Lecture 2

The stable matching algorithm

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

[NEHOBSEROU

(g

The propose and reject algorithm
Gale & Shapley 1962

\

BIKACHU!

The group £ proposes and the group R receives

Initialize each person to be free
while (some p in P 1is free) {
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)
tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)
replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p

The propose and reject algorithm

What have we learned?

. Proof of termination in 77 iterations. v/
» Proof of perfection: everyone gets matched. v/

» Proof of stability: the output matching is stable for all pairs. v/
 What have we not talked about?

e |s it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

* |s there a faster algorithm?

* How do we extend to 7 proposers and 7' receivers?

4

Today

Gale-Shapley walkthrough

A=Y
We will walkdtronds alq ;) Stoving blnd o At vemaisdon of Ha input anti]

we. have %W\;L} s

FAV LEAST FAV LEAST
J \’ J \’
ALPHA | AP/
BRAV O RUEB EC -)
CHARLIEZ ROMEO
DeLlTA SIERRA

Gale-Shapley walkthrough

ren AP/
ALPHA -~
Do \ _
e ! \ BRAV O RUEB E.C
— —
CHARLIEZ ROMEO
DelLTA t SIERRA t N
) ST
FAV L\T/AST \L
J
| PAPA
e RUEB E.C B 3
seAve B] ROMEO
CHARLIE < eren
DelLTA

Gale-Shapley walkthrough

C et ’\»Hv\m. :

ALPHA

FAV
J
ALPHA
BRAV O
CHARLIE
DelLTA

PAPA F |
RUEB E.C =
ROMEOC i T-‘w
SIERRA t T
FAV LEAST
J \’
TAPA
RUEB E.C
ROMEO
SIERRA

Gale-Shapley walkthrough

C et ’\»Hv\m. :

ALPHA

FAV
J
ALPHA "R
BRAV O
CHARLIE
DelLTA

PAPA F |
RUEB E.C =
ROMEOC i T-‘w
SIERRA t T
FAV LEAST
J \’
TAPA
RUEB E.C
ROMEO
SIERRA

Gale-Shapley walkthrough

Covront pechan: ALPHA Rﬁ_ VAPA F
\ BRAV o F RUEBEC | T
— —
CHARLIZ | = ROMEO A
DelLTA tl’: SIERRA t id
LEAST
FAV
LEAST
F}\G\L\/ ! 4 L
| PAPA
ALPH A "R
RUEB E.C 3)
BRAV O B 3
ROMEO
CHARLIE
SIERRA
DelTA

10

Gale-Shapley walkthrough

Covrent '\»r-\w:\.: ALPHA Rﬁ_ VAPA Fﬁ_
BRAV o F RUEB E.C =
c — —
HARLIZ | = ROMEO A
DelLTA tl’; SIERRA t id
mack all ‘meosals
N L J v
ALPHA - | PAPA
U
B Ay o) 4 RUEB E.C B 3
CHARLIE ROMEOC
— SIERRA

11

Gale-Shapley walkthrough

Crorreont ’\)or‘-\vw*\.: ALPHA Rﬁ_ VAPA F
BRAV o F RUEB E.C =
c — —
HARLIEZ - ROMEO A
DelLTA tl’; SIERRA t s
mack all ‘meosals
d l J b
ALP LA - VAPA
U
zrAve | Q]) QUEB E.C_) .
CHARLIE ROMEOC
— S IERRA

12

Gale-Shapley walkthrough

Covrent '\3¢c-\-/\..,x: ALPHA Rﬁ_ &j"\PA ;ﬁ_
BRAV G Q EBEC
_J Jr __
C\—IARL)Z% - ROMEO A
DelLTA tl’—' SIERRA t 4
mack all 'Frbfosals :
l J b
| PAPA
ALPHA
RUEB E C B 3
BRAV O B 3
ROMEO
CHARLIE
SIERRA
DelLTA

13

Gale-Shapley walkthrough

C Lo ,\wgwm ALPHA K PAPA F |
BRAV o Q RUEBEC | B
cuAauf% = - ROME O r A
wark. all prozasals DeLTA t F SIERRA t T
LEAST FAV LEAST
l J b
ALPHA | PAPA
R Ay o RUEB E.C B 3
criaepie | ROMES
DeLTA SIERRA

14

Gale-Shapley walkthrough

Covrent pectron: ALPHA Rﬁ_ AP/ Fﬁ_
\ RBRAV O Q RUEBEC | B
_ Jr _
C\—IARUZ% - ROMEO A
DelLTA tl’—' SIERRA t 4
MQ(’L AH ‘FW‘FOS&‘S O
J J, b
TAPA |
ALPHA ‘
RUEB E C B 3
BRAV O B 3
ROMEO
CHARLIE Q
SIERRA
DelLTA

15

Gale-Shapley walkthrough

Covrent pectron: ALPHA Rﬁ_ AP/ Fﬁ_
\ BRAV O Q QRUEBEC | B
_ Jr _
C\—IARUZ% - ROMEO A
DelLTA tl’—' SIERRA t 4
MQ(’L AH ‘FW‘FOS&‘S O
J J, b
TAPA |
ALPH A ‘
RUEB E.C C - B)
BRAV O B 3
ROMEO
CHARLIEZ Q
SIERRA
DeLTA

16

Gale-Shapley walkthrough

C Lorrent- ’\3¢c-\-r\m.: ALPHA
BRAV O
CHARLIE
mark. all progosals T 0
J \’
ALPHA 1
BRAV O B 3
CHARLIE
DelLTA

1

Rﬁ-—
r
&
=

TAPA

RUEB E.C

ROMEO

SIERRA

LEAST

TAPA

RUEB E.C

ROMEO

SIERRA

17

Piek e ok ‘sz_ propses

to el ¢
Gale-Shapley walkthrough How 4o gick
C oot pectan: ALPHA R: AP/ F:
\ BRAV o F RUEBEC | ¢
—— —
CHARLIE & ROMEO A
DeLTA tF SIERRA t T
YV\O\FL AH ‘FW“WS&‘S
LEAST FAV HEAST
F}\G\L\/ \l/ N \l/
y | PAPA
LPHA
RUEB E.C C B)
BRAVOG 3 3 .
ROMEO
CHARLIE
SIERRA
DelLTA

18

Tk e ot ‘sz_ preposes

Gale-Shapley walkthrough How 4o i 7
C Lo ,\wgwm ALPHA ‘R: PAPA F :
BRAV o F RUEBEC | ¢
C\—IARUZ#’ R - ROMEO i A -
wark. all prozasals DeLTA t = SIERRA t i
-y LEAST FAV LEAST
J .) l J v
ALPHA | PAPA
BrAyo RUEBE.C C - 5
CHARLIE)] ROMEOS
peLta | P SIERRA

19

Gale-Shapley walkthrough

—r —

Covrent '\3¢c-\v\..n.: ALPHA Rﬁ_ VAPA P |
BRAV o F RUEBEC | ¢
— —
CHARLIE Q ROMEO A
DelLTA t? SIERRA t 4
mack all meosals :
d b J
| PAPA
ALPHA
RUEB E.C C - B)
BRAV O B 3
ROMEO
CHARLIE
SIERRA
DelLTA

20

Gale-Shapley walkthrough

—r —

C Lo ,\WMM ALPHA K PAPA P |
BRAV o F RUEBEC | ¢
CHARLIE i & B} ROME G r A
wark. all prozasals DeLTA t P SIERRA t i
F‘Av) LEAST FAV ST
J L J v
ALPHA | PAPA
BrAyo RUEB E.C C - 5
CHARLIE ROMEOC
DeLTA SIERRA

21

Gale-Shapley walkthrough

—r —

C rorcerch ,\»‘_]W\.‘ ALPHA K PAPA B |
BRAV 6 iz RUEBEC | ¢ Recievers Od\\\] el Ap
c\—lAfauz:lr @, - ROME O r A B ’\%Fa o\l vver dww«z
wack. all progasals DeLTA t F | SIERRA t i Porivers oqain
F‘A\/) LEAST FAV LEAST
J \’ J \’
ALPHA 1 VAPA 5
BRAV o RUEB E.C C - B)
CHARLIE ROMEOC
DeLTA SIERRA

22

Gale-Shapley walkthrough

C ook mectnn ALPHA K PAPA B |
%" AN _
B %’ — . . N
C\—IARI,)Z%i Q A (Pafeu will viover da A=
t - t F" ?“"’\"V‘m ﬁaﬁv\
DELTA |
MarL al| Frb?osals
FAV LEAST
J \’ 4
ALPHA
BRAV O
CHARLIEZ

DelLTA

23

Gale-Shapley walkthrough

ALPHA K
CI«WY'U/\Y]‘ ")oc‘-\-m.n.: ‘?ﬁ_
BRAV O
#7 ——
CHARLIZ | &
DelLTA t F
mack all ‘Frbfosals
J \/
ALPHA
BRAV O
CHARLIE

DelLTA

— 1

TAPA

RUEB E.C

ROMEO

SIERRA

TAPA

RUEB E.C

ROMEO

SIERRA

24

Gale-Shapley walkthrough

ALPHA K
CI«WY'U/\Y]‘ "Boc‘-\-m.n.: ‘?ﬁ_
BRAV O
Jﬁ' —
CHARLIE | @
DelLTA t F
MarL oJ\ ‘Fﬂofosals
J \/
ALPHA
BRAV O
CHARLIE

DelLTA

1

TAPA

RUEB E.C

ROMEO

SIERRA

TAPA

RUEB E.C

ROMEO

SIERRA

25

Gale-Shapley walkthrough

Covrrent '\»c-lv\m.: ALPHA ¥
BRAV O Y
cHARLIE [@
DeLTA t‘lfﬁ

mack all ‘Fﬂofosals :
J \/
ALPH A
BRAV O
CHARLIE

DelLTA

26

TAPA B |
RUEBEC | ¢
ROMEOC 4,@«
SIERRA t i

FAV

J
TAPA
RQUEB E.C C
ROMEOS "D
SIERRA

Gale-Shapley walkthrough

C rorrent- '\»c-lv\ux: ALPHA ¥
BRAV 6 Y
CHARLIE | @
mack all prtosals 0T t‘« |
J \’
ALPHA
BRAVO©
CHARLIE

DelLTA

27

TAPA B |
RUEBEC | ¢
ROMEOC 4,@«
SIERRA t T

FAV

J
TAPA
RQUEB E.C C
ROME O ‘D
SIERRA

Gale-Shapley walkthrough

Covrrent ’\3¢c‘-\-f\u\1 ALPHA 5
BRAV O Y
cHARLIE [@
DeLTA t@

mack all Fﬂofasals :
J \/
ALPHA
BRAV O
CHARLIE

DelLTA

28

TAPA B |
RUEBEC | ¢
ROMEOC 4,@«
SIERRA t/-l

FAV

J
TAPA
RQUEB E.C C
ROMEOS "D
SIERRA

no ’(\m ?ra?ascfs.
Gale-Shapley walkthroug/ Aq Feminaton ond ccens

v Watched .
Covrent pectron: ALPHA 5 : VAP/ |
\ BRAV O Y RUEB E.C C checlk owr how
- r — ™ rec\eve,
CHAQI,)Z%’ Q ROMEO ’D &])*7/ the eve
C tx 1§
DeLTA t‘lfﬁ SIERRA t/] 'P"tfmmt MATX 1S

mack all Fm?asals

LEAST
FAV
J \/

ALPH A R
RUEBE.C C. 5 Neves “’w }

BRAV O X Conc ane
ROMEO "D ‘J

CHARLIEZ
SIERRA

DelLTA

29

no '(\“C—L ?mi)asu‘s ,

(Alj Terminaten ol C\-{‘\/afu—

W1 Watehed .

RUEB E.C C - 5
BRAV 6 omen - ?
CHARLIE < eren
DelLTA

30

Gale-Shapley walkthrough

C et '\»Hwn. :

ALPHA S
j FB"ZAVD ?
CHARLIE |
DeLTA t“’ﬁ

31

TAPA
RUEB E.C

ROMEO

SIERRA

TAPA
RUEB E.C

ROMEO

SIERRA

Bﬁ_.
C
™
[7
FAV
J
C
D

Gale-Shapley walkthrough

C Lorrent- f\3“..]..,\m_.‘ ALPHA S PaPA B
-+ BRAve Y RUEBEC | ¢
T (AQ) C\—IARL)ZZ# R - ROMEOG #fD -
stable ¢ DeLTA tﬂ SIERRA t /]
- |
FAV LEAST FAV LEAST
ALPHA } VAPA
BRAV 6 KUEBEC C B B 3
CHARLIZ ROMEOC D | A
DeLlTA SIERRA

32

Gale-Shapley walkthrough

C Lorrent- f\3“..]..,\m_.‘ ALPHA S PaPA B
-+ BRAve Y RUEBEC | ¢
TITs CA,?) C\—IARL)ZZ#Q - ROME O #fD -
stable ¢ DeLTA t@ SIERRA t /]
- |
FAV LEAST FAV LEAST
ALPHA VAPA
BRAV o RUEB E.C C - B)
CHARLIZ ROMEOC D | A
DeLlTA SIERRA

33

Implementing stable matching

* |Input length
.« N := 2n” words in length because 27 people X preference list of length 7.

A “word” hereis anumber € [n| = {1,2,...,n} . Takes |log, n| bits to represent.
+ Input length of 21 [log, 1] bits.

» Brute force algorithm: Try all ! possible matchings. Testing if a matching is stable
requires testing if each of the 7~ pairs (p, r) is stable.

o Gale-Shapley algorithm: takes < n” iterations. How long does each iteration take to
run?

34

Implementing Gale-Shapley in O(n?) time
Comparing

Initialize each person to be free

_ while (some p in P is free) {

 Input: 2 n X n representing the preferences of P and R: .
Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

':prefP[Fﬂ[j]fprefR[r]Lf] if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

 Assume the proposers and receivers are numbers 1,2,...,n Sles iF (r sEefems b e EnEEEE eoisiiee matan o)

replace (p’,r) by (p,r) //p now engaged, p’ now free

 Each preference array is a permutation of { 1,2,...,n} else

r rejects p

 Data structure for the matching:
 Maintain two arrays Mp|p| and My|r] denoting match of p and r
« Initialize both arrays to all 1, a symbol denoting that the match isn’t set

« If during the algorithm, (p, r) is matched, set Mp|p]| < r, Mp[r| < p

 Making proposals:
« Maintain a queue Q of all the free proposers. Initially O contains all n proposers.

« Maintain an array count| p] which counts how many proposals p has made so far. Initially all entries are 0.

35

Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

« How do we decide efficiently if receiver Choose some free p in ?
,’? if=(]];sti:>e;'rs:en) on p's preference list to whom p has not yet proposed
r prefers prOpcser p to propcser p) tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

° Na|Ve|y WOUId take O(n) querles .tO elsereplace (0’ r) by (p,r) //p now engaged, p’ now free
read through prefy[r]| -] to find both)

p and p’

r rejects p

36

Gale-Shapley walkthrough

Crorrent '\3¢r-\-vxm.: ALPHA Rﬁ_ AP/ Fﬁ_

BRAV 6 Q RUEBEC | B

C\—IAQL)Z%F ROMEO r A -

DelLTA t F SIERRA t 4

MQ(’L AH ‘FW‘FOS&‘S O
l 4, b
ALP U A VAPA |
v,

B Ay o) A RUEB E.C B 3
criaepie | ROMES
DeLTA SIERRA

37

Gale-Shapley walkthrough

Crorrent '\3¢r-\-vxm.: ALPHA Rﬁ_ AP/ Fﬁ_

BRAV 6 Q RUEBEC | B

C\—IAQL)Z%F ROMEO r A -

DelLTA t F SIERRA t 4

MQ(’L AH ‘FW‘FOS&‘S O
l 4, b
ALPHA TAPA |
v,

BrAVo) ‘ RUEB E.C C - B)
craeLz | R ROMEOS
DelLTA SIERRA

38

Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

 How do we decide efficiently if receiver r prefers Choose some free p in P
/ r = 1st person on p's preference list to whom p has not yet proposed
proposer p to proposer p? ST

tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)

¢ Nalvely WOUId take O(I/l) quel’leS tO I’ead thrOugh replace (p’,r) by (p,r) //p now engaged, p’ now free

else

pretp[r][-] to find both p and p’ : rejects p

* |nstead, precompute the inverse list of

preferences: invprefp[r][p]. .

» Property: j = invpret,|r][p] if and only if

p = prefylrllj]. [N R CH TN CR

 Jakes O(nz) time to precompute inverse list. Once
computed, each comparison takes time O(1).

for i =1 to n
invpref[r] [pref[r] [1]] = 1

39

Implementing Gale-Shapley in O(n?) time

* When a proposer p becomes free, p starts proposing to new receivers
starting from count|p|. All previous receivers have been proposed to in
previous steps of the algorithm. Update count|p| as rejections occur.

« Combined with the inverse list pre computation, we achieve that every
proposer-receiver pair (p, r) is considered in O(1) computational steps and
there are a total n° possible pairs.

* This completes the entire time complexity argument of O(nz). More detalls
can be covered In section.

40

Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!

FAV LEAST FAV LEAST
J L J v
ALP LA 1 VAPA
R Ave] 4 QUEBEC) 4
CHARLIE ROMEOS
DelTA SIERRA

41

Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!

d J \ b
ﬂ SIERRA
ALPH A
CHARLIE TAPA B 3
DelLTA ROMEOS

42

It’s good to be a proposer
Proposer-optimality of Gale-Shapley

 Proposer-optimal: The proposer-optimal assignment is one in which every proposer p Is
matched with their best valid partner

« Valid partnership: p and r is a valid partnership if there exists some stable matching
containing (p, r)

 Lemma: Gale-Shapley always produces a proposer-optimal stable matching.

* Corollary: Gale-Shapley always produces the same assignment. |.e. ordering does not
matter!

* Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley
always outputs a proposer-optimal stable matching, it always outputs the same
assignment.

43

Proof of proposer-optimality

there is some stable matching M’ containing (py,).

Grle 9“\’“7&

A proof by contradiction. Assume M is not proposer-optimal then thenZis some A"’ ’H/\i.S Momant™ ‘('\‘V\-L, ?
first time in running GS that a proposer p, is rejected by a valid partner r,
since proposers propose in order of preference. _—
prop prop P GSA\J 'P.I"j ﬂ[?zj
» Since r, rejected py, let p, be the partner r, prefers: either (p, was engaged to Tﬁ"‘\(Matchun
ry) or (p, replaced p;). And in M, let r, be the partner of p,: valid partnership
(D2, 72)-

 Since ry rejecting p, is the first rejection by a valid partner, at that moment in ? _ ‘ ’ [J l ‘\

the algorithm, r, cannot have rejected p,. Only possibility, p, hasn’t proposed to
r, yet.

« So p, prefers r; to ;. ?& -:-_r ‘ (" I K | l

« And, we said that r, prefers p, to p;.

 So (p,,) is unstable for M’. A contradiction to its stability of M.

W o -

e T I Iml [[Tn] [[T

i \ 44 X

It’s bad to be a recelver

Receiver-pessimality of Gale-Shapley

 Recelver-pessimal: The receiver-pessimal assignment is one in which every
recelver r iIs matched with their worst valid partner

o Valid partnership: p and r is a valid partnership if there exists some stable
matching containing (p, r)

 Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

45

Proof of receiver-pessimality

* A proof by contradiction. Assume M is not receiver-

pessimal i.e. some receiver r; Is matched to p, but p, is
not the worst valid partner

» There exists a M’ stable matching in which 7 is
matched to p, but p, is lower ranked by r

» Let r, be the match of p; in M’
 Proposer-optimality of M gives that p, prefers r; to r,

e (py,) is unstable for M’, a contradiction.

46

f \\RF P&\J
p [Tl I 1 |
"4

M

MI'P, A

Natural extensions

Example: Matching residents to hospitals

* QOriginal form: proposers are hospitals and receivers are med. school residents

» Variations that make the problem different:

e Some participants could declare some partners as unacceptable. (Rank = o0).
 Unequal number of proposers and receivers.

* Participants can participate in more than one matching.

» A different notion of “stability”.

* Residents may want to perform “couples matching”.

« Many natural variants turn out to be NP-complete! A topic we will discuss in depth later in the
course.

47

Actual implementation

* NRMP (National Resident Matching Program)
o 23,000+ residents legally bound by the outcome
* Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)
 Post-1995 has the hospitals as receivers (recall, receiver pessimality)
* Rural hospital dilemma
 How to get residents to unpopular (often rural hospitals)?

* Rural hospitals were often undersubscribed in matchings.

48

Meta-lessons from stable matching

* Jo design and analyze algorithms, isolate the underlying structure of the
problem.

* Algorithms can have deep social ramifications that need to be understood.
Algorithm design can have unintended consequences.

* Technique for study algorithms: Find the first time the “bad event” might
happen in the running of the algorithm and prove it doesn’t occur.

» Variant of proof by contradiction.

49

Are you incentivized to lie?

e Should stable matching players lie about their preferences to get better outcomes?

By proposer optimality, a proposer has no incentive to lie.

e Recelvers are incentivized to lie.

 No mechanism can guarantee stable matchings and incentivize honesty. (Not proven

in this class).

A B
B A
A B

Group P Preference List

C
C
C

Y X |y
- T
< v O

Group R True Preference List

x

50

Y

A pretends to prefer Z to X

Algorithmic complexity

Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any one arithmetic number in memory takes one time step
 Measuring algorithm efficiency
e Let input be (x{, ..., x,) with each x; representing one arithmetic number

 Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.

52

Complexity analysis

e Input (xq, ..., x,) of length n.
* Multiple measures of complexity.
 Worst-case: maximum # of steps taken on any input of length n

* Best-case: minimum # of steps taken on any input of length n

 Average-case: average # of steps taken over all input of length n

53

Complexity analysis

» The complexity of an alg. is a function 7(n) for each input size n € N.

e i.e. Tyor() or T,(n) could be two different functions.
e T:N — N

« We are interested in understanding the overall behavior/shape of 1, not the
exact function.

» Sometimes there is more than one size parameter. 1(n, m) for a n vertex and
m edge graph.

54

Polynomial time

A notion of efficiency

« A function T(n) is polynomial time if T(n) < cn* + d for some constants

c,k,d> 0.

 Let k be the minimal such value. This is the degree of the dominating
polynomial.

* Polynomial time is known as “efficient” in theoretical CS.

55

Polynomial time

A notion of efficiency

. A function T(n) is polynomial time if T(n) < cn* + d.
 Why polynomial time?
* Scaling the instance by a constant factor so does the runtime.

 Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

* |.e. polynomial-time is a notion independent of model of computation.
 |deal for theoretical study of what problems are efficient and which are not.
* Problem size grows by constant, then running time also grows by constant.

e If T(n) = cn® + d then T(2n) = c2n)* + d < 25(cn* + d) = 2*T(n).

 Typically, polynomials for common algorithms are small polynomials cn, cnz, cn3, cn® Rarely anything higher.

56

Big-O notation

Let 7, 2 : Nl — N. Then

» [(n)is O(g(n))if 3 ¢,ny > 0 such that T(n) < cg(n) when n > n,.

. .. I(n)
. I(n)iso(g(n))if Iim =
n—oo g(n)

e [(n)is Q(g(n))if 3 €,ny > 0 such that T(n) > eg(n) when n > n,.

0.

e [(n)is®(g(n))if I'(n)is O(g(n))and T(n) is L2(g2(n)).

