
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 23
P vs NP and problems that are just too hard

￼1

When does a problem not have an efficient algorithm?

• Let’s back up. Are there problems that don’t have any algorithms?

• Yes! One example is called the halting problem.

• Input: Program code.

• Output: Whether the program code every terminates or runs forever.

• Theorem [Gödel]: There is no algorithm for solving the halting problem.

• Theorem: Solving a system of polynomial equations for integer solutions has
no algorithm.

2

When does a problem not have an efficient algorithm?

• Let’s restrict to problems that have algorithms. Is it necessary that those
algorithms are efficient?

• Theorem: There exist problems that can be solved in exponential time but
cannot be solved in polynomial time.

• This theorem just proves the existence of such problems — it does not
prove that there are “interesting problems” that require exponential time.

• Interesting problems like: Vertex Cover, Independent Set, Knapsack
problem, Traveling Salesman, 3-Color, etc. What about those?

3

Decision problems

• Definition: A decision problem is any problem which has a boolean (yes vs. no) answer.

• Input: . Output: Does a graph have a vertex cover of size ?

• Input: . Output: Is there an MST of weight ?

• Input: Boolean circuit . Output: Is there an such that ?

• Input: . Output: Is there a valid Knapsack of weight and value ?

• Input: Sudoku problem. Output: Is there a solution to this problem?

• Input: . Output: Is there a max flow of size ?

(G, k) G ≤ k

(G, k) ≥ k

φ x φ(x) = 1

(W, V, ⃗w , ⃗v) ≤ W ≥ V

n × n

(G, c, s, t, k) ≥ k

4

The class 𝖯

• Definition: An algorithm runs in time if for every input , terminates in at most
 “steps”.

• An algorithm runs in polynomial-time (poly-time) if for some constant

• We say a decision problem can be solved in polynomial-time if there is a polynomial-time
algorithm for it

• Definition: The class is the class of decision problems that can be solved in polynomial-time

• is a decent approximation for the set of problems that can be solved efficiently by some
model of computation. In practice, we are interested in the problems with poly runtimes for
some constants .

𝒜 t(n) x 𝒜(x)
≤ t(|x |)

t(n) = nc c .

𝒜

𝖯

𝖯

c

5

The class 𝖯

• Some of the problems in

• Input: . Output: Is there an MST of weight ?

• Input: . Output: Is there a max flow of size ?

• Input: . Output: Value of LP

• Input: matrices . Output: If .

• Input: expressed in binary. Output: if is prime.

𝖯

(G, k) ≥ k

(G, c, s, t, k) ≥ k

(A, b, c) max c⊤x s . t . Ax ≤ b, x ≥ 0

(A, B, C) C = A ⋅ B

n ∈ ℕ n

6

The class 𝖭𝖯

• Certification algorithm intuition: A certifier algorithm doesn’t determine whether the answer to a
decision problem is “yes” on its own. Rather, it checks a proof (a.k.a. certificate a.k.a. witness)
that the answer is “yes”.

• Definition: An algorithm is a certifier/verifier for the problem if for every string , the
answer is “yes” IFF there exists a proof such that .

• A certifier is poly-time if and runs in time for some constants .

• Definition: The class is the class of decision problems for which there is a poly-time certifier.

• Remark: stands for non-deterministic polynomial time.

π

𝒱(x, π) X x
π 𝒱(x, π) = 1

|π | ≤ |x |c′￼ 𝒱 |x |c c, c′￼

𝖭𝖯

𝖭𝖯

7

Examples of problems in 𝖭𝖯
Knapsack

• Input: . Output: Is there a valid Knapsack of weight
and value ?

• Proof: . if we should include item .

• Certifier algorithm :

• Test if and

• Respond “yes” if both conditions hold

• Otherwise, respond “no”.

(W, V, ⃗w , ⃗v) ≤ W
≥ V

π ∈ {0,1}n πi = 1 i

𝒱 (x = (W, V, ⃗w , ⃗v), π)
∑

i:πi=1

wi ≤ W ∑
i:πi=1

vi ≥ V

8

Examples of problems in 𝖭𝖯
Knapsack

• Input: . Output: Is there a valid Knapsack of weight and value ?

• Proof: . if we should include item .

• Correctness:

• If there is a valid Knapsack,

• let be the items. Set iff .

• Then there exists a s.t. will accept.

• If there exists a proof which is accepted by ,

• then the items s.t. is a valid Knapsack.

• Bijection between Knapsacks and proofs.

(W, V, ⃗w , ⃗v) ≤ W ≥ V

π ∈ {0,1}n πi = 1 i

S ⊆ [n] πi = 1 i ∈ S

π 𝒱

π 𝒱

S ⊆ [n] i πi = 1

9

Examples of problems in 𝖭𝖯
Vertex Cover

• Input: . Output: Does a graph have a vertex
cover of size ?

• Proof: . if we should include vertex
in the cover.

• Certifier algorithm :

• For all edges , test that or
.

• Test that .

(G, k) G
≤ k

π ∈ {0,1}V πv = 1 v

𝒱 (x = (G, k), π)
e = (u, v) ∈ E πu = 1

πv = 1

∑
v∈V

πv ≤ k

10

Examples of problems in 𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a such that
.

φ z ∈ {0,1}n

φ(z) = 1

11

Examples of problems in 𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a such that
.

φ z ∈ {0,1}n

φ(z) = 1

12

Examples of problems in 𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a such that
.

φ z ∈ {0,1}n

φ(z) = 1

13

Examples of problems in 𝖭𝖯
3SAT

• Input: 3-CNF formula . Output: If there exists a such that
.

• Proof: the satisfying assignment

• Certifier algorithm :

• Check that every disjunction (OR statement) is true.

φ z ∈ {0,1}n

φ(z) = 1

x

𝒱 (φ, z)

14

Examples of problems in 𝖭𝖯
Hamiltonian Path

• Input: . Output: Does there exists a simple path
that visits every vertex (i.e. without repeating
vertices)?

• Proof: The permutation listing the sequence of
vertices in the path.

• Certifier algorithm :

• Check that every entry of is distinct.

• Check that each is an edge of .

G

π

𝒱 (G, π)

π

(πi, πi+1) E

15

Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?

• Proof: describes the vertices in for an s-t cut

• Certifier algorithm :

• Check that and (valid s-t cut).

• Compute,

• Check if

• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

π ∈ {0,1}V S (S, T)

𝒱 (x, π)

πs = 1 πt = 0

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖭𝖯

16

Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?

• Proof: empty string

• Certifier algorithm :

• Compute optimal s-t cut using Edmonds-Karp flow algorithm.

• Compute,

• Check if

• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

𝒱 (x)

(S, T)

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖭𝖯

17

Examples of problems in 𝖭𝖯
Min cut

• Input: . Output: Is there a min cut of size ?

• Proof: empty string

• Certifier algorithm :

• Compute optimal s-t cut using Edmonds-Karp flow algorithm.

• Compute,

• Check if

• Therefore, MINCUT .

(G, c, s, t, k) ≤ k

𝒱 (x)

(S, T)

c(S, T) = ∑
(u,v)∈E : πu=1,πv=0

c(u, v)

c(S, T) ≤ k

∈ 𝖯

18

and, 𝖯, 𝖭𝖯, 𝖤𝖷𝖯

• : decision problems with a poly-time algorithm

• : decision problems with a poly-time certifier

• : decision problems with a exp-time algorithm

• Theorem:

• Theorem:

𝖯

𝖭𝖯

𝖤𝖷𝖯

𝖯 ⊆ 𝖭𝖯

𝖭𝖯 ⊆ 𝖤𝖷𝖯

19

𝖯 ⊆ 𝖭𝖯

• Proof:

• Consider any problem in .

• By definition, there exists an algorithm solves .

• Proof: empty string. Certifier .

X 𝖯

𝒜(x) X

π = 𝒱(x, π) = 𝒜(x)

20

𝖭𝖯 ⊆ 𝖤𝖷𝖯

• Proof idea: Brute-force search over all possible proofs .

• Proof:

• Consider any problem in .

• By definition, there exists a certifier for such that .

• To solve the problem on input :

• For all , run and return “yes” if .

• Otherwise, return “no”.

• This exhaustively iterates over all possible certificates.

π

X 𝖭𝖯

𝒞(x, π) X |π | ≤ |x |c′￼

x

π ∈ {0,1}|x|c′￼

𝒞(x, π) 𝒞(x, π) = 1

21

The million dollar question: Is ?𝖯 ?= 𝖭𝖯

• Is the decision problem of solving every problem is as easy as the certification
problem?

• There is a $1 million bounty for solving the problem (in either direction!)

• If yes: There is an efficient/poly-time algorithm for every problem

• If no: No efficient/poly-time algorithm for some problems such as 3-COLOR,
TSP, 3-SAT, KNAPSACK, VERTEX-COVER, SET-COVER, HAM-CYCLE, …

𝖭𝖯

22

-completeness𝖭𝖯

• Simple definition: A problem is -complete problem if (a) it is in and (b) it is the
“hardest” problem in

• Necessary consequence (we will show soon): A problem is -complete iff

• If has a poly-time algorithm, then every problem in has a poly-time algorithm.

• If some problem does not have a poly-time algorithm, then neither does .

• Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved
every problem in in poly-time.

𝖭𝖯 𝖭𝖯
𝖭𝖯

X 𝖭𝖯

X 𝖭𝖯

Y ∈ 𝖭𝖯 X

𝖭𝖯

23

-completeness𝖭𝖯

• Proving that a problem is the hardest problem in requires showing

• that if there exists a poly-time algorithm for solving , then for any problem , there exists
a poly-time algorithm for solving

• This is called a reduction. We denote this by .

• Formally, we say reduces to (denoted) if any instance of can be solved by the following
algorithm:

• In time, compute , an instance of the problem

• Run a subroutine to decide if is a “yes” instance of — returning the answer exactly

• This is known as a Karp or many-to-one reduction

Y 𝖭𝖯

𝒜 Y X ∈ 𝖭𝖯
𝒜′￼ X

X ≤p Y

X Y X ≤p Y x X

poly(|x |) y = f(x) Y

y Y

24

Reductions throughout this class

• We’ve seen reductions many times before in this class

• Anytime you used an algorithm as a subroutine — you were performing a
reduction

• Examples:

• Bipartite matching as a flow problem

• Ship port assignment as a stable matching

• Little Johnny walking to his mother’s house as a shortest path problem

25

Example of a reduction
Subset Sum Decision-Knapsack≤p

• Subset Sum: Give input , decide if there exists a subset such that
.

• Decision-Knapsack: Given input , decide if there exists a
subset such that and .

• Reduction: We want to come up with an algorithm for solving Subset Sum from an
algorithm for solving Knapsack.

• Given input , define and .

• Then run on ().

a1, …, an, T S ⊆ [n]
∑i∈S ai = T

w1, …, wn, v1, …, vn, W, V
S ⊆ [n] ∑i∈S wi ≤ W ∑i∈S vi ≥ V

𝒜′￼

𝒜

a1, …, an, T wi = vi ← ai W = V ← T

𝒜 w1, …, wn, v1, …, vn, W, V

26

Proving a reduction is correct

• The previous example is a Karp reduction between Subset Sum and D-
Knapsack

• To generate a Karp reduction between two decision problems
and

• We need to find a poly-time computable function that
converts instances of into instances of

• If for every that is a “yes”, then is also a “yes”
instance

• If for every that is a “yes”, then is also a “yes”
instance

• Equiv. to: If is a “no”, then is a “no”

X ≤p Y X
Y

f : X → Y
x X f(x) Y

x ∈ X f(x) ∈ Y

f(x′￼) ∈ Y x′￼ ∈ X

x′￼′￼ ∈ X f(x′￼′￼) ∈ Y

27

Example of a reduction
Subset Sum Decision-Knapsack≤p

• Subset Sum,

• If is a “yes” instance, then there exists s.t.

• Therefore, So is a “yes” instance.

• If is a “yes” instance, then there exists s.t. and .

• So , proving that is a “yes”
instance.

x = (⃗a, T) ∈ f(x) = (⃗w = ⃗v ← ⃗a, W = V ← T)

x S ⊆ [n] ∑i∈S ai = T

∑i∈S wi = ∑i∈S ai = T ≤ W,

∑i∈S vi = ∑i∈S ai = T ≥ V .
f(x)

f(x) S ⊆ [n] ∑i∈S wi ≥ W ∑i∈S vi ≤ V

T = V ≤ ∑i∈S vi = ∑i∈S ai ≤ ∑i∈S wi ≤ W = T x

28

-completeness𝖭𝖯

• Formal definition: A problem is -complete if and for every problem ,
.

• Theorem: Let be a -complete problem. Then is solvable in poly-time iff .

• Proof:

• () If , then has a poly-time algorithm since .

• () Let be any problem in . Since , we can solve in poly-time using the
poly-time algorithm for as a subroutine. So . So .

• Fundamental question: Do there exist “natural” -complete problems?

Y 𝖭𝖯 Y ∈ 𝖭𝖯 X ∈ 𝖭𝖯
X ≤p Y

Y 𝖭𝖯 Y 𝖯 = 𝖭𝖯

⟸ 𝖯 = 𝖭𝖯 Y Y ∈ 𝖭𝖯

⟹ X 𝖭𝖯 X ≤p Y X
Y X ∈ 𝖯 𝖯 = 𝖭𝖯

𝖭𝖯

29

A list of -complete problems𝖭𝖯

• Boolean function satisfiability

• 0-1 Integer programming

• Graph problems: Vertex cover, 3-color, independent set, set cover, max cut

• Path and cycle problems: Hamiltonian path, traveling salesman

• Combinatorial optimization problems: Knapsack, Subset sum

30

The “first” -complete problem𝖭𝖯
Satisfiability

• Satisfiability: Input: , the description of an algorithm and integer in unary.
Output: Whether there exists a such that and .

• Theorem: Satisfiability is -complete.

• Proof:

• Satisfiability is in as is a proof of the satisfiability.

• For any other problem , there exists a certifier such that is a “yes”
instance iff there exists a such that accepts.

• Let taken as input by .

• Define as the poly-sized program computing .

• Then is a “yes” instance iff exists a such that and .

• So , proving -completeness.

(⟨𝒜⟩, n) 𝒜 n
π 𝒜(π) = 1 |π | = n

𝖭𝖯

𝖭𝖯 π

X ∈ 𝖭𝖯 𝒱(x, π) x
π 𝒱(x, π)

n = |π | 𝒱

𝒜(π) := 𝒱(x, π)

x π 𝒜(π) = 1 |π | = n

X ≤p Y 𝖭𝖯

31

Proving more -complete problems𝖭𝖯

• Recipe for showing that problem is -complete

• Step 1: Show that .

• Step 2: Choose a known -compete problem .

• Step 3: Prove that .

• Correctness of recipe: We claim that is a transitive operation.

• If and then .

• For any problem , then , proving that is -complete.

Y 𝖭𝖯

Y ∈ 𝖭𝖯

𝖭𝖯 X

X ≤p Y

≤p

W ≤p X X ≤p Y W ≤p Y

W ∈ 𝖭𝖯 W ≤p Y Y 𝖭𝖯

32

