Lecture 22 Linear programming IV

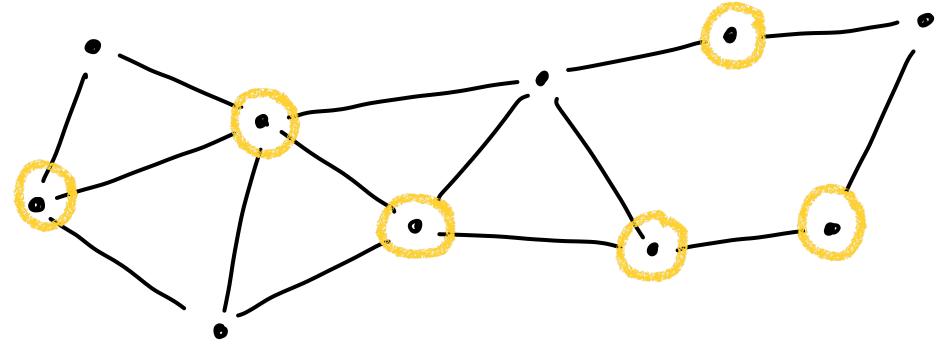
Chinmay Nirkhe | CSE 421 Spring 2025

1

What's a problem LPs can't solve? Vertex cover

- Input: an undirected graph G = (V, E)
- Output: a *minimal* set S ⊆ V such that every edge contains at least one endpoint from S.
- There seems to be a pretty obvious LP for this problem.
 What goes wrong?

There is nothing ensuring that the optimal solution χ will be integer.

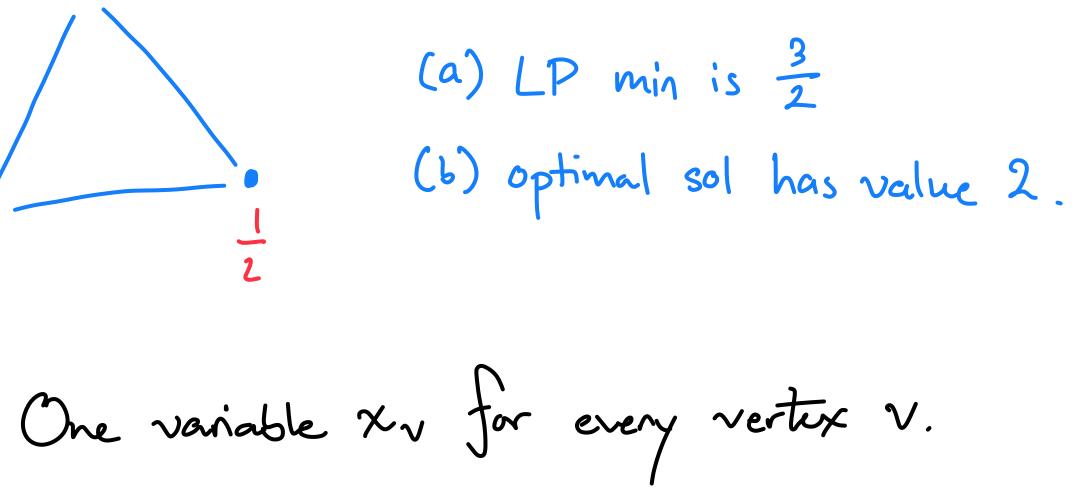


 $\begin{cases} \min \sum_{v \in V} \chi_v \\ s.t. \quad \chi_v \in 1 \quad \forall v \in V \\ \chi_u + \chi_v \ge 1 \quad \forall e = (u, v) \in E \\ \chi \ge 0 \end{cases}$

What's a problem LPs can't solve? Vertex cover $\underbrace{E_X}_{1}$ \underbrace{LP}_{1} solution is $\frac{1}{2}$ on each vertex.

- Input: an undirected graph G = (V, E)
- Output: a *minimal* set S ⊆ V such that every edge contains at least one endpoint from S.
- There seems to be a pretty obvious LP for this problem.
 What goes wrong?

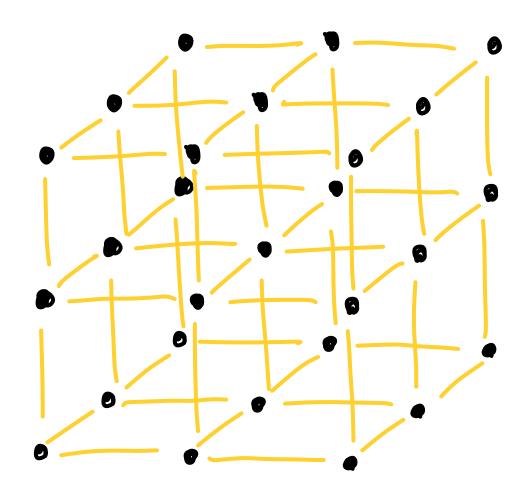
There is nothing ensuring that the optimal solution χ will be integer.



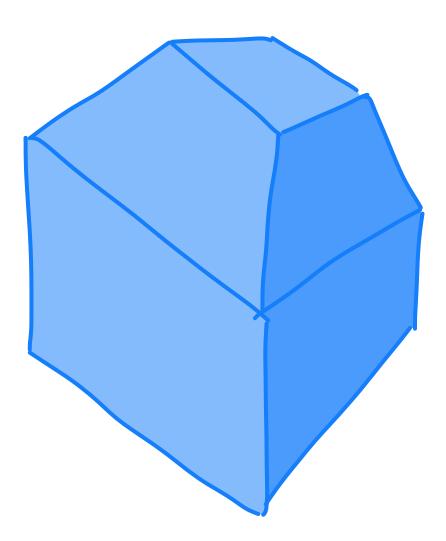
 $\begin{cases} \min \sum_{v \in V} \chi_v \\ s.t. \quad \chi_v \in 1 \quad \forall v \in V \\ \chi_u + \chi_v \ge 1 \quad \forall e = (u, v) \in E \\ \chi \ge 0 \end{cases}$

LP relaxation Vertex cover

- The LP we tried to write for vertex cover yields a fractional solution
- It is a "relaxation" of the vertex cover problem from integer to fractional solutions
 - In the relaxation we increase the feasible space from integer coordinates to include all solutions
 - Can be used to generate randomized approximation algorithms for vertex cover.



integer Coordinates



linear equations defining the Vertex cover

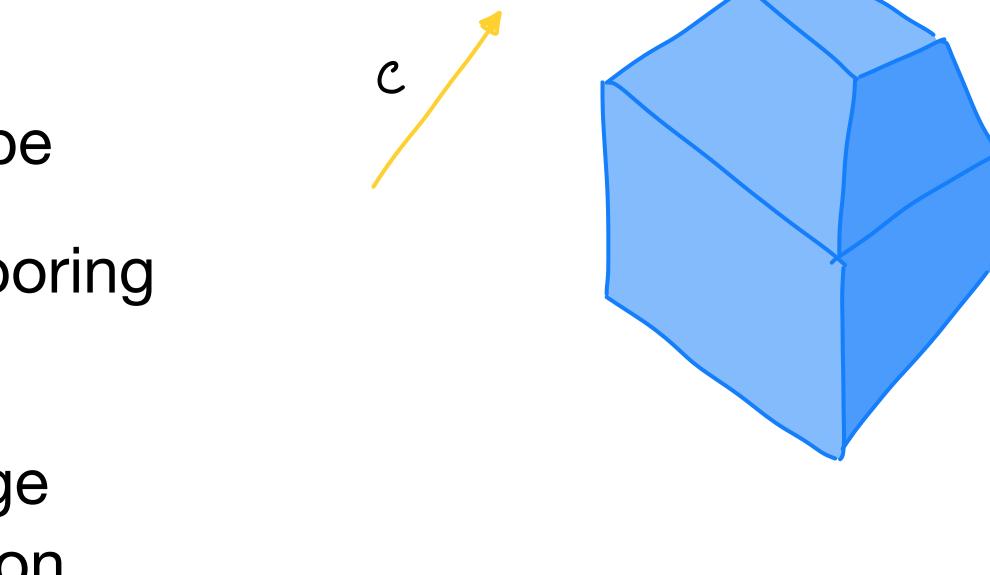
Max flow versus vertex cover

- Why can max flow natively guarantee integer solutions while vertex cover cannot?
- Recall, the optimum of an LP occurs at a vertex
 - The vertices of an LP correspond to points where linear equations are exactly satisfied
 - Turns out flow equations when exactly satisfied always have integer solutions
 - Quite a beautiful piece of mathematics
 - Too technical to warrant more time in this course

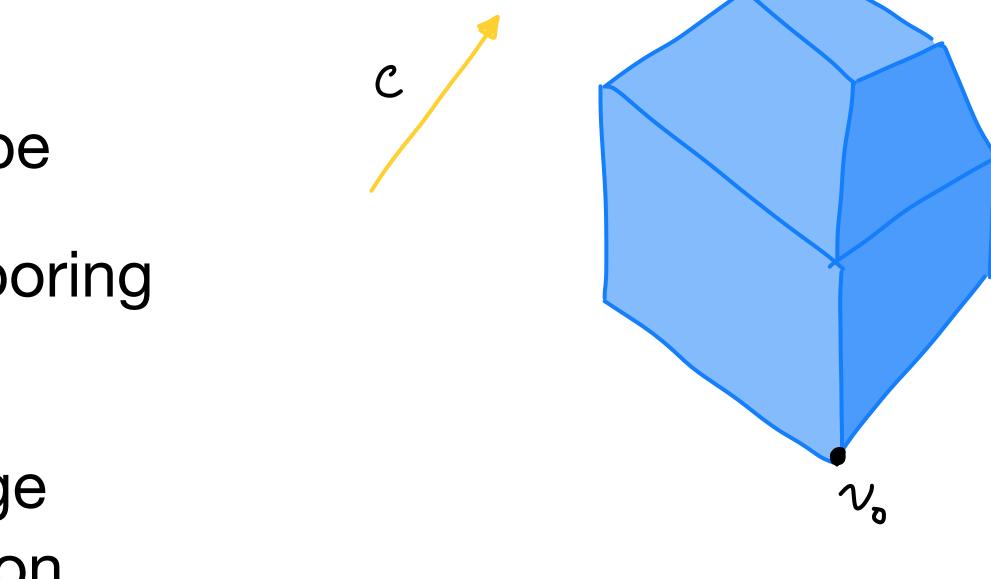


- Finally, we are going to cover an algorithm for solving LPs
- The algorithm is called the simplex method and it will be unique amongst the algorithms we study in this course
 - The simplex method runs incredibly fast in practice and is super useful
 - However, it can run in exponential time in the worst case even when there
 exist other polynomial time algorithms for the problem
- Later on, we will take a high-level glance at algorithms for solving LPs that are known to run in polynomial time

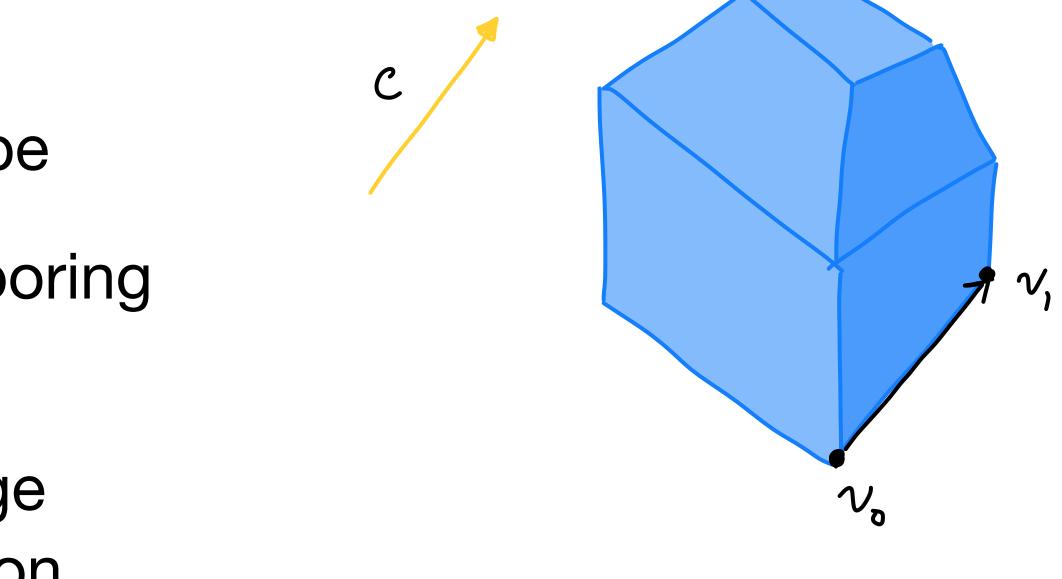
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



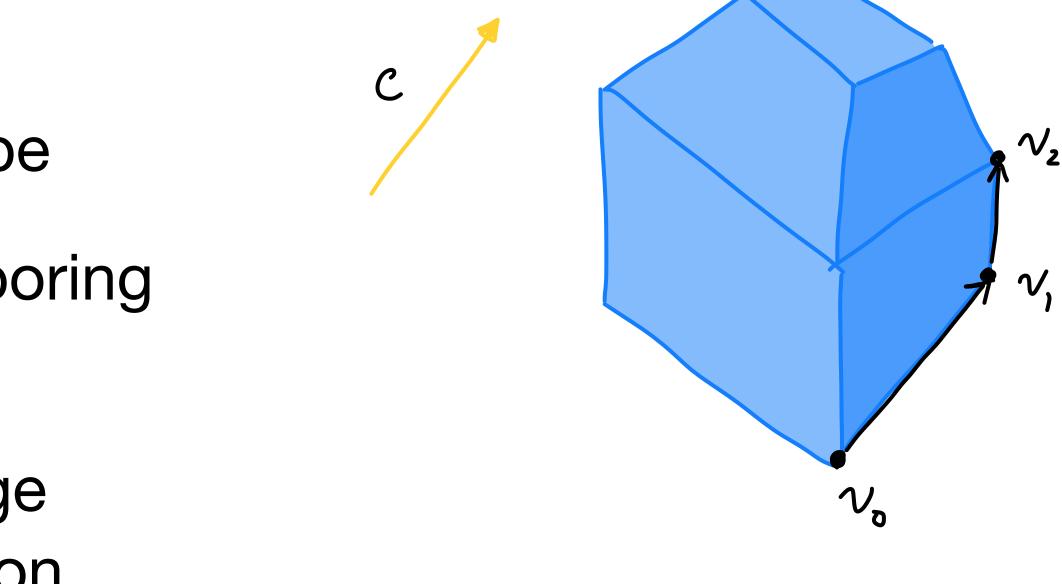
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



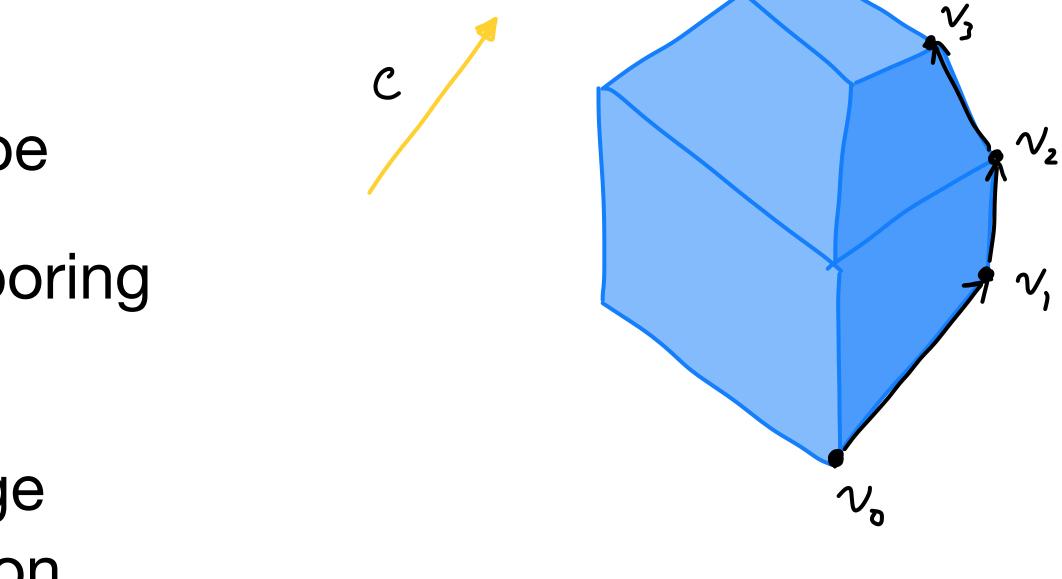
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



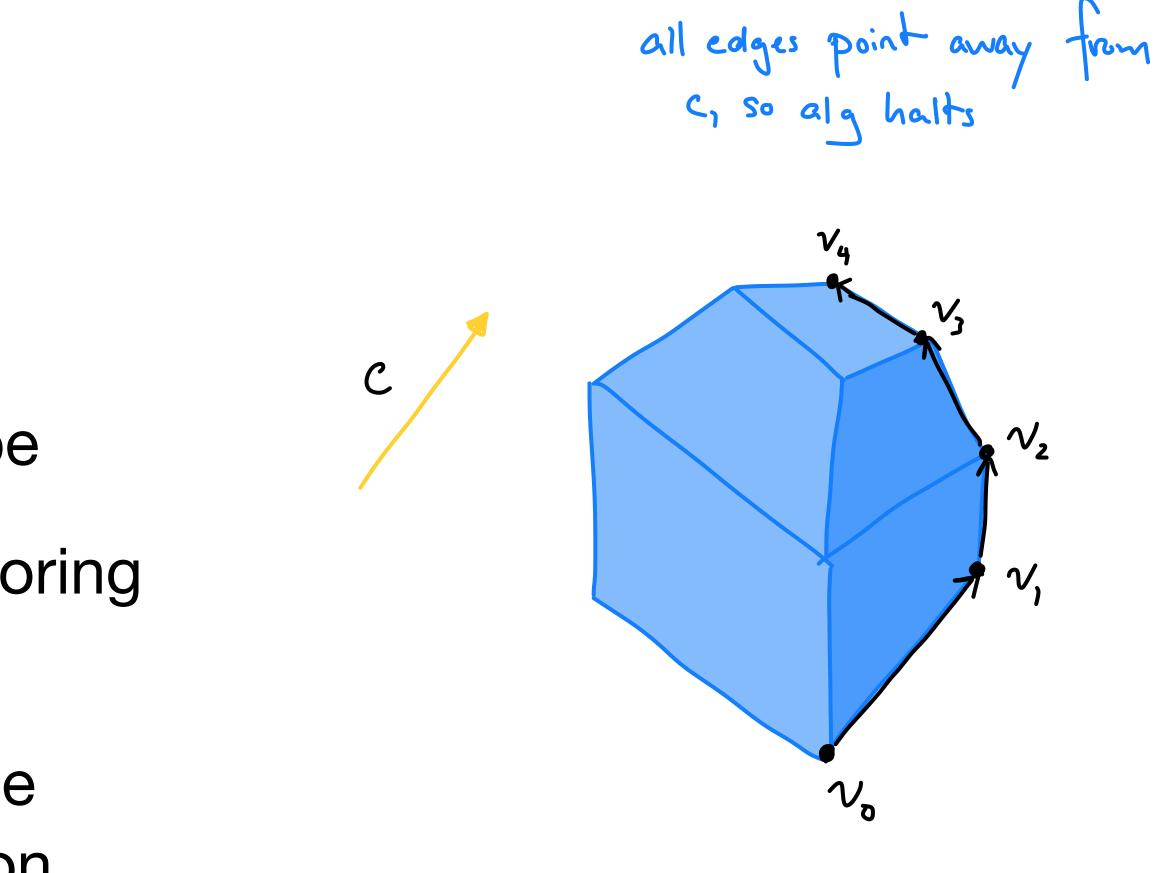
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



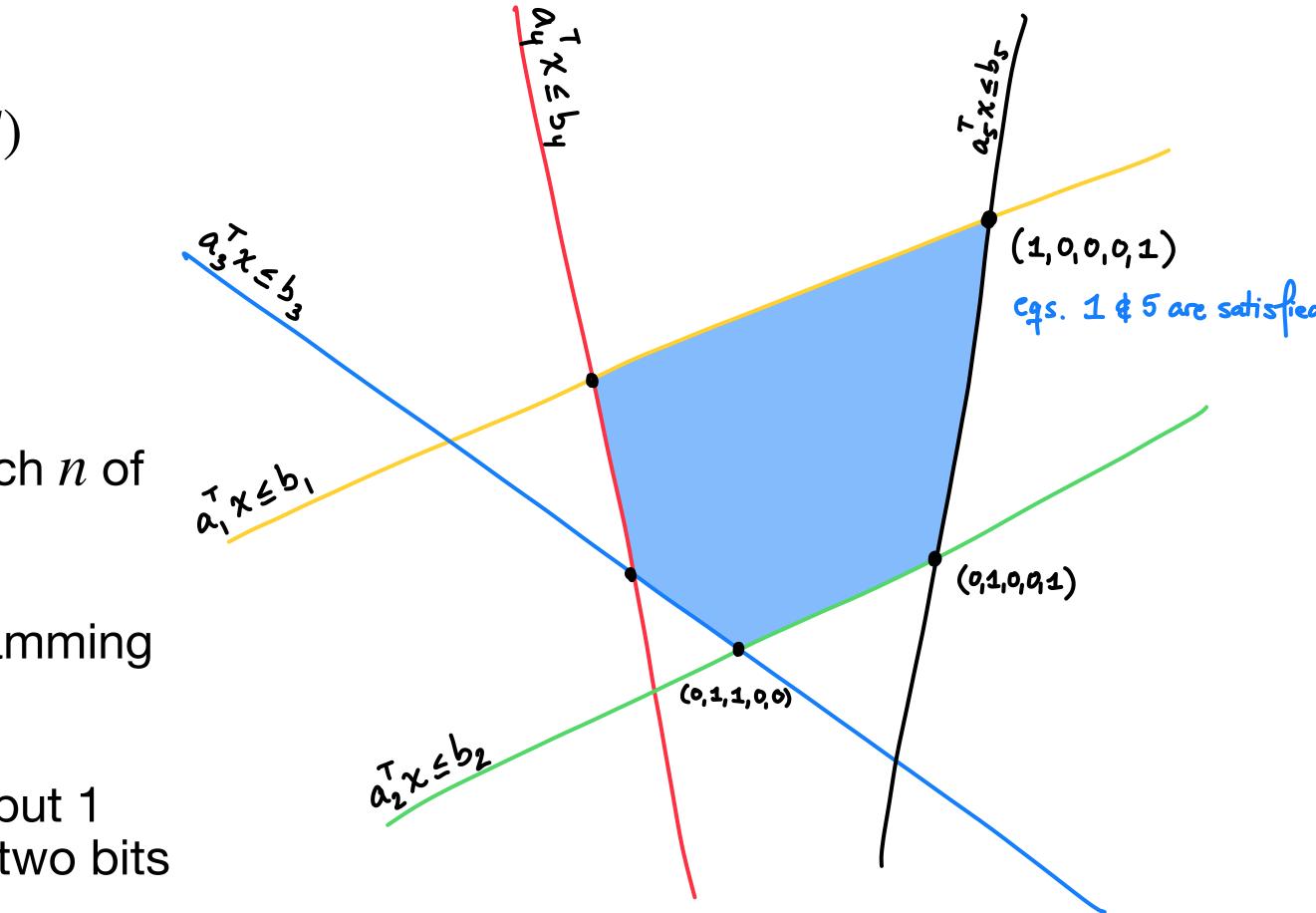
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



- We are effectively consider a graph G = (V, E)whose interior is the feasible region Γ .
- If we consider a feasible region defined by $\Gamma = \{Ax \le b\} \text{ for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 - Then, each vertex can be described by which *n* of the *m* equations are exactly satisfied
 - Describe vertices by points in $\{0,1\}^m$ of Hamming weight *n*
 - Two vertices are neighbors if they share all but 1 equation or equiv. the descriptions differ in two bits

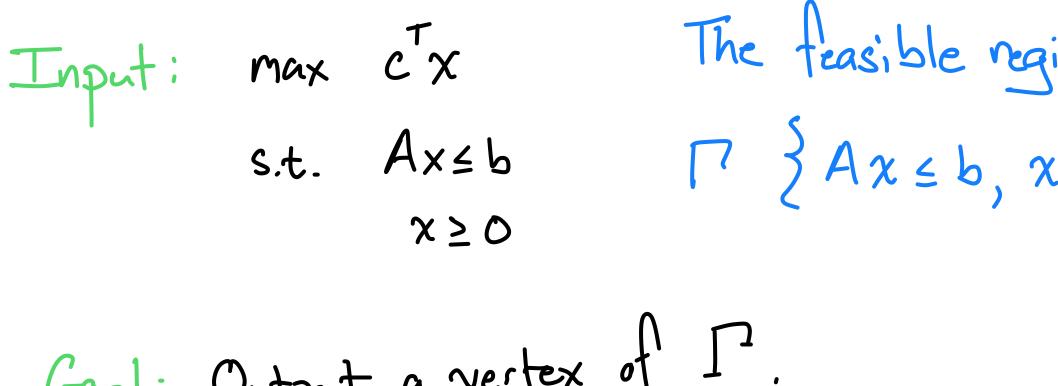


The simplex method **Digging deeper into the algorithm**

- Algorithm has two major steps:
 - Finding the first vertex (if one even exists as Γ could be infeasible)
 - Moving along an edge
- Moving along an edge:
 - Currently at a vertex described by n out of m equations
 - Can consider all possible vertices that share all but one equation
 - At most $n \cdot (m n)$ neighbors
 - Gives a polynomial time algorithm for moving along an edge

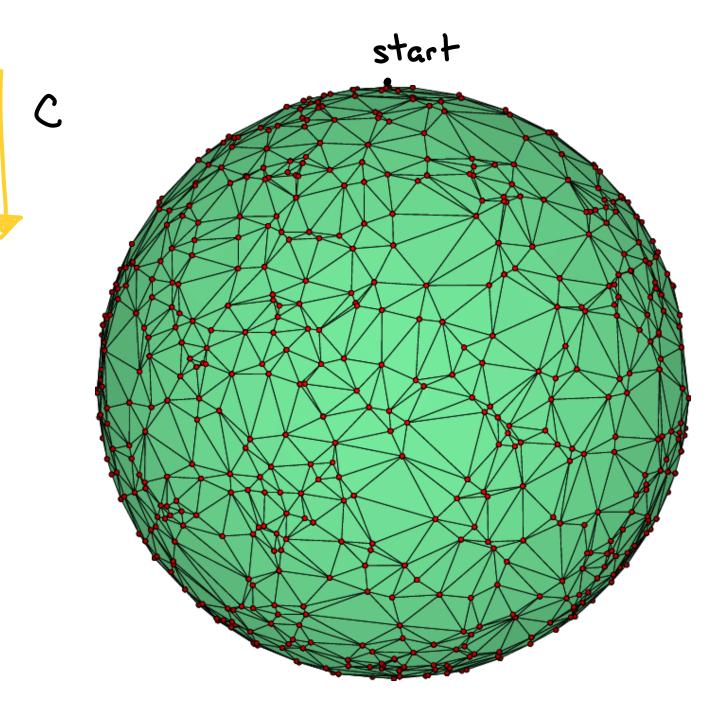
The simplex method **Digging deeper into the algorithm**

• Finding the first vertex



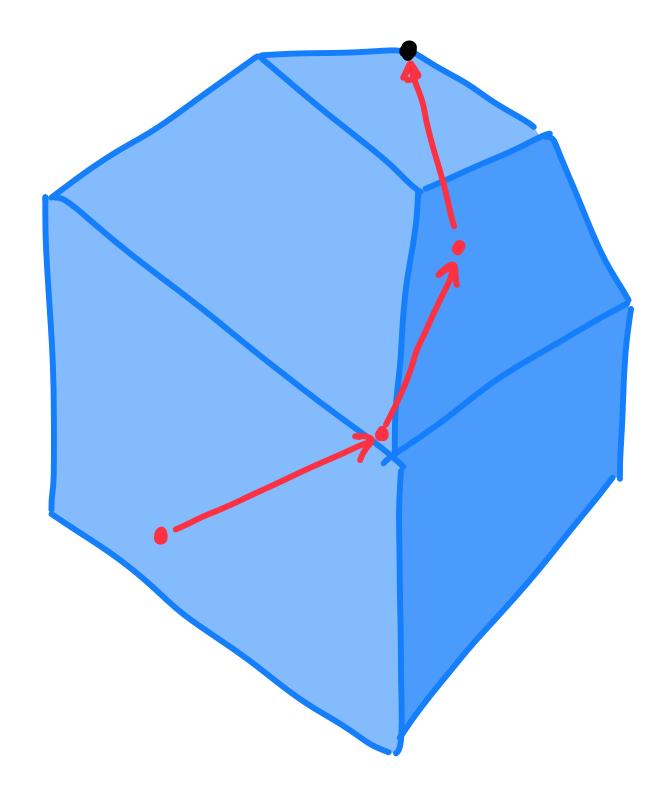
Input: max
$$cTx$$
 The feasible region is
s.t. $Ax \leq b$ $P \\ x \geq 0$
Goal: Output a vertex of P .
Notice that $(x=0, Z=b^{(n)})$ Since we know a vertex of
is a vertex of $2^{nd} LP$.
Notice that $(x=0, Z=b^{(n)})$ Since we know a vertex of
with simplex. 15
Consider a second LP known as slack
min $Z_1 + ... + Z_m$
S.t. $b_i - a_i^T x \leq Z_i$ $\forall i = j..., m$
 $x \geq 0$
 $Z \geq 0$.
Claim: If (x,z) is OPT of $2^{nd} LP$,
with simplex. 15

- We have not given runtimes for the simplex method on purpose
 - The runtime can be exponential because the algorithm goes on the *outside* of the polytope which could have lots of vertices, edges, and facets
 - However, simplex runs remarkably well in practice
 - Is there a reconciliation? An algorithm that may do okay in practice but has guaranteed worst case runtime that is polynomial?

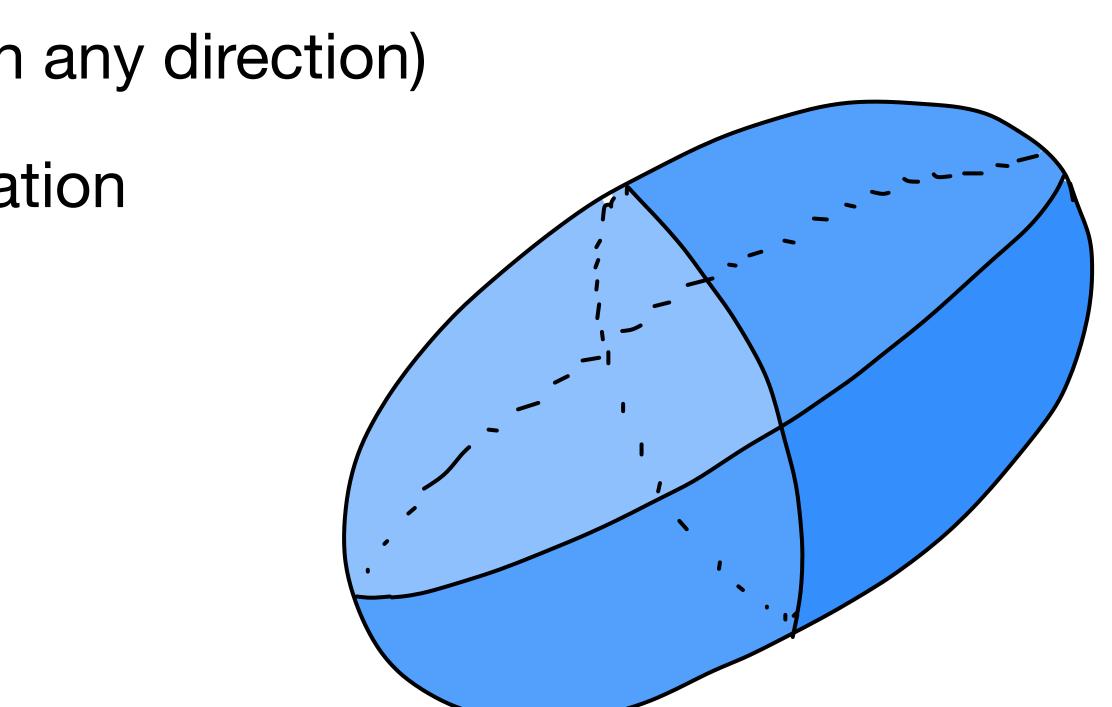


Interior point and ellipsoid methods **Interior** point

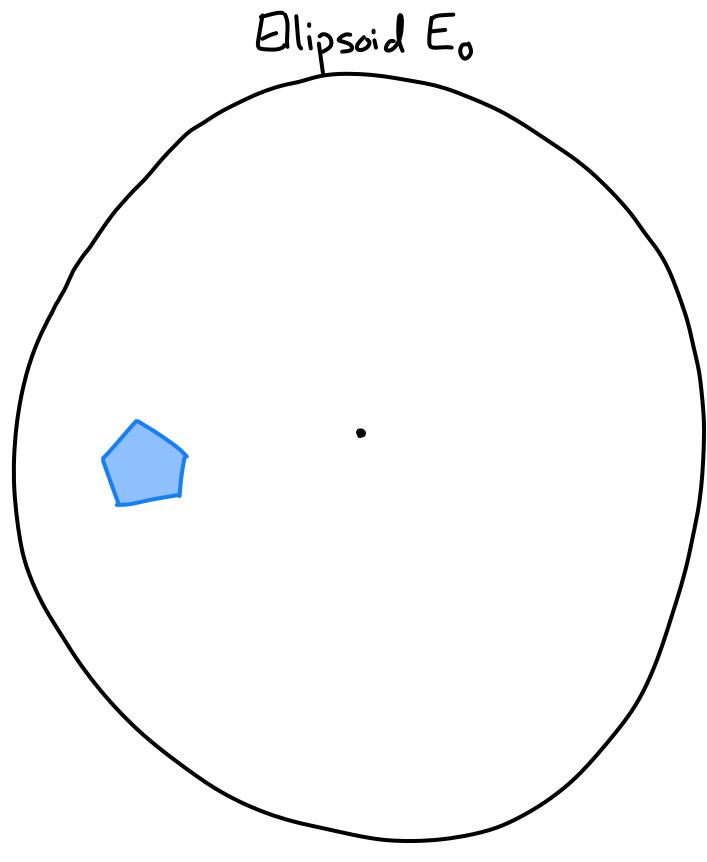
- Keep track of a point *inside* the polytope
- Follow a trajectory through the interior to optimal solution
- Solve a sequence of easier problems to approximate original LP, gradually becoming more accurate
- Runs about as fast as simplex in practice and has guarantees on runtime
- The "state-of-the-art" algorithm and a key step in optimal algorithms for problems like max flow



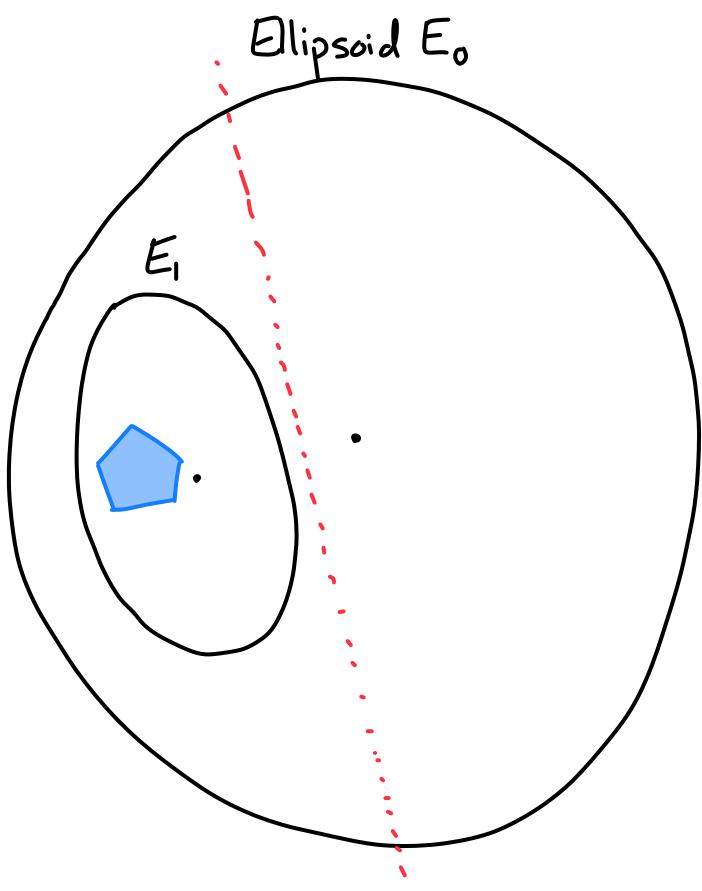
- What is an ellipsoid?
- An ellipsoid is a stretched sphere (in any direction)
- Can be defined by a quadratic equation



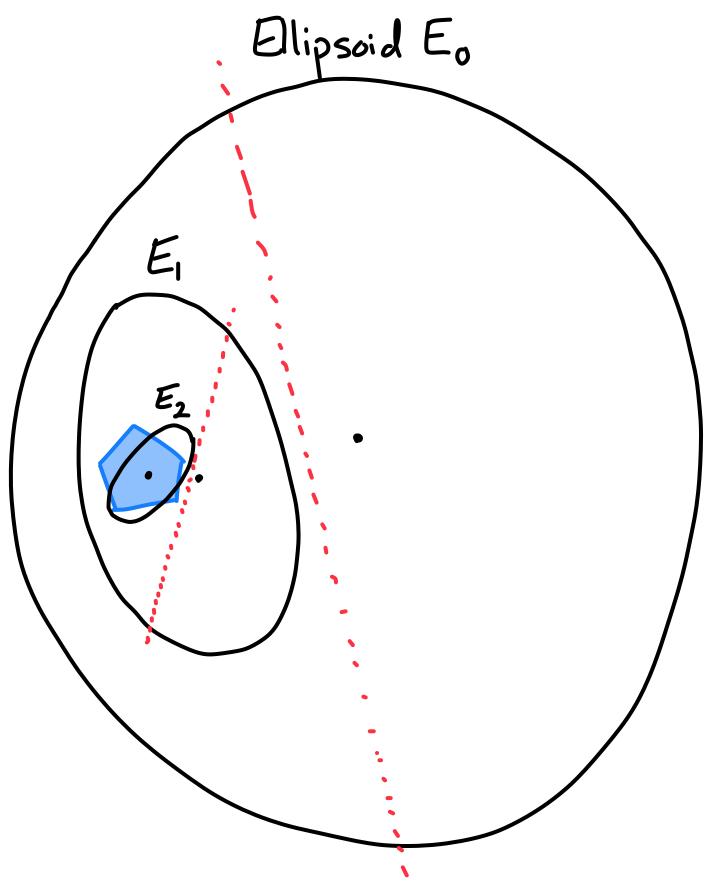
- Using LP duality, convert problem from optimizing a linear polytope to finding a feasible point in a different polytope Γ
- Generate a sequence of ellipsoids that always contain Γ
- Each time find a smaller ellipsoid (by guaranteed) ratio) until the center of the ellipsoid must be in Γ
- Very slow in practice but first guaranteed algorithm for solving LPs



- Using LP duality, convert problem from optimizing a linear polytope to finding a feasible point in a different polytope Γ
- Generate a sequence of ellipsoids that always contain Γ
- Each time find a smaller ellipsoid (by guaranteed) ratio) until the center of the ellipsoid must be in Γ
- Very slow in practice but first guaranteed algorithm for solving LPs

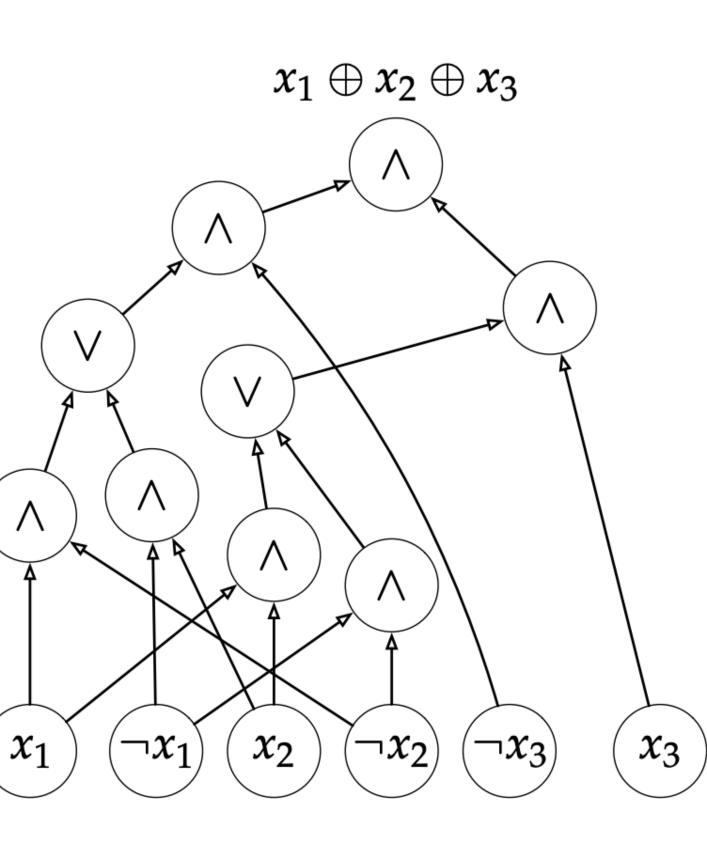


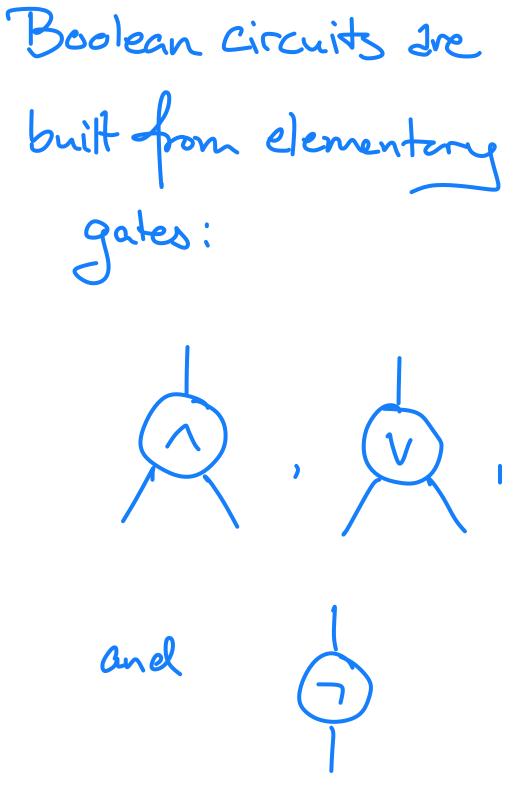
- Using LP duality, convert problem from optimizing a linear polytope to finding a feasible point in a different polytope Γ
- Generate a sequence of ellipsoids that always contain Γ
- Each time find a smaller ellipsoid (by guaranteed) ratio) until the center of the ellipsoid must be in Γ
- Very slow in practice but first guaranteed algorithm for solving LPs



Why is linear programming so important?

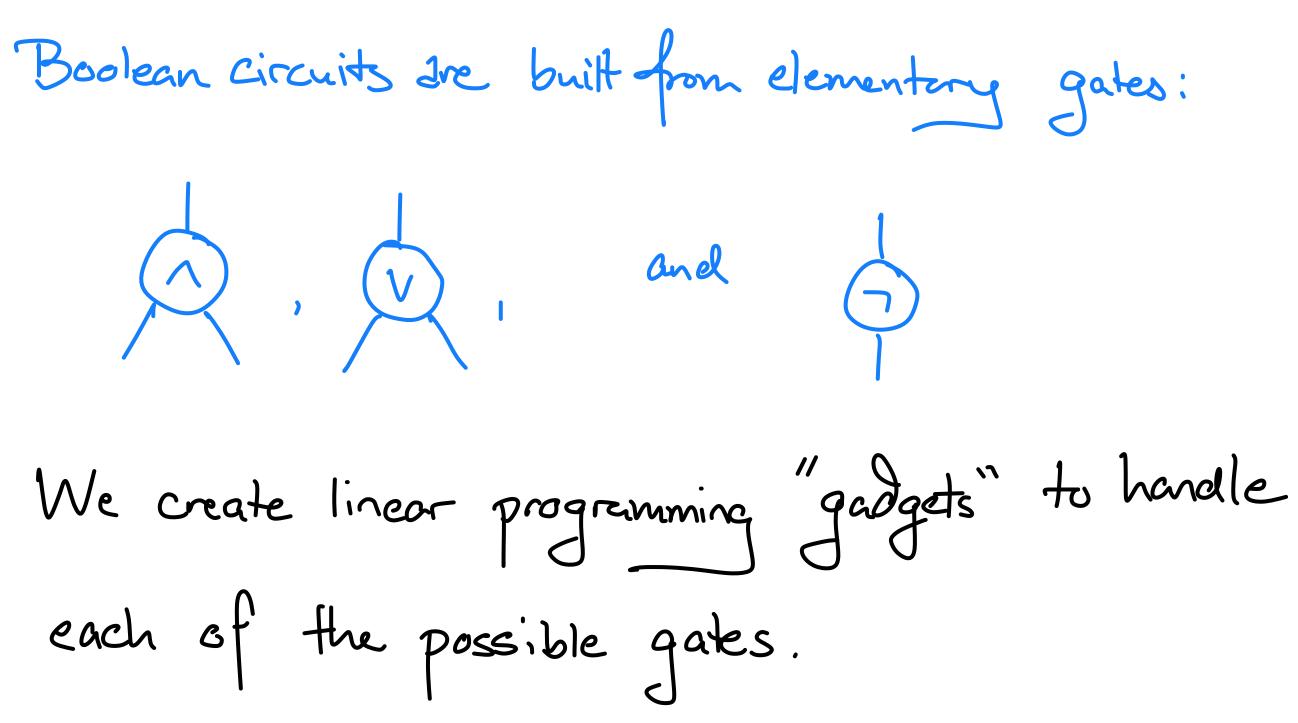
- Fact: Every boolean function $f: \{0,1\}^n \rightarrow \{0,1\}^n$ that can be computed in time T can be computed by a boolean circuit with $O(T \log T)$ gates.
- Theorem: Every boolean function can be expressible as a linear program with O(T log T) variables and constraints.



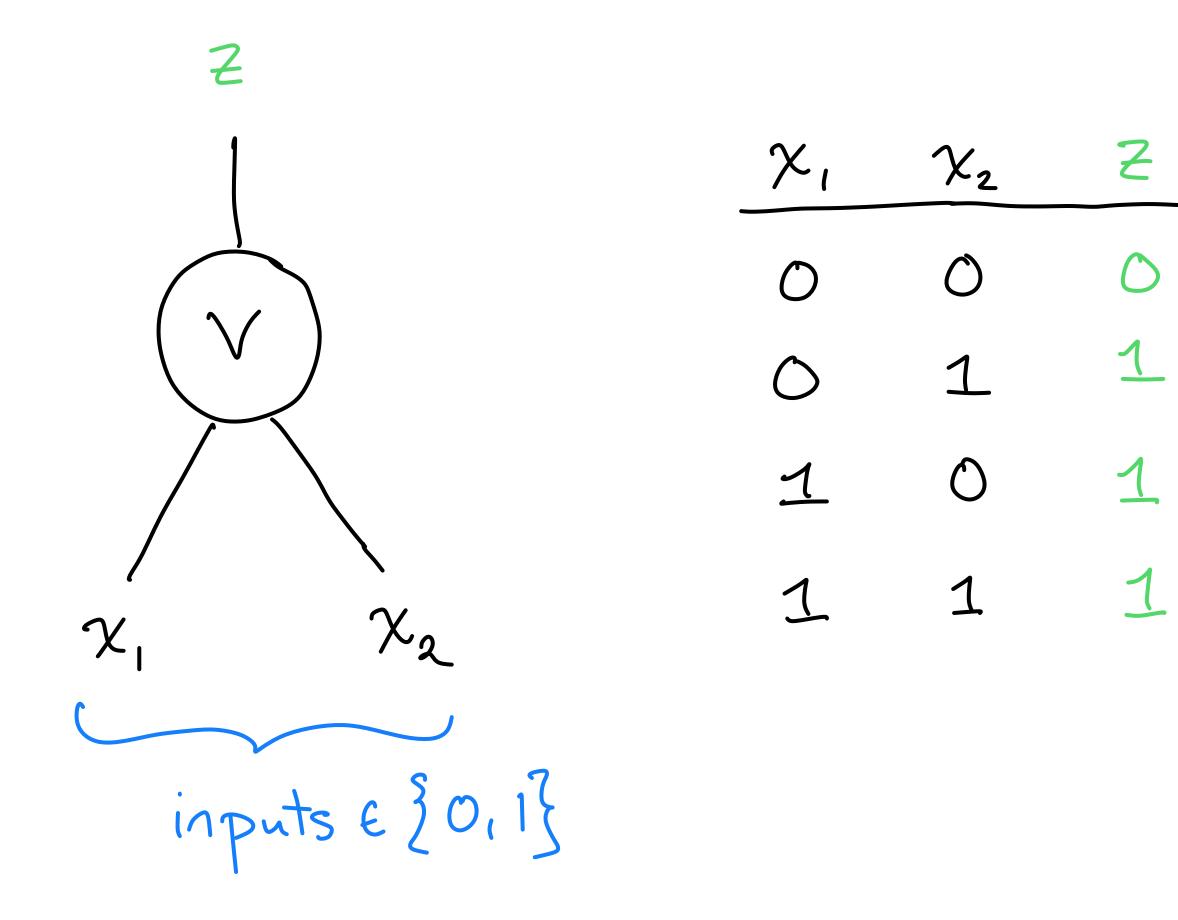


Why is linear programming so important?

- Fact: Every boolean function $f: \{0,1\}^n \to \{0,1\}^n$ that can be computed in time T can be computed by a boolean circuit with $O(T \log T)$ gates.
- **Theorem:** Every boolean function can be expressible as a linear program with $O(T \log T)$ variables and constraints.

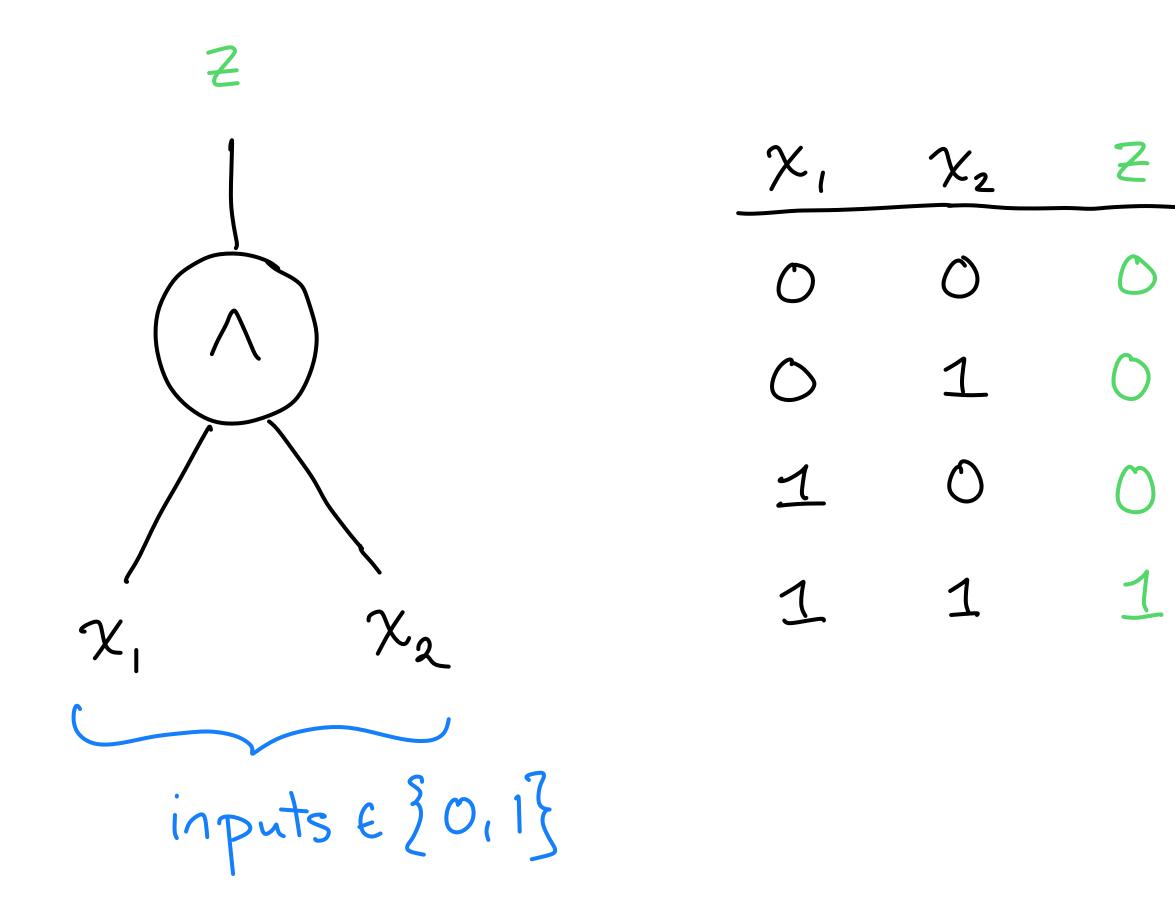


Converting Boolean circuits to LPs OR gate



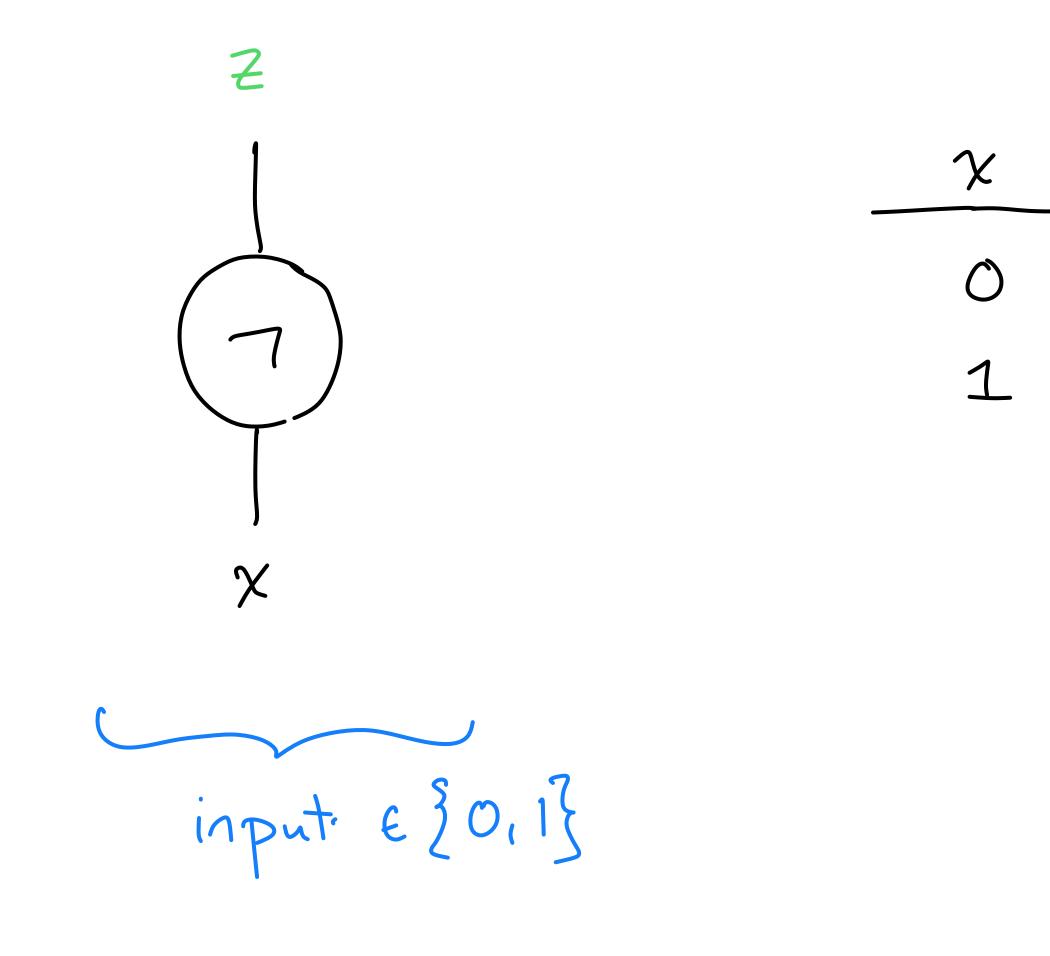
Observe: $Z = Ma\chi(\chi_1, \chi_2)$ $= \begin{cases} Z \geq \chi_{1} \\ Z \geq \chi_{2} \\ Z \geq \chi_{1} + \chi_{2} \\ O \leq Z \leq 1 \end{cases}$

Converting Boolean circuits to LPs AND gate



Observe: $Z = Min(\chi_1, \chi_2)$ $= \begin{cases} Z \leq \chi_{1} \\ Z \leq \chi_{2} \\ Z \geq \chi_{1} + \chi_{2} - 1 \\ O \leq Z \leq 1 \end{cases}$

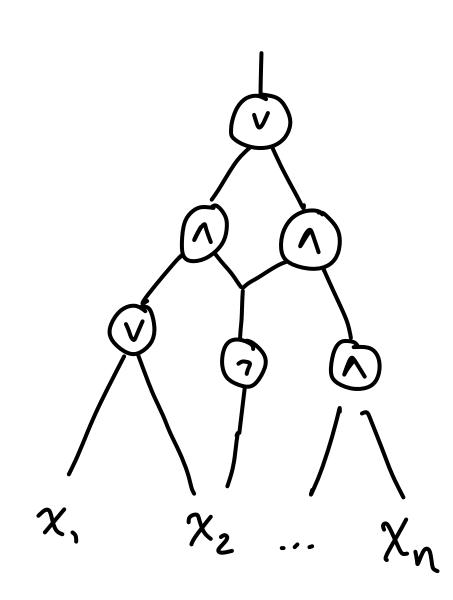
Converting Boolean circuits to LPs NOT gate

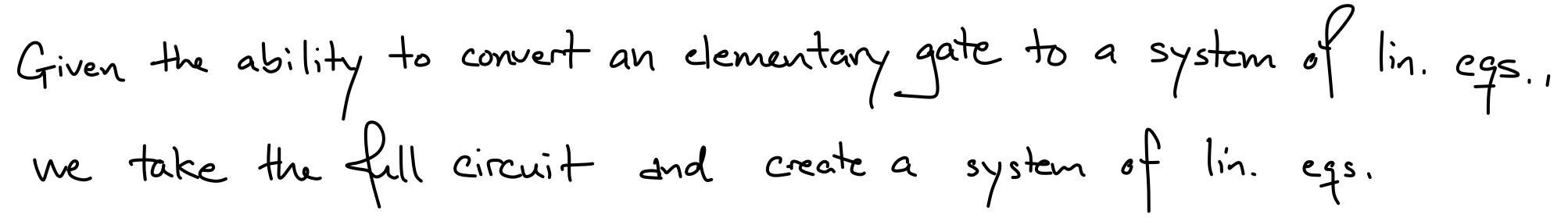


Observe: $Z = 1 - \chi$

 $\frac{z}{1} = \begin{cases} z \ge 1 - \chi \\ z \ge \chi - 1 \end{cases}$

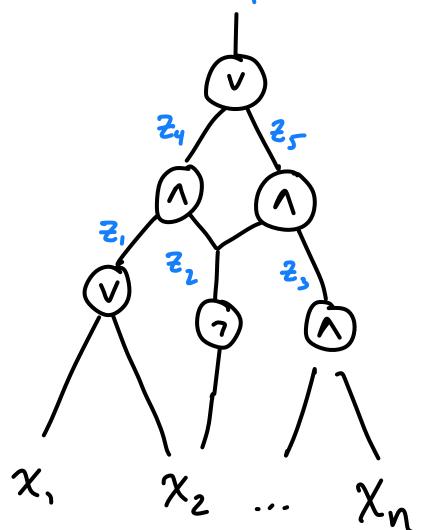
Converting Boolean circuits to LPs





Converting Boolean circuits to LPs

Given the ability to convert an element we take the full circuit and created Assign a variable fe (max Zf s.t. Ygates



220

Converting Boolean circuits to LPs

