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What’s a problem LPs can’t solve?
Vertex cover

• Input: an undirected graph 



• Output: a minimal set  
such that every edge contains 
at least one endpoint from .


• There seems to be a pretty 
obvious LP for this problem. 
What goes wrong?

G = (V, E)

S ⊆ V

S
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LP relaxation
Vertex cover

• The LP we tried to write for vertex 
cover yields a fractional solution


• It is a “relaxation” of the vertex cover 
problem from integer to fractional 
solutions


• In the relaxation we increase the 
feasible space from integer 
coordinates to include all solutions


• Can be used to generate 
randomized approximation 
algorithms for vertex cover.
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Max flow versus vertex cover

• Why can max flow natively guarantee integer solutions while vertex cover 
cannot?


• Recall, the optimum of an LP occurs at a vertex


• The vertices of an LP correspond to points where linear equations are exactly 
satisfied


• Turns out flow equations when exactly satisfied always have integer solutions


• Quite a beautiful piece of mathematics


• Too technical to warrant more time in this course
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The simplex method

• Finally, we are going to cover an algorithm for solving LPs


• The algorithm is called the simplex method and it will be unique amongst the 
algorithms we study in this course


• The simplex method runs incredibly fast in practice and is super useful


• However, it can run in exponential time in the worst case even when there 
exist other polynomial time algorithms for the problem


• Later on, we will take a high-level glance at algorithms for solving LPs that are 
known to run in polynomial time
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The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

7



The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

8



The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

9



The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

10



The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

11



The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c

12



The simplex method

• We are effectively consider a graph  
whose interior is the feasible region .


• If we consider a feasible region defined by 
 for 


• Then, each vertex can be described by which  of 
the  equations are exactly satisfied


• Describe vertices by points in  of Hamming 
weight 


• Two vertices are neighbors if they share all but 1 
equation or equiv. the descriptions differ in two bits  

G = (V, E)
Γ

Γ = {Ax ≤ b} A ∈ ℝm×n, b ∈ ℝm

n
m

{0,1}m

n
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The simplex method
Digging deeper into the algorithm

• Algorithm has two major steps:


• Finding the first vertex (if one even exists as  could be infeasible)


• Moving along an edge


• Moving along an edge:


• Currently at a vertex described by  out of  equations


• Can consider all possible vertices that share all but one equation


• At most  neighbors


• Gives a polynomial time algorithm for moving along an edge

Γ

n m

n ⋅ (m − n)
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The simplex method
Digging deeper into the algorithm

• Finding the first vertex

15



The simplex method

• We have not given runtimes for the simplex method 
on purpose


• The runtime can be exponential because the 
algorithm goes on the outside of the polytope 
which could have lots of vertices, edges, and 
facets


• However, simplex runs remarkably well in practice


• Is there a reconciliation? An algorithm that may do 
okay in practice but has guaranteed worst case 
runtime that is polynomial?
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Interior point and ellipsoid methods
Interior point

• Keep track of a point inside the polytope


• Follow a trajectory through the interior to optimal 
solution


• Solve a sequence of easier problems to 
approximate original LP, gradually becoming more 
accurate


• Runs about as fast as simplex in practice and has 
guarantees on runtime


• The “state-of-the-art” algorithm and a key step in 
optimal algorithms for problems like max flow
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Interior point and ellipsoid methods
Ellipsoid method

• What is an ellipsoid?


• An ellipsoid is a stretched sphere (in any direction)


• Can be defined by a quadratic equation
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Interior point and ellipsoid methods
Ellipsoid method

• Using LP duality, convert problem from optimizing 
a linear polytope to finding a feasible point in a 
different polytope 


• Generate a sequence of ellipsoids that always 
contain 


• Each time find a smaller ellipsoid (by guaranteed 
ratio) until the center of the ellipsoid must be in 


• Very slow in practice but first guaranteed algorithm 
for solving LPs 

Γ

Γ

Γ
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Why is linear programming so important?

• Fact: Every boolean function 
 that can 

be computed in time  can be 
computed by a boolean circuit 
with  gates.


• Theorem: Every boolean 
function can be expressible as 
a linear program with 

 variables and 
constraints.

f : {0,1}n → {0,1}n

T

O(T log T)

O(T log T)
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Converting Boolean circuits to LPs
OR gate
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Converting Boolean circuits to LPs
AND gate
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Converting Boolean circuits to LPs
NOT gate
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Converting Boolean circuits to LPs
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Converting Boolean circuits to LPs
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Converting Boolean circuits to LPs
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Therefore, every computational problem computable by a 
boolean circuit of size  can be expressed as a linear 

program of size . 

I.e. linear programming is universal for computation

T
O(T log T)


