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Lecture 23
P vs NP and problems that are just too hard
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When does a problem not have an efficient algorithm?

• Let’s back up. Are there problems that don’t have any algorithms? 

• Yes! One example is called the halting problem.


• Input: Program code.


• Output: Whether the program code every terminates or runs forever.


• Theorem [Gödel]: There is no algorithm for solving the halting problem.


• Theorem: Solving a system of polynomial equations for integer solutions has 
no algorithm. 
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When does a problem not have an efficient algorithm?

• Let’s restrict to problems that have algorithms. Is it necessary that those 
algorithms are efficient?


• Theorem: There exist problems that can be solved in exponential time but 
cannot be solved in polynomial time.


• This theorem just proves the existence of such problems — it does not 
prove that there are “interesting problems” that require exponential time.


• Interesting problems like: Vertex Cover, Independent Set, Knapsack 
problem, Traveling Salesman, 3-Color, etc. What about those?
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Decision problems

• Definition: A decision problem is any problem which has a boolean (yes vs. no) answer.


• Input: . Output: Does a graph  have a vertex cover of size ?


• Input: . Output: Is there an MST of weight ?


• Input: Boolean circuit . Output: Is there an  such that ?


• Input: . Output: Is there a valid Knapsack of weight  and value ?


• Input:  Sudoku problem. Output: Is there a solution to this problem?


• Input: . Output: Is there a max flow of size ?

(G, k) G ≤ k

(G, k) ≥ k

φ x φ(x) = 1

(W, V, ⃗w , ⃗v) ≤ W ≥ V

n × n

(G, c, s, t, k) ≥ k
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The class 𝖯

• Definition: An algorithm  runs in time  if for every input ,  terminates in at most 
 “steps”.


• An algorithm runs in polynomial-time (poly-time) if  for some constant 


• We say a decision problem can be solved in polynomial-time if there is a polynomial-time 
algorithm  for it


• Definition: The class  is the class of decision problems that can be solved in polynomial-time


•  is a decent approximation for the set of problems that can be solved efficiently by some 
model of computation. In practice, we are interested in the problems with poly runtimes for 
some constants .

𝒜 t(n) x 𝒜(x)
≤ t( |x | )

t(n) = nc c .

𝒜

𝖯

𝖯

c
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The class 𝖯

• Some of the problems in 


• Input: . Output: Is there an MST of weight ?


• Input: . Output: Is there a max flow of size ?


• Input: . Output: Value of LP 


• Input: matrices . Output: If .


• Input:  expressed in binary. Output: if  is prime.

𝖯

(G, k) ≥ k

(G, c, s, t, k) ≥ k

(A, b, c) max c⊤x s . t . Ax ≤ b, x ≥ 0

(A, B, C) C = A ⋅ B

n ∈ ℕ n
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The class 𝖭𝖯

• Certification algorithm intuition: A certifier algorithm doesn’t determine whether the answer to a 
decision problem is “yes” on its own. Rather, it checks a proof (a.k.a. certificate a.k.a. witness)  
that the answer is “yes”.


• Definition: An algorithm  is a certifier/verifier for the problem  if for every string , the 
answer is “yes” IFF there exists a proof  such that .


• A certifier is poly-time if  and  runs in time  for some constants .


• Definition: The class  is the class of decision problems for which there is a poly-time certifier. 

• Remark:  stands for non-deterministic polynomial time. 

π

𝒱(x, π) X x
π 𝒱(x, π) = 1

|π | ≤ |x |c′￼ 𝒱 |x |c c, c′￼

𝖭𝖯

𝖭𝖯
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Examples of problems in 𝖭𝖯
Knapsack

• Input: . Output: Is there a valid Knapsack of weight  
and value ?


• Proof: . if we should include item .


• Certifier algorithm :


• Test if  and 


• Respond “yes” if both conditions hold


• Otherwise, respond “no”.

(W, V, ⃗w , ⃗v) ≤ W
≥ V

π ∈ {0,1}n πi = 1 i

𝒱 (x = (W, V, ⃗w , ⃗v), π)
∑

i:πi=1

wi ≤ W ∑
i:πi=1

vi ≥ V
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Examples of problems in 𝖭𝖯
Knapsack

• Input: . Output: Is there a valid Knapsack of weight  and value ?


• Proof: . if we should include item .


• Correctness:


• If there is a valid Knapsack, 


• let  be the items. Set  iff .


• Then there exists a  s.t.  will accept.


• If there exists a proof  which is accepted by , 


• then  the items  s.t.  is a valid Knapsack.


• Bijection between Knapsacks and proofs.

(W, V, ⃗w , ⃗v) ≤ W ≥ V

π ∈ {0,1}n πi = 1 i

S ⊆ [n] πi = 1 i ∈ S

π 𝒱

π 𝒱

S ⊆ [n] i πi = 1
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Examples of problems in 𝖭𝖯
Vertex Cover

• Input: . Output: Does a graph  have a vertex 
cover of size ?


• Proof: . if we should include vertex  
in the cover.


• Certifier algorithm :


• For all edges , test that  or 
.


• Test that .

(G, k) G
≤ k

π ∈ {0,1}V πv = 1 v

𝒱 (x = (G, k), π)
e = (u, v) ∈ E πu = 1

πv = 1

∑
v∈V

πv ≤ k
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Examples of problems in  𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a  such that 
.

φ z ∈ {0,1}n

φ(z) = 1
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Examples of problems in  𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a  such that 
.

φ z ∈ {0,1}n

φ(z) = 1

12



Examples of problems in  𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a  such that 
.

φ z ∈ {0,1}n

φ(z) = 1
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Examples of problems in  𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a  such that 
.


• Proof: the satisfying assignment 


• Certifier algorithm :


• Check that every disjunction (OR statement) is true.

φ z ∈ {0,1}n

φ(z) = 1

x

𝒱 (φ, z)
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Examples of problems in 𝖭𝖯
Hamiltonian Path

• Input: . Output: Does there exists a simple path 
that visits every vertex (i.e. without repeating 
vertices)?


• Proof: The permutation  listing the sequence of 
vertices in the path.


• Certifier algorithm :


• Check that every entry of  is distinct.


• Check that each  is an edge of .

G

π

𝒱 (G, π)

π

(πi, πi+1) E
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Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?


• Proof:  describes the vertices in  for an s-t cut 


• Certifier algorithm :


• Check that  and  (valid s-t cut).


• Compute, 


• Check if 


• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

π ∈ {0,1}V S (S, T)

𝒱 (x, π)

πs = 1 πt = 0

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖭𝖯
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Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?


• Proof: empty string


• Certifier algorithm :


• Compute optimal s-t cut  using Edmonds-Karp flow algorithm.


• Compute, 


• Check if 


• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

𝒱 (x)

(S, T)

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖭𝖯

17



Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?


• Proof: empty string


• Certifier algorithm :


• Compute optimal s-t cut  using Edmonds-Karp flow algorithm.


• Compute, 


• Check if 


• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

𝒱 (x)

(S, T)

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖯
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and, 𝖯, 𝖭𝖯, 𝖤𝖷𝖯

•  : decision problems with a poly-time algorithm 


•  : decision problems with a poly-time certifier


•  : decision problems with a exp-time algorithm 


• Theorem: 


• Theorem: 

𝖯

𝖭𝖯

𝖤𝖷𝖯

𝖯 ⊆ 𝖭𝖯

𝖭𝖯 ⊆ 𝖤𝖷𝖯
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𝖯 ⊆ 𝖭𝖯

• Proof: 

• Consider any problem  in .


• By definition, there exists an algorithm  solves .


• Proof: empty string. Certifier . 

X 𝖯

𝒜(x) X

π = 𝒱(x, π) = 𝒜(x)
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𝖭𝖯 ⊆ 𝖤𝖷𝖯

• Proof idea: Brute-force search over all possible proofs . 

• Proof: 

• Consider any problem  in .


• By definition, there exists a certifier  for  such that .


• To solve the problem on input :


• For all , run  and return “yes” if .


• Otherwise, return “no”.


• This exhaustively iterates over all possible certificates. 

π

X 𝖭𝖯

𝒞(x, π) X |π | ≤ |x |c′￼

x

π ∈ {0,1}|x|c′￼

𝒞(x, π) 𝒞(x, π) = 1
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The million dollar question: Is ?𝖯 ?= 𝖭𝖯

• Is the decision problem of solving every problem is as easy as the certification 
problem?


• There is a $1 million bounty for solving the problem (in either direction!)


• If yes: There is an efficient/poly-time algorithm for every  problem


• If no: No efficient/poly-time algorithm for some problems such as 3-COLOR, 
TSP, 3-SAT, KNAPSACK, VERTEX-COVER, SET-COVER, HAM-CYCLE, …

𝖭𝖯
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-completeness𝖭𝖯

• Simple definition: A problem is -complete problem if (a) it is in  and (b) it is the 
“hardest” problem in 


• Necessary consequence (we will show soon): A problem  is -complete iff


• If  has a poly-time algorithm, then every problem in  has a poly-time algorithm.


• If some problem  does not have a poly-time algorithm, then neither does . 


• Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved 
every problem in  in poly-time.

𝖭𝖯 𝖭𝖯
𝖭𝖯

X 𝖭𝖯

X 𝖭𝖯

Y ∈ 𝖭𝖯 X

𝖭𝖯
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-completeness𝖭𝖯

• Proving that a problem  is the hardest problem in  requires showing


• that if there exists a poly-time algorithm  for solving , then for any problem , there exists 
a poly-time algorithm  for solving 


• This is called a reduction. We denote this by .


• Formally, we say  reduces to  (denoted ) if any instance  of  can be solved by the following 
algorithm:


• In  time, compute , an instance of the problem 


• Run a subroutine to decide if  is a “yes” instance of  — returning the answer exactly


• This is known as a Karp or many-to-one reduction

Y 𝖭𝖯

𝒜 Y X ∈ 𝖭𝖯
𝒜′￼ X

X ≤p Y

X Y X ≤p Y x X

poly( |x | ) y = f(x) Y

y Y
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Reductions throughout this class

• We’ve seen reductions many times before in this class


• Anytime you used an algorithm as a subroutine — you were performing a 
reduction


• Examples:


• Bipartite matching as a flow problem


• Ship port assignment as a stable matching


• Little Johnny walking to his mother’s house as a shortest path problem
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Example of a reduction
Subset Sum  Decision-Knapsack≤p

• Subset Sum: Give input , decide if there exists a subset  such that 
.


• Decision-Knapsack: Given input , decide if there exists a 
subset  such that  and .


• Reduction: We want to come up with an algorithm  for solving Subset Sum from an 
algorithm  for solving Knapsack.


• Given input , define  and .


• Then run  on ( ).

a1, …, an, T S ⊆ [n]
∑i∈S ai = T

w1, …, wn, v1, …, vn, W, V
S ⊆ [n] ∑i∈S wi ≤ W ∑i∈S vi ≥ V

𝒜′￼

𝒜

a1, …, an, T wi = vi ← ai W = V ← T

𝒜 w1, …, wn, v1, …, vn, W, V
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Proving a reduction is correct

• The previous example is a Karp reduction between Subset Sum and D-
Knapsack


• To generate a Karp reduction  between two decision problems  
and 


• We need to find a poly-time computable function  that 
converts instances  of  into instances  of 


• If for every  that is a “yes”, then  is also a “yes” 
instance


• If for every  that is a “yes”, then  is also a “yes” 
instance


• Equiv. to: If  is a “no”, then  is a “no”

X ≤p Y X
Y

f : X → Y
x X f(x) Y

x ∈ X f(x) ∈ Y

f(x′￼) ∈ Y x′￼ ∈ X

x′￼′￼ ∈ X f(x′￼′￼) ∈ Y
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Example of a reduction
Subset Sum  Decision-Knapsack≤p

• Subset Sum,   


• If  is a “yes” instance, then there exists  s.t. 


• Therefore,  So  is a “yes” instance.


• If  is a “yes” instance, then there exists  s.t.  and .


• So , proving that  is a “yes” 
instance.

x = ( ⃗a, T) ∈ f(x) = ( ⃗w = ⃗v ← ⃗a, W = V ← T)

x S ⊆ [n] ∑i∈S ai = T

∑i∈S wi = ∑i∈S ai = T ≤ W,

∑i∈S vi = ∑i∈S ai = T ≥ V .
f(x)

f(x) S ⊆ [n] ∑i∈S wi ≥ W ∑i∈S vi ≤ V

T = V ≤ ∑i∈S vi = ∑i∈S ai ≤ ∑i∈S wi ≤ W = T x
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-completeness𝖭𝖯

• Formal definition: A problem  is -complete if  and for every problem , 
. 


• Theorem: Let  be a -complete problem. Then  is solvable in poly-time iff .


• Proof:  

• ( ) If , then  has a poly-time algorithm since .


• ( ) Let  be any problem in . Since , we can solve  in poly-time using the 
poly-time algorithm for  as a subroutine. So . So . 


• Fundamental question: Do there exist “natural” -complete problems?

Y 𝖭𝖯 Y ∈ 𝖭𝖯 X ∈ 𝖭𝖯
X ≤p Y

Y 𝖭𝖯 Y 𝖯 = 𝖭𝖯

⟸ 𝖯 = 𝖭𝖯 Y Y ∈ 𝖭𝖯

⟹ X 𝖭𝖯 X ≤p Y X
Y X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯
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A list of -complete problems𝖭𝖯

• Boolean function satisfiability


• 0-1 Integer programming


• Graph problems: Vertex cover, 3-color, independent set, set cover, max cut


• Path and cycle problems: Hamiltonian path, traveling salesman


• Combinatorial optimization problems: Knapsack, Subset sum
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The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm  and integer  in unary. 
Output: Whether there exists a  such that  and .


• Theorem: Satisfiability is -complete.


• Proof:


• Satisfiability is in  as  is a proof of the satisfiability.


• For any other problem , there exists a certifier  such that  is a “yes” 
instance iff there exists a  such that  accepts.


• Let taken as input by .


• Define as the poly-sized program computing .


• Then  is a “yes” instance iff exists a  such that  and .


• So , proving  -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π)

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯
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Proving more -complete problems𝖭𝖯

• Recipe for showing that problem  is -complete


• Step 1: Show that .


• Step 2: Choose a known -compete problem .


• Step 3: Prove that .


• Correctness of recipe: We claim that  is a transitive operation.


• If  and  then .


• For any problem , then , proving that  is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯
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