Lecture 23 P vs NP and problems that are just too hard

Chinmay Nirkhe | CSE 421 Spring 2025

When does a problem not have an efficient algorithm?

- Let's back up. Are there problems that don't have any algorithms?
- Yes! One example is called the halting problem.
 - Input: Program code.
 - Output: Whether the program code every terminates or runs forever.
- Theorem [Gödel]: There is no algorithm for solving the halting problem.
- Theorem: Solving a system of polynomial equations for integer solutions has no algorithm.

that don't have any algorithms?

When does a problem not have an efficient algorithm?

- algorithms are efficient?
- cannot be solved in polynomial time.

 - Interesting problems like: Vertex Cover, Independent Set, Knapsack problem, Traveling Salesman, 3-Color, etc. What about those?

• Let's restrict to problems that have algorithms. Is it necessary that those

• **Theorem:** There exist problems that can be solved in exponential time but

 This theorem just proves the existence of such problems — it does not prove that there are "interesting problems" that require exponential time.

Decision problems

- Definition: A decision problem is any problem which has a boolean (yes vs. no) answer.
 - Input: (G, k). Output: Does a graph G have a vertex cover of size $\leq k$?
 - Input: (G, k). Output: Is there an MST of weight $\geq k$?
 - Input: Boolean circuit φ . Output: Is there an x such that $\varphi(x) = 1$?
 - Input: (W, V, \vec{w}, \vec{v}) . Output: Is there a valid Knapsack of weight $\leq W$ and value $\geq V$?
 - Input: $n \times n$ Sudoku problem. Output: Is there a solution to this problem?
 - Input: (G, c, s, t, k). Output: Is there a max flow of size $\geq k$?

The class P

- $\leq t(|x|)$ "steps".

 - algorithm \mathscr{A} for it
- - some constants c.

• **Definition:** An algorithm \mathscr{A} runs in time t(n) if for <u>every</u> input x, $\mathscr{A}(x)$ terminates in at most

• An algorithm runs in polynomial-time (poly-time) if $t(n) = n^c$ for some constant c.

• We say a decision problem can be solved in polynomial-time if there is a polynomial-time

• **Definition:** The class P is the class of decision problems that can be solved in polynomial-time

• P is a decent approximation for the set of problems that can be solved efficiently by some model of computation. In practice, we are interested in the problems with poly runtimes for

The class P

- Some of the problems in P
 - Input: (G, k). Output: Is there an MST of weight $\geq k$?
 - Input: (G, c, s, t, k). Output: Is there a max flow of size $\geq k$?
 - Input: (A, b, c). Output: Value of LP max $c^{\top}x$ s.t. $Ax \le b, x \ge 0$
 - Input: matrices (A, B, C). Output: If $C = A \cdot B$.
 - Input: $n \in \mathbb{N}$ expressed in binary. Output: if n is prime.

The class NP

- that the answer is "yes".
- answer is "yes" IFF there exists a proof π such that $\mathcal{V}(x,\pi) = 1$.

• Remark: NP stands for non-deterministic polynomial time.

• Certification algorithm intuition: A certifier algorithm doesn't determine whether the answer to a decision problem is "yes" on its own. Rather, it checks a proof (a.k.a. certificate a.k.a. witness) π

• Definition: An algorithm $\mathcal{V}(x,\pi)$ is a certifier/verifier for the problem X if for every string x, the

• A certifier is poly-time if $|\pi| \leq |x|^{c'}$ and \mathcal{V} runs in time $|x|^c$ for some constants c, c'.

• **Definition:** The class NP is the class of decision problems for which there is a poly-time certifier.

Examples of problems in NP Knapsack

- Input: (W, V, \vec{w}, \vec{v}) . Output: Is there a valid Knapsack of weight $\leq W$ and value $\geq V$?
- Proof: $\pi \in \{0,1\}^n$. $\pi_i = 1$ if we should include item *i*.
- Certifier algorithm $\mathscr{V}(x = (W, V, \vec{w}, \vec{v}), \pi)$:

Test if
$$\sum_{i:\pi_i=1}^{} w_i \leq W$$
 and $\sum_{i:\pi_i=1}^{} v_i \geq V$

- Respond "yes" if both conditions hold
- Otherwise, respond "no".

Examples of problems in NP Knapsack

- Input: (W, V, \vec{w}, \vec{v}) . Output: Is there a valid Knapsack of weight $\leq W$ and value $\geq V$?
- Proof: $\pi \in \{0,1\}^n$. $\pi_i = 1$ if we should include item *i*.
- Correctness:
 - If there is a valid Knapsack,
 - let $S \subseteq [n]$ be the items. Set $\pi_i = 1$ iff $i \in S$.
 - Then there exists a π s.t. \mathcal{V} will accept.
 - If there exists a proof π which is accepted by \mathcal{V} ,
 - then $S \subseteq [n]$ the items *i* s.t. $\pi_i = 1$ is a valid Knapsack.
 - Bijection between Knapsacks and proofs.

Examples of problems in NP Vertex Cover

- Input: (G, k). Output: Does a graph G have a vertex cover of size $\leq k$?
- Proof: $\pi \in \{0,1\}^V$. $\pi_v = 1$ if we should include vertex v in the cover.
- Certifier algorithm $\mathcal{V}(x = (G, k), \pi)$:
 - For all edges $e = (u, v) \in E$, test that π $\pi_{1} = 1.$

• Test that
$$\sum_{v \in V} \pi_v \le k$$
.

$$\tau_u = 1 \text{ or}$$

Examples of problems in NP 3SAT

• Input: 3-CNF formula φ . Output: If there exists a $z \in \{0,1\}^n$ such that $\varphi(z) = 1.$

3-CNF is a boolean fn defined a

$$\leq$$
 3 variables or their negations.
EX. Single clause $\Psi(z_1, z_2, z_3) = (Z_1$
Double clause $\Psi(Z_1, \dots, Z_4) = (Z_1$
In general $\Psi(Z_1, \dots, Z_n) = (-V_1)$

Examples of problems in NP 3SAT

• Input: 3-CNF formula φ . Output: If there exists a $z \in \{0,1\}^n$ such that $\varphi(z) = 1$.

 $\begin{aligned} &\mathcal{Y}(z_{1}, \dots, z_{n}) \in (z_{1} \vee \neg z_{2} \vee z_{3}) \\ &\mathcal{Y}(0, 1, 0, 0) = (0 \vee \neg 1 \vee 0) \\ &= (0 \vee 0 \vee 0) \end{aligned}$

$$) \land (\neg z, \lor \neg z_2 \lor z_1)$$
$$) \land (\neg 0 \lor \neg 1 \lor 0)$$
$$) \land (1 \lor 0 \lor 0)$$

Examples of problems in NP 3SAT

• Input: 3-CNF formula φ . Output: If there exists a $z \in \{0,1\}^n$ such that $\varphi(z) = 1$.

 $\begin{aligned} &\mathcal{Y}(z_{1}, \dots, z_{4}) \in (z_{1} \vee \neg z_{2} \vee z_{3}) \\ &\mathcal{Y}(1, 1, 0, 1) = (1 \vee \neg 1 \vee 0) \\ &= (1 \vee 0 \vee 0) \\ &= 1 \end{aligned}$

$$) \land (\neg z, \lor \neg z_{2} \lor z_{4})$$
$$) \land (\neg 1 \lor \lor 1 \lor 1)$$
$$) \land (\circ \lor \circ \lor 1)$$

 \bigwedge

Examples of problems in NP 3SAT

- Input: 3-CNF formula φ . Output: If there exists a $z \in \{0,1\}^n$ such that $\varphi(z) = 1.$
- Proof: the satisfying assignment *x*
- Certifier algorithm $\mathcal{V}(\varphi, z)$:
 - Check that every disjunction (OR statement) is true.

Examples of problems in NP Hamiltonian Path

- Input: G. Output: Does there exists a simple path that visits every vertex (i.e. without repeating vertices)?
- Proof: The permutation π listing the sequence of vertices in the path.
- Certifier algorithm $\mathcal{V}(G, \pi)$:
 - Check that every entry of π is distinct.
 - Check that each (π_i, π_{i+1}) is an edge of E.

Examples of problems in NP Min cut

- Input: (G, c, s, t, k). Output: Is there a min cut of size $\leq k$?
- Proof: $\pi \in \{0,1\}^V$ describes the vertices in S for an s-t cut (S,T)
- Certifier algorithm $\mathcal{V}(x,\pi)$:
 - Check that $\pi_s = 1$ and $\pi_t = 0$ (valid s-t cut).

Compute, c(S, T) = $C(\mathcal{U},\mathcal{V})$ $(u,v) \in E : \pi_u = 1, \pi_v = 0$

- Check if $c(S, T) \leq k$
- Therefore, MINCUT \in NP.

Examples of problems in NP Min cut

- Input: (G, c, s, t, k). Output: Is there a min cut of size $\leq k$?
- Proof: empty string
- Certifier algorithm $\mathcal{V}(x)$:
 - Compute optimal s-t cut (S, T) using Edmonds-Karp flow algorithm. Compute, $c(S, T) = \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{$ $C(\mathcal{U},\mathcal{V})$

$$(u,v) \in E : \pi_u = 1, \pi_v = 0$$

- Check if $c(S, T) \leq k$
- Therefore, MINCUT \in NP.

Examples of problems in NP Min cut

- Input: (G, c, s, t, k). Output: Is there a min cut of size $\leq k$?
- Proof: empty string
- Certifier algorithm $\mathcal{V}(x)$:
 - Compute optimal s-t cut (S, T) using Edmonds-Karp flow algorithm.

- Check if $c(S, T) \leq k$
- Therefore, MINCUT $\in P$.

P, NP, and, EXP

- P: decision problems with a poly-time algorithm
- NP: decision problems with a poly-time certifier
- EXP: decision problems with a exp-time algorithm

- Theorem: $P \subseteq NP$
- Theorem: NP \subseteq EXP

$P \subseteq NP$

Proof:

- Consider any problem X in P.
- By definition, there exists an algorithm $\mathscr{A}(x)$ solves X.
- Proof: $\pi =$ empty string. Certifier $\mathscr{V}(x, \pi) = \mathscr{A}(x)$.

$NP \subseteq EXP$

- **Proof idea:** Brute-force search over all possible proofs π .
- **Proof:**
 - Consider any problem X in NP.
 - By definition, there exists a certifier $\mathscr{C}(x,\pi)$ for X such that $|\pi| \leq |x|^{c'}$.
 - To solve the problem on input *x*:
 - For all $\pi \in \{0,1\}^{|x|^{c'}}$, run $\mathscr{C}(x,\pi)$ and return "yes" if $\mathscr{C}(x,\pi) = 1$.
 - Otherwise, return "no".
- This exhaustively iterates over all possible certificates.

The million dollar question: Is $P \stackrel{?}{=} NP$?

- Is the decision problem of solving every problem is as easy as the certification problem?
- There is a \$1 million bounty for solving the problem (in either direction!)

- If yes: There is an efficient/poly-time algorithm for <u>every</u> NP problem
- If no: No efficient/poly-time algorithm for some problems such as 3-COLOR, TSP, 3-SAT, KNAPSACK, VERTEX-COVER, SET-COVER, HAM-CYCLE, ...

NP-completeness

- "hardest" problem in NP
- \bullet every problem in NP in poly-time.

• Simple definition: A problem is NP-complete problem if (a) it is in NP and (b) it is the

• Necessary consequence (we will show soon): A problem X is NP-complete iff

• If X has a poly-time algorithm, then every problem in NP has a poly-time algorithm.

• If some problem $Y \in \mathsf{NP}$ does not have a poly-time algorithm, then neither does X.

Punchline: If you find a way to solve Knapsack in poly-time, then you will have solved

NP-completeness

- Proving that a problem Y is the hardest problem in NP requires showing
 - that if there exists a poly-time algorithm \mathscr{A} for solving Y, then for any problem $X \in \mathsf{NP}$, there exists a poly-time algorithm \mathscr{A}' for solving X
 - This is called a reduction. We denote this by $X \leq_p Y$.
- Formally, we say X reduces to Y (denoted $X \leq_p Y$) if any instance x of X can be solved by the following algorithm:
 - In poly(|x|) time, compute y = f(x), an instance of the problem Y
 - Run a subroutine to decide if y is a "yes" instance of Y returning the answer exactly
- This is known as a Karp or many-to-one reduction

Reductions throughout this class

- We've seen reductions many times before in this class
- Anytime you used an algorithm as a subroutine you were performing a reduction
- Examples:
 - Bipartite matching as a flow problem
 - Ship port assignment as a stable matching
 - Little Johnny walking to his mother's house as a shortest path problem

Example of a reduction Subset Sum \leq_{p} **Decision-Knapsack**

- Subset Sum: Give input a_1, \ldots, a_n, T , decide if there exists a subset $S \subseteq [n]$ such that $\sum_{i \in S} a_i = T.$
- Decision-Knapsack: Given input $w_1, \ldots, w_n, v_1, \ldots, v_n, W, V$, decide if there exists a subset $S \subseteq [n]$ such that $\sum_{i \in S} w_i \leq W$ and $\sum_{i \in S} v_i \geq V$.
- Reduction: We want to come up with an algorithm \mathscr{A}' for solving Subset Sum from an algorithm \mathcal{A} for solving Knapsack.
 - Given input a_1, \ldots, a_n, T , define $w_i =$
 - Then run \mathscr{A} on $(w_1, ..., w_n, v_1, ..., v_n, W, V)$.

$$v_i \leftarrow a_i$$
 and $W = V \leftarrow T$.

Proving a reduction is correct

- The previous example is a Karp reduction between Subset Sum and D-Knapsack
- To generate a Karp reduction $X \leq_p Y$ between two decision problems X and Y
 - We need to find a **poly-time computable** function $f: X \to Y$ that converts instances x of X into instances f(x) of Y
 - If for every $x \in X$ that is a "yes", then $f(x) \in Y$ is also a "yes" instance
 - If for every $f(x') \in Y$ that is a "yes", then $x' \in X$ is also a "yes" instance
 - Equiv. to: If $x'' \in X$ is a "no", then $f(x'') \in Y$ is a "no"

Example of a reduction Subset Sum \leq_p **Decision-Knapsack**

- X
- If

$$\begin{aligned} x &= (\vec{a}, T) \in \text{Subset Sum}, f(x) = (\vec{w} = \vec{v} \leftarrow \vec{a}, W = V \leftarrow T) \\ \text{If } x \text{ is a "yes" instance, then there exists } S \subseteq [n] \text{ s.t. } \sum_{i \in S} a_i = T \\ \text{. Therefore,} \quad & \sum_{i \in S} w_i = \sum_{i \in S} a_i = T \leq W, \\ & \sum_{i \in S} v_i = \sum_{i \in S} a_i = T \geq V. \end{aligned}$$

- - instance.

• If f(x) is a "yes" instance, then there exists $S \subseteq [n]$ s.t. $\sum_{i \in S} w_i \ge W$ and $\sum_{i \in S} v_i \le V$. • So $T = V \le \sum_{i \in S} v_i = \sum_{i \in S} a_i \le \sum_{i \in S} w_i \le W = T$, proving that x is a "yes"

NP-completeness

- $X \leq_{\mathcal{D}} Y.$
- **Proof**:
 - (\Leftarrow) If P = NP, then Y has a poly-time algorithm since $Y \in NP$.
 - poly-time algorithm for Y as a subroutine. So $X \in P$. So P = NP.
- Fundamental question: Do there exist "natural" NP-complete problems?

• Formal definition: A problem Y is NP-complete if $Y \in NP$ and for every problem $X \in NP$,

• Theorem: Let Y be a NP-complete problem. Then Y is solvable in poly-time iff P = NP.

• (\implies) Let X be any problem in NP. Since $X \leq_p Y$, we can solve X in poly-time using the

A list of NP-complete problems

- Boolean function satisfiability
- 0-1 Integer programming
- Graph problems: Vertex cover, 3-color, independent set, set cover, max cut
- Path and cycle problems: Hamiltonian path, traveling salesman
- Combinatorial optimization problems: Knapsack, Subset sum

The "first" NP-complete problem **Satisfiability**

- Satisfiability: Input: $(\langle \mathscr{A} \rangle, n)$, the description of an algorithm \mathscr{A} and integer n in unary. Output: Whether there exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
- **Theorem:** Satisfiability is NP-complete.
- **Proof**:
 - Satisfiability is in NP as π is a proof of the satisfiability.
 - For any other problem $X \in \mathsf{NP}$, there exists a certifier $\mathscr{V}(x, \pi)$ such that x is a "yes" instance iff there exists a π such that $\mathcal{V}(x, \pi)$ accepts.
 - Let $n = |\pi|$ taken as input by \mathcal{V} .
 - Define $\mathscr{A}(\pi) :=$ as the poly-sized program computing $\mathscr{V}(x,\pi)$.
 - Then x is a "yes" instance iff exists a π such that $\mathscr{A}(\pi) = 1$ and $|\pi| = n$.
 - So $X \leq_p Y$, proving NP-completeness.

Proving more NP-complete problems

- **Recipe** for showing that problem Y is NP-complete
 - Step 1: Show that $Y \in NP$.
 - Step 2: Choose a known NP-compete problem X.
 - Step 3: Prove that $X \leq_p Y$.
- Correctness of recipe: We claim that \leq_p is a transitive operation.
 - If $W \leq_p X$ and $X \leq_p Y$ then $W \leq_p Y$.
 - For any problem $W \in NP$, then $W \leq_p Y$, proving that Y is NP-complete.