ∑i∈S vi ≥ V

𝒜′

𝒜

a1, …, an, T wi = vi ← ai W = V ← T

𝒜 w1, …, wn, v1, …, vn, W, V

7

Proving a reduction is correct

• The previous example is a Karp reduction between Subset Sum
and D-Knapsack

• To generate a Karp reduction between two decision
problems and

• We need to find a poly-time computable function
that converts instances of into instances of

• “Yes” “Yes”: If for every that is a “yes”, then
is also a “yes” instance

• “Yes” “Yes”: If for every that is a “yes”, then
is also a “yes” instance

• Equiv. to: If is a “no”, then is a “no”

X ≤p Y
X Y

f : X → Y
x X f(x) Y

→ x ∈ X f(x) ∈ Y

← f(x′) ∈ Y x′ ∈ X

x′ ′ ∈ X f(x′ ′) ∈ Y

8

Example of a reduction
Subset Sum Decision-Knapsack≤p

• Subset Sum,

• If is a “yes” instance, then there exists s.t.

• Therefore, So is a “yes” instance.

• If is a “yes” instance, then there exists s.t. and .

• So , proving that is a “yes”
instance.

x = (⃗a, T) ∈ f(x) = (⃗w = ⃗v ← ⃗a, W = V ← T)

x S ⊆ [n] ∑i∈S ai = T

∑i∈S wi = ∑i∈S ai = T ≤ W,

∑i∈S vi = ∑i∈S ai = T ≥ V .
f(x)

f(x) S ⊆ [n] ∑i∈S wi ≥ W ∑i∈S vi ≤ V

T = V ≤ ∑i∈S vi = ∑i∈S ai ≤ ∑i∈S wi ≤ W = T x

9

-completeness𝖭𝖯

• Formal definition: A problem is -complete if and for every problem ,
.

• Theorem: Let be a -complete problem. Then is solvable in poly-time iff .

• Proof:

• () If , then has a poly-time algorithm since .

• () Let be any problem in . Since , we can solve in poly-time using the
poly-time algorithm for as a subroutine. So . So .

• Fundamental question: Do there exist “natural” -complete problems?

Y 𝖭𝖯 Y ∈ 𝖭𝖯 X ∈ 𝖭𝖯
X ≤p Y

Y 𝖭𝖯 Y 𝖯 = 𝖭𝖯

⟸ 𝖯 = 𝖭𝖯 Y Y ∈ 𝖭𝖯

⟹ X 𝖭𝖯 X ≤p Y X
Y X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

10

A partial list of -complete problems𝖭𝖯

• Boolean function satisfiability, 3-SAT

• 0-1 Integer programming

• Graph problems: Vertex cover, 3-color, independent set, set cover, max cut

• Path and cycle problems: Hamiltonian path, traveling salesman

• Combinatorial optimization problems: Knapsack, Subset sum

11

The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm and integer in unary.
Output: Whether there exists a such that and .

• Theorem: Satisfiability is -complete.

• Proof:

• Satisfiability is in as is a proof of the satisfiability.

• For any other problem , there exists a certifier such that is a “yes”
instance iff there exists a such that accepts.

• Let taken as input by .

• Define as the poly-sized program computing for “hardcoded”.

• Then is a “yes” instance iff exists a such that and .

• So , proving -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π) x

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯

12

Proving more -complete problems𝖭𝖯

• Recipe for showing that problem is -complete

• Step 1: Show that .

• Step 2: Choose a known -compete problem .

• Step 3: Prove that .

• Correctness of recipe: We claim that is a transitive operation.

• If and then .

• For any problem , then , proving that is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯

13

3-SAT problem

• The 3-SAT problem is the most well known of all -complete problems

• A boolean formula is a 3-SAT formula over variables if

• , the “AND” of -subformulas

• Each is the “OR” of variables or their negations from .

• Examples:

• Theorem: 3-SAT is -complete.

𝖭𝖯

φ x1, …, xn ∈ {0,1}

φ = φ1 ∧ φ2 ∧ … ∧ φk k

φj ≤ 3 x1, …, xn

𝖭𝖯

14

Proof that 3-SAT is NP-complete

• Key idea: Show that Satisfiability reduces to 3-SAT.

• Proof: We saw that 3-SAT is in (the proof is just the satisfying assignment).

• To show that Satisfiability reduces to 3-SAT, we follow the following outline to convert an
instance of Satisfiability into an instance of 3-SAT:

• Step 1: Convert every input to Satisfiability into a boolean circuit .

• Step 2: Adjust so that it is nicely structured: Use De Morgan’s laws to ensure consists of
only OR and NOT gates, has no double negations.

• Step 3: Label every input wire and output wire of an OR gate, with a variable .

• Step 4: Convert each gate of into a set of clauses in the 3-SAT formula.

𝖭𝖯

(⟨𝒜⟩, n) G

G G

zi

G

15

Proof that 3-SAT is NP-complete

• Step 2 elaborated:

• De Morgan’s laws:

• Switching ANDs to ORs:

• Double negations:

• Decomposing Big ORs:

• Using these boolean formula transforms, any boolean circuit can be
converted into one with only OR and NOT gates

(y1 ∧ y2) = ¬(¬y1 ∨ ¬y2)

¬¬y1 = y1

y1 ∨ y2 ∨ y3 ∨ y4 = (y1 ∨ y2) ∨ (y3 ∨ y4)

16

Proof that 3-SAT is NP-complete

• Step 3: Label every input wire and output wire of an OR gate, with a variable
.zi

17

Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of into clauses to include in the 3-SAT formula.G

18

Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of clauses to include in the 3-SAT formula.G

19

Proof that 3-SAT is NP-complete

• Step 4: Convert each gate of into clauses to include in the 3-SAT formula.

• Key lemma: If a 3-CNF includes , , as
clauses, then any satisfying assignment for the must set to equal .

• Proof:

• The clauses imply the following statements: , , .

• The first two combine to .

• Therefore, .

G

φ (¬a ∨ c) (¬b ∨ c) (¬c ∨ a ∨ b)
φ c a ∨ b

a ⇒ c b ⇒ c c ⇒ (a ∨ b)

(a ∨ b) ⇒ c

c ⇔ (a ∨ b)
20

Proof that 3-SAT is NP-complete

• Proving that the reduction is correct:

• The reduction is polynomial time as it takes a constant number of passes over
the input to generate (we don’t need any answer more specific than this).

• “Yes” “Yes”: If is a “Yes” instance, then there is an input of length
 such that . Let be the value of the wires of the corresponding

circuit . Then satisfies the 3-SAT by construction.

• “Yes” “Yes”: If satisfies the 3-SAT , then let be the values assigned by
to the inputs. Then as each intermediate gate will evaluate to match
due to the previous lemma. And iff so is satisfiable.

→ (⟨𝒜⟩, n) x
n 𝒜(x) = 1 z

G z φ

← z φ x z
G(x) = 1 z

𝒜(x) = 1 G(x) = 1 𝒜
21

General suggestions about proving -completeness𝖭𝖯

• There is not a clear cut set of techniques you can always apply

• Proving -completeness is a bit of an art —

• To prove problem is -complete, the most difficult step is finding a
problem which is known to be is -complete such that

• You are converting instances of into instances of

• I.e. every instance of is a special case of an instance of

𝖭𝖯

X 𝖭𝖯
Y 𝖭𝖯 Y ≤p X

Y X

Y X

22

Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .

• Let’s show that 3-SAT Vertex Cover.

• We need to create a graph and integer which captures the structure of a 3-SAT formula .

• Construction: contains 3 vertices per clause, one per literal. where is the number of clauses in .

𝖭𝖯

≤p

G k φ

G k = 2m m φ

23

Vertex Cover is -complete𝖭𝖯

• We’ve seen that Vertex Cover is in .

• Let’s show that 3-SAT Vertex Cover.

• We need to create a graph and integer which captures the structure of a 3-SAT formula .

• Construction:

• contains 3 vertices per clause, one per literal. where is the number of clauses in .

• Add an edge between each pair of literals in a clause. Add edges connecting each variable to its negation.

𝖭𝖯

≤p

G k φ

G k = 2m m φ

24

Vertex Cover is -complete𝖭𝖯

25

Vertex Cover is -complete𝖭𝖯

26

Vertex Cover is -complete𝖭𝖯

• Theorem: is satisfiable iff has a vertex cover of size .

• Proof:

• “Yes” “Yes”: If is satisfiable, let be a satisfying assignment.

• For each clause, pick one of the literals that must be set to be true and include the other two in the vertex cover. This is a vertex cover of size .

• Each “triangle edge” is covered as 2 vertices are selected per triangle.

• Each “negation edge” is covered as not selecting both endpoints would have both and to be true in the satisfying assignment.

φ G ≤ 2m

→ φ x

2m

xi ¬xi

27

Vertex Cover is -complete𝖭𝖯

• Theorem: is satisfiable iff has a vertex cover of size .

• Proof:

• “Yes” “Yes”: If has a vertex cover of size , then by previous lemma, the vertex cover is exactly size and selects two vertices per triangle.

• Set the excluded literal in each triangle to be true.

• Since each “negation edge” is covered, the assignment will set at most one of and to be true.

• Each clause is satisfied as one literate must be excluded in each clause.

φ G ≤ 2m

← G ≤ 2m 2m

xi ¬xi

28

