
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 22
Linear programming IV

1

What’s a problem LPs can’t solve?
Vertex cover

• Input: an undirected graph

• Output: a minimal set
such that every edge contains
at least one endpoint from .

• There seems to be a pretty
obvious LP for this problem.
What goes wrong?

G = (V, E)

S ⊆ V

S

2

What’s a problem LPs can’t solve?
Vertex cover

• Input: an undirected graph

• Output: a minimal set
such that every edge contains
at least one endpoint from .

• There seems to be a pretty
obvious LP for this problem.
What goes wrong?

G = (V, E)

S ⊆ V

S

3

LP relaxation
Vertex cover

• The LP we tried to write for vertex
cover yields a fractional solution

• It is a “relaxation” of the vertex cover
problem from integer to fractional
solutions

• In the relaxation we increase the
feasible space from integer
coordinates to include all solutions

• Can be used to generate
randomized approximation
algorithms for vertex cover.

4

Max flow versus vertex cover

• Why can max flow natively guarantee integer solutions while vertex cover
cannot?

• Recall, the optimum of an LP occurs at a vertex

• The vertices of an LP correspond to points where linear equations are exactly
satisfied

• Turns out flow equations when exactly satisfied always have integer solutions

• Quite a beautiful piece of mathematics

• Too technical to warrant more time in this course

5

The simplex method

• Finally, we are going to cover an algorithm for solving LPs

• The algorithm is called the simplex method and it will be unique amongst the
algorithms we study in this course

• The simplex method runs incredibly fast in practice and is super useful

• However, it can run in exponential time in the worst case even when there
exist other polynomial time algorithms for the problem

• Later on, we will take a high-level glance at algorithms for solving LPs that are
known to run in polynomial time

6

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

7

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

8

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

9

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

10

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

11

The simplex method

• Simplex is a greedy algorithm

• High-level algorithm:

• Start from a vertex of the polytope

• In each step, move to the neighboring
vertex that optimizes

• Equivalently, move along the edge
pointing the most in the direction

c⊤x

c

12

The simplex method

• We are effectively consider a graph
whose interior is the feasible region .

• If we consider a feasible region defined by
 for

• Then, each vertex can be described by which of
the equations are exactly satisfied

• Describe vertices by points in of Hamming
weight

• Two vertices are neighbors if they share all but 1
equation or equiv. the descriptions differ in two bits

G = (V, E)
Γ

Γ = {Ax ≤ b} A ∈ ℝm×n, b ∈ ℝm

n
m

{0,1}m

n

13

The simplex method
Digging deeper into the algorithm

• Algorithm has two major steps:

• Finding the first vertex (if one even exists as could be infeasible)

• Moving along an edge

• Moving along an edge:

• Currently at a vertex described by out of equations

• Can consider all possible vertices that share all but one equation

• At most neighbors

• Gives a polynomial time algorithm for moving along an edge

Γ

n m

n ⋅ (m − n)

14

The simplex method
Digging deeper into the algorithm

• Finding the first vertex

15

The simplex method

• We have not given runtimes for the simplex method
on purpose

• The runtime can be exponential because the
algorithm goes on the outside of the polytope
which could have lots of vertices, edges, and
facets

• However, simplex runs remarkably well in practice

• Is there a reconciliation? An algorithm that may do
okay in practice but has guaranteed worst case
runtime that is polynomial?

16

Interior point and ellipsoid methods
Interior point

• Keep track of a point inside the polytope

• Follow a trajectory through the interior to optimal
solution

• Solve a sequence of easier problems to
approximate original LP, gradually becoming more
accurate

• Runs about as fast as simplex in practice and has
guarantees on runtime

• The “state-of-the-art” algorithm and a key step in
optimal algorithms for problems like max flow

17

Interior point and ellipsoid methods
Ellipsoid method

• What is an ellipsoid?

• An ellipsoid is a stretched sphere (in any direction)

• Can be defined by a quadratic equation

18

Interior point and ellipsoid methods
Ellipsoid method

• Using LP duality, convert problem from optimizing
a linear polytope to finding a feasible point in a
different polytope

• Generate a sequence of ellipsoids that always
contain

• Each time find a smaller ellipsoid (by guaranteed
ratio) until the center of the ellipsoid must be in

• Very slow in practice but first guaranteed algorithm
for solving LPs

Γ

Γ

Γ

19

Interior point and ellipsoid methods
Ellipsoid method

• Using LP duality, convert problem from optimizing
a linear polytope to finding a feasible point in a
different polytope

• Generate a sequence of ellipsoids that always
contain

• Each time find a smaller ellipsoid (by guaranteed
ratio) until the center of the ellipsoid must be in

• Very slow in practice but first guaranteed algorithm
for solving LPs

Γ

Γ

Γ

20

Interior point and ellipsoid methods
Ellipsoid method

• Using LP duality, convert problem from optimizing
a linear polytope to finding a feasible point in a
different polytope

• Generate a sequence of ellipsoids that always
contain

• Each time find a smaller ellipsoid (by guaranteed
ratio) until the center of the ellipsoid must be in

• Very slow in practice but first guaranteed algorithm
for solving LPs

Γ

Γ

Γ

21

Why is linear programming so important?

• Fact: Every boolean function
 that can

be computed in time can be
computed by a boolean circuit
with gates.

• Theorem: Every boolean
function can be expressible as
a linear program with

 variables and
constraints.

f : {0,1}n → {0,1}n

T

O(T log T)

O(T log T)

22

Why is linear programming so important?

• Fact: Every boolean function
 that can

be computed in time can be
computed by a boolean circuit
with gates.

• Theorem: Every boolean
function can be expressible as
a linear program with

 variables and
constraints.

f : {0,1}n → {0,1}n

T

O(T log T)

O(T log T)

23

Converting Boolean circuits to LPs
OR gate

24

Converting Boolean circuits to LPs
AND gate

25

Converting Boolean circuits to LPs
NOT gate

26

Converting Boolean circuits to LPs

27

Converting Boolean circuits to LPs

28

Converting Boolean circuits to LPs

29

Therefore, every computational problem computable by a
boolean circuit of size can be expressed as a linear

program of size .

I.e. linear programming is universal for computation

T
O(T log T)

