Lecture 2 The stable matching algorithm

Chinmay Nirkhe | CSE 421 Spring 2025

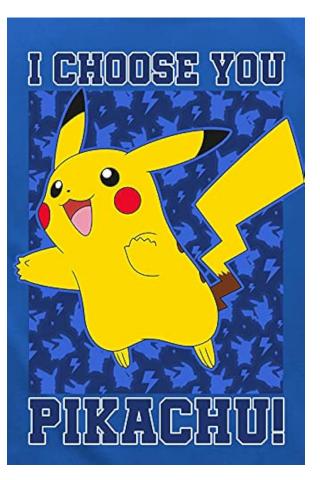
1

Previously in CSE 421...

The propose and reject algorithm Gale & Shapley 1962

The group P proposes and the group R receives

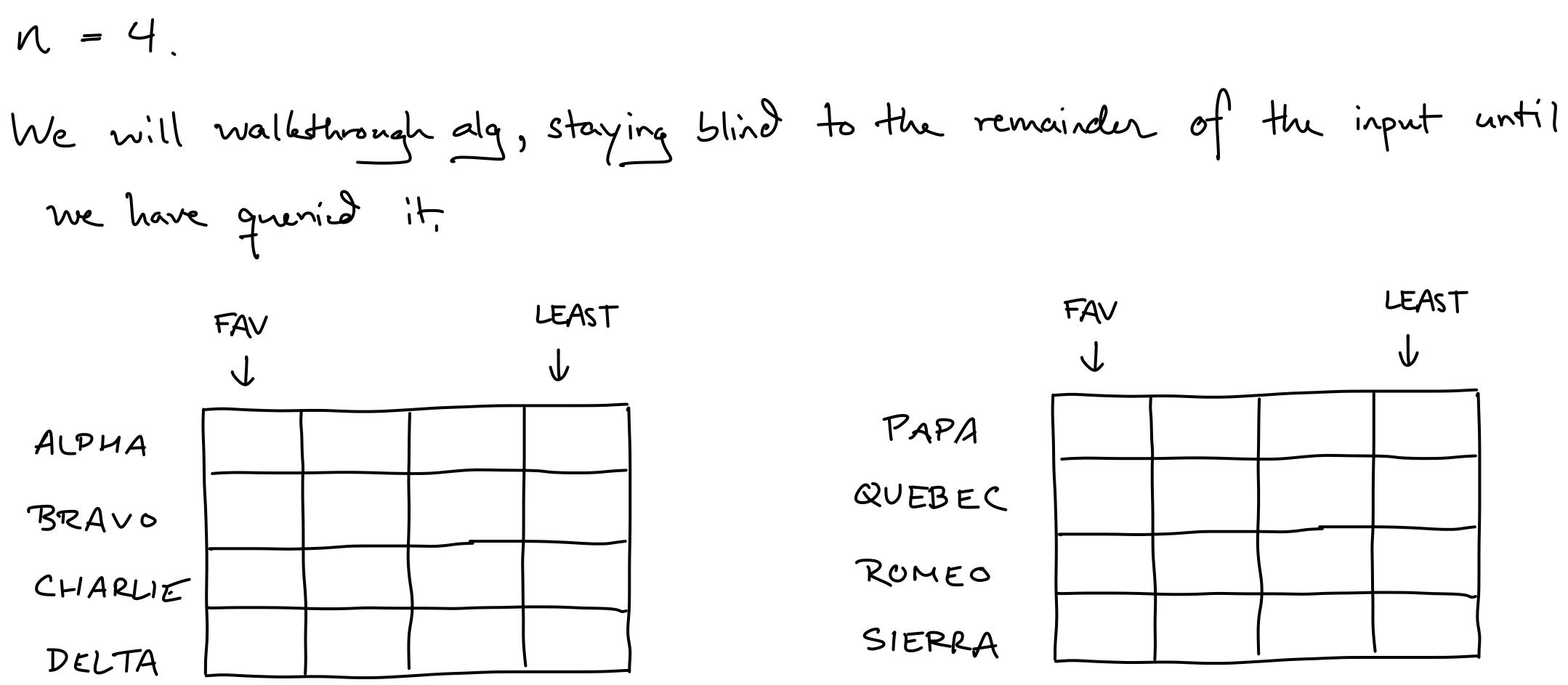
Initialize each person to be free while (some p in P is free) { Choose some free p in P $r = 1^{st}$ person on p's preference list to whom p has not yet proposed if (r is free) tentatively match (p,r) //p and r both engaged, no longer free else if (r prefers p to current tentative match p') replace (p',r) by (p,r) //p now engaged, p' now free else r rejects p

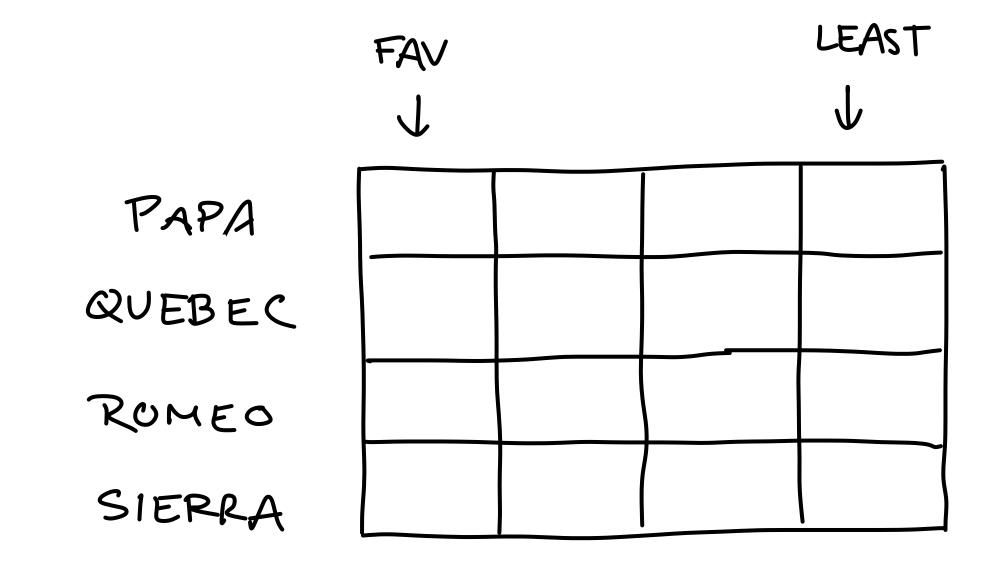


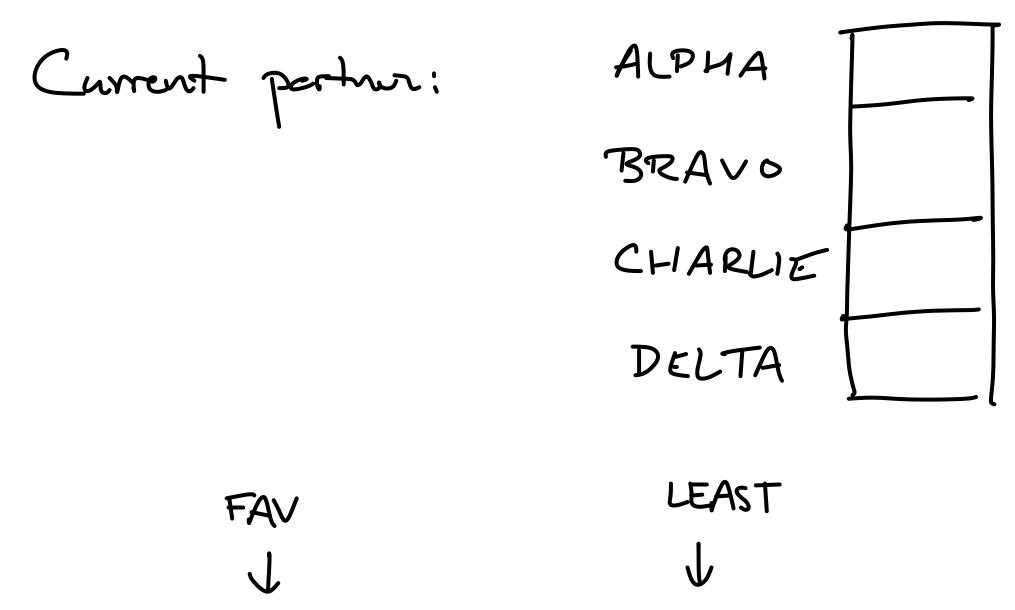
The propose and reject algorithm What have we learned?

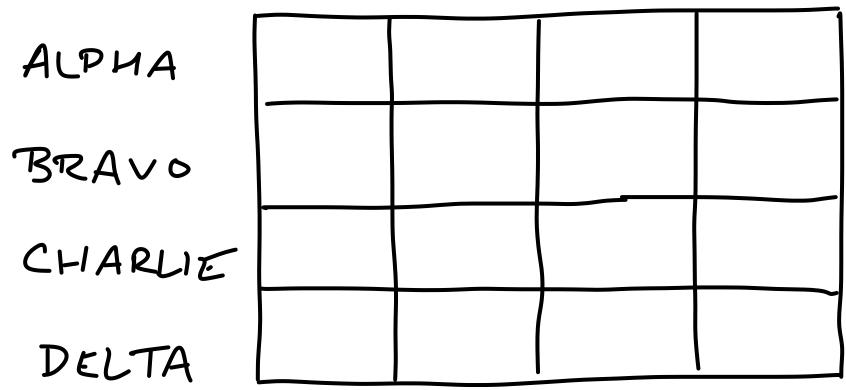
- Proof of termination in n^2 iterations.
- Proof of perfection: everyone gets matched.
- Proof of stability: the output matching is stable for all pairs.
- What have we not talked about?
 - proposer have it better?
 - Is there a faster algorithm?
 - How do we extend to *n* proposers and *n'* receivers?

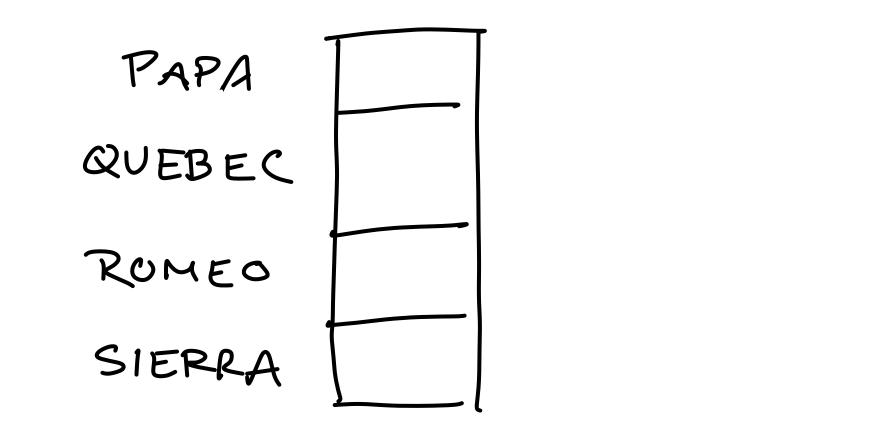
• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last



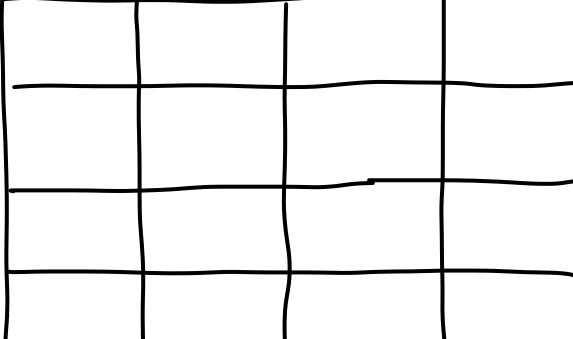


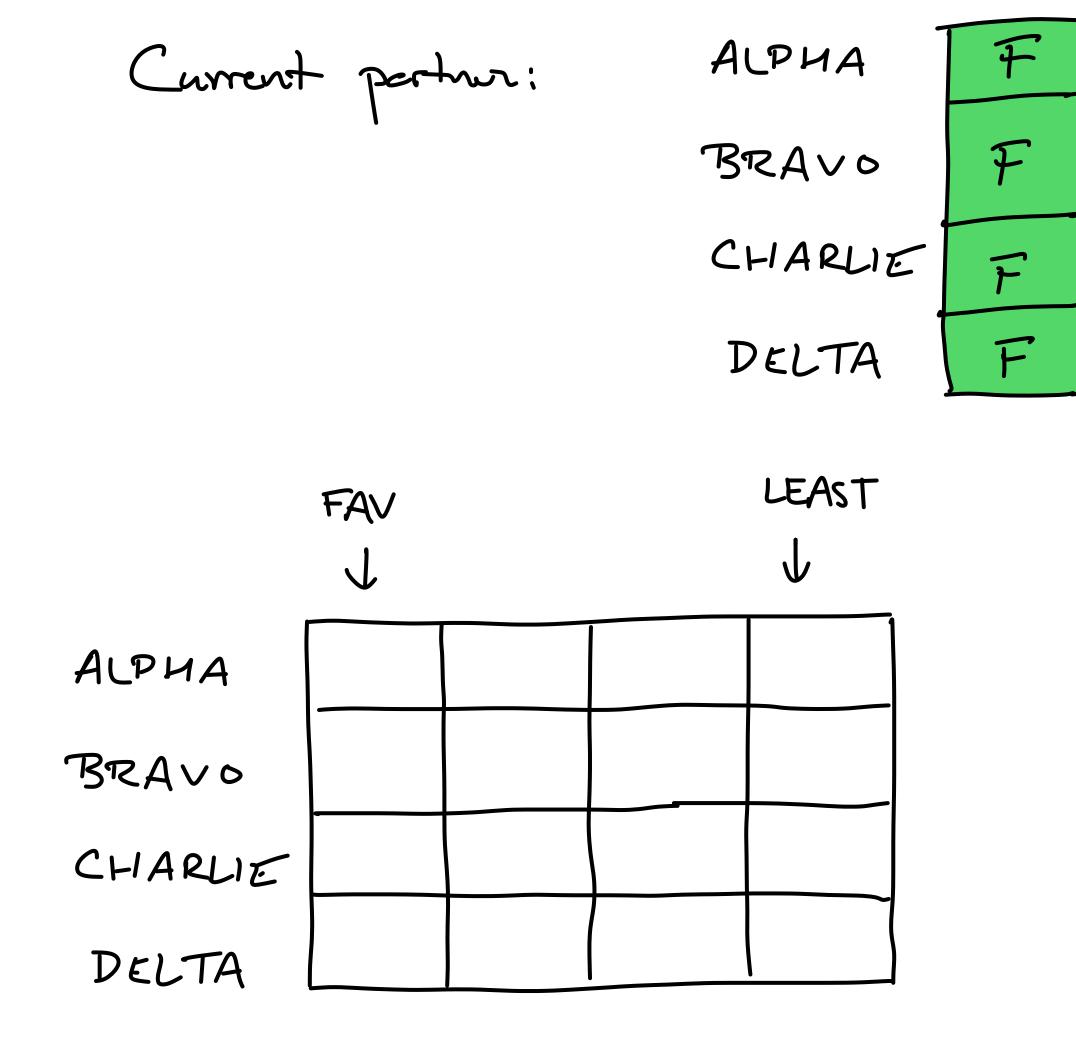






 \mathbf{V}

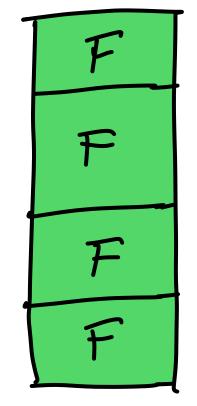




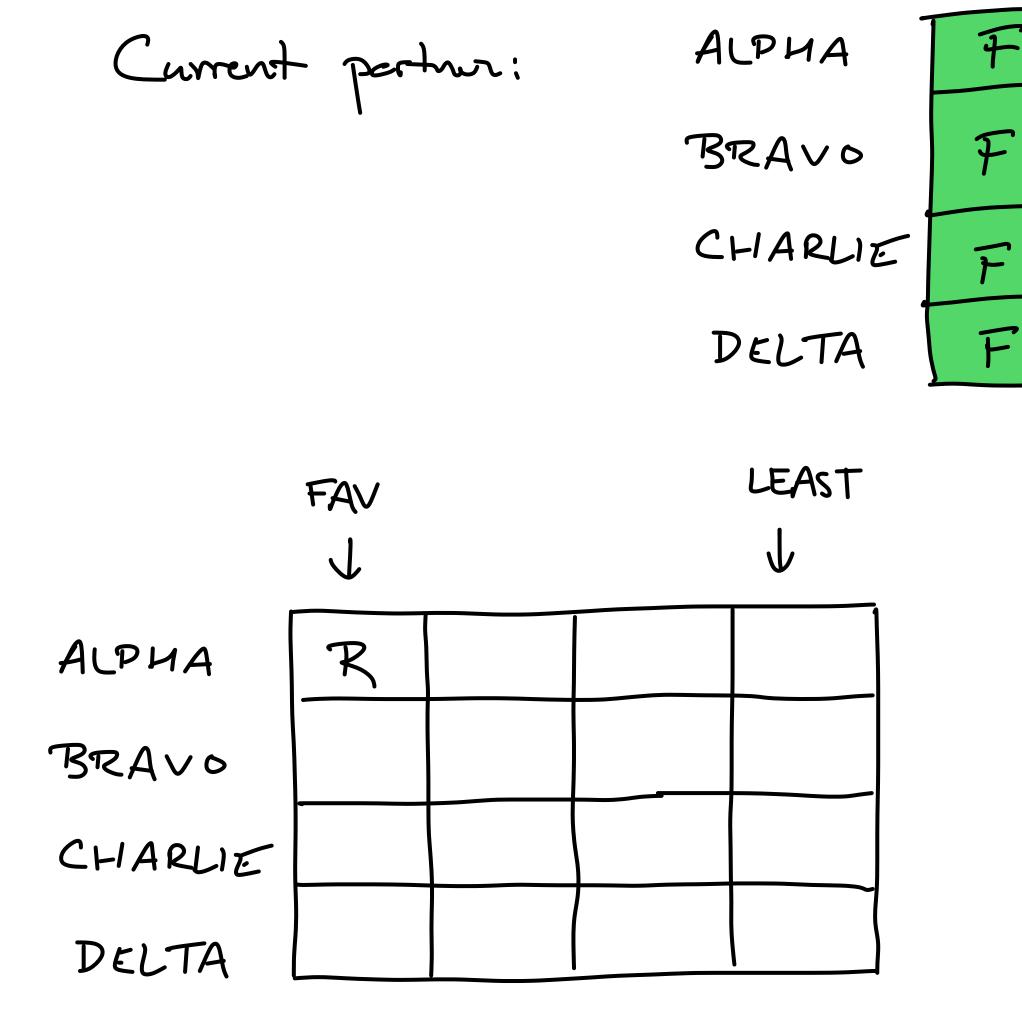
PAPA QUEBEC

RUMEO

SIERRA



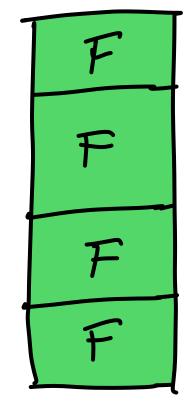
QUEBEC RUMEO



PAPA QUEBEC

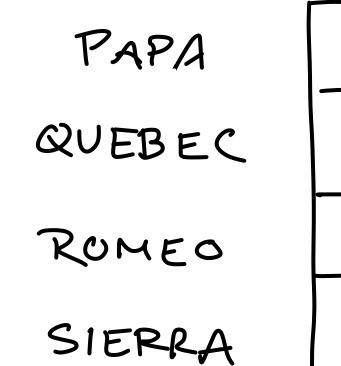
RUMEO

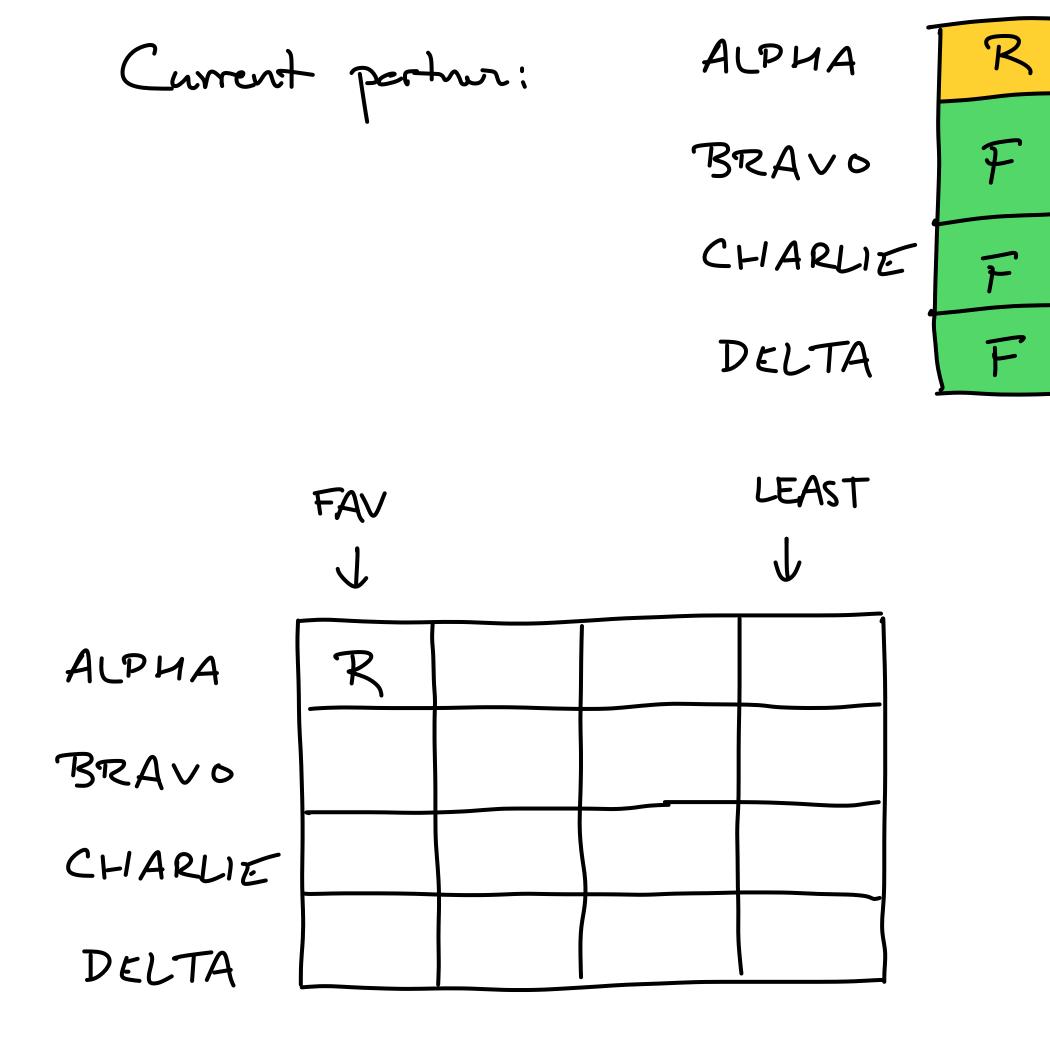
SIERRA



LEAST

FAV

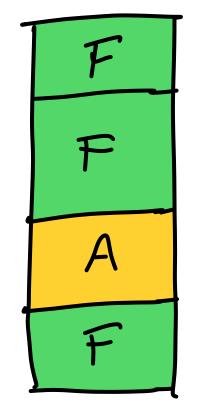




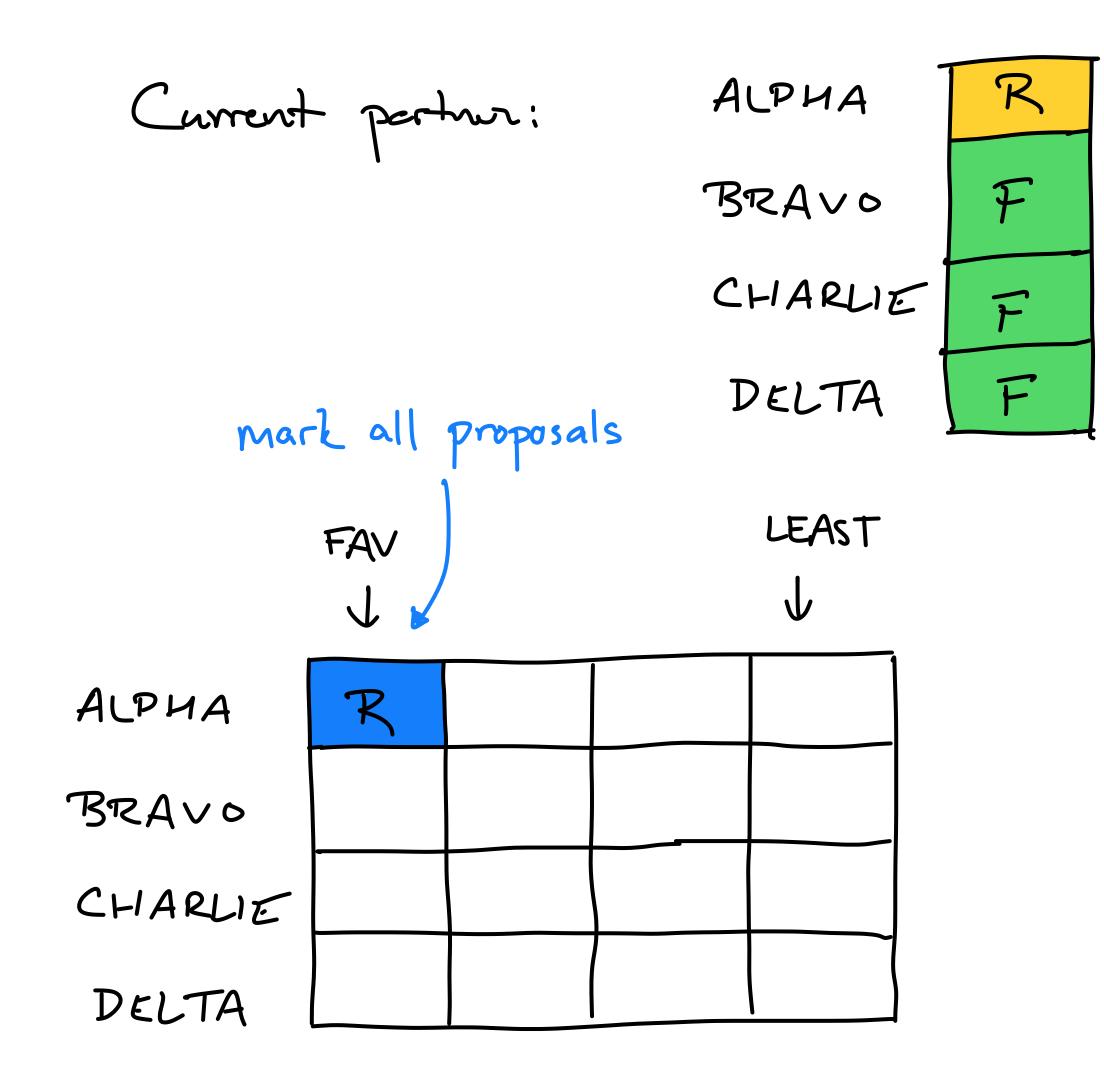
PAPA QUEBEC

RUMEO

SIERRA



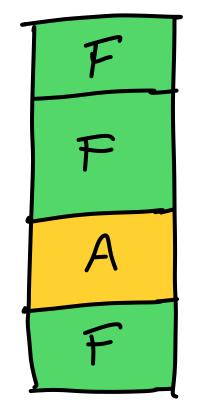
 \mathbf{V}



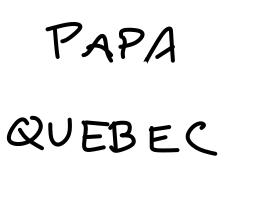
PAPA QUEBEC

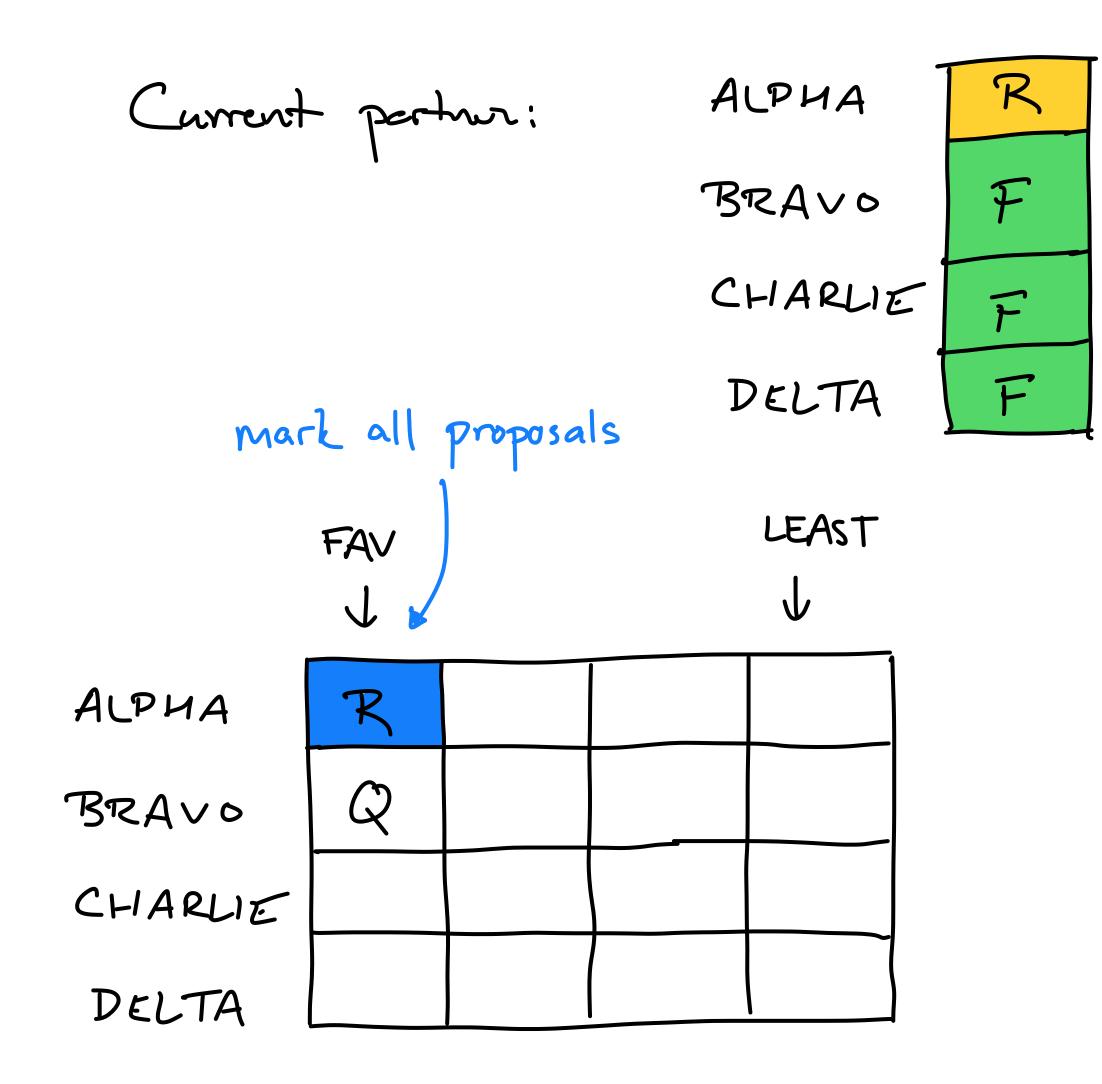
RUMEO

SIERRA



 \mathbf{V}

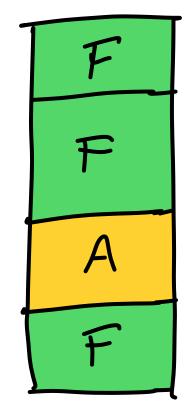




PAPA QUEBEC

RUMEO

SIERRA

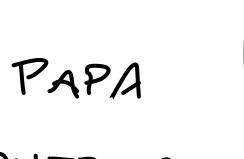


FAV

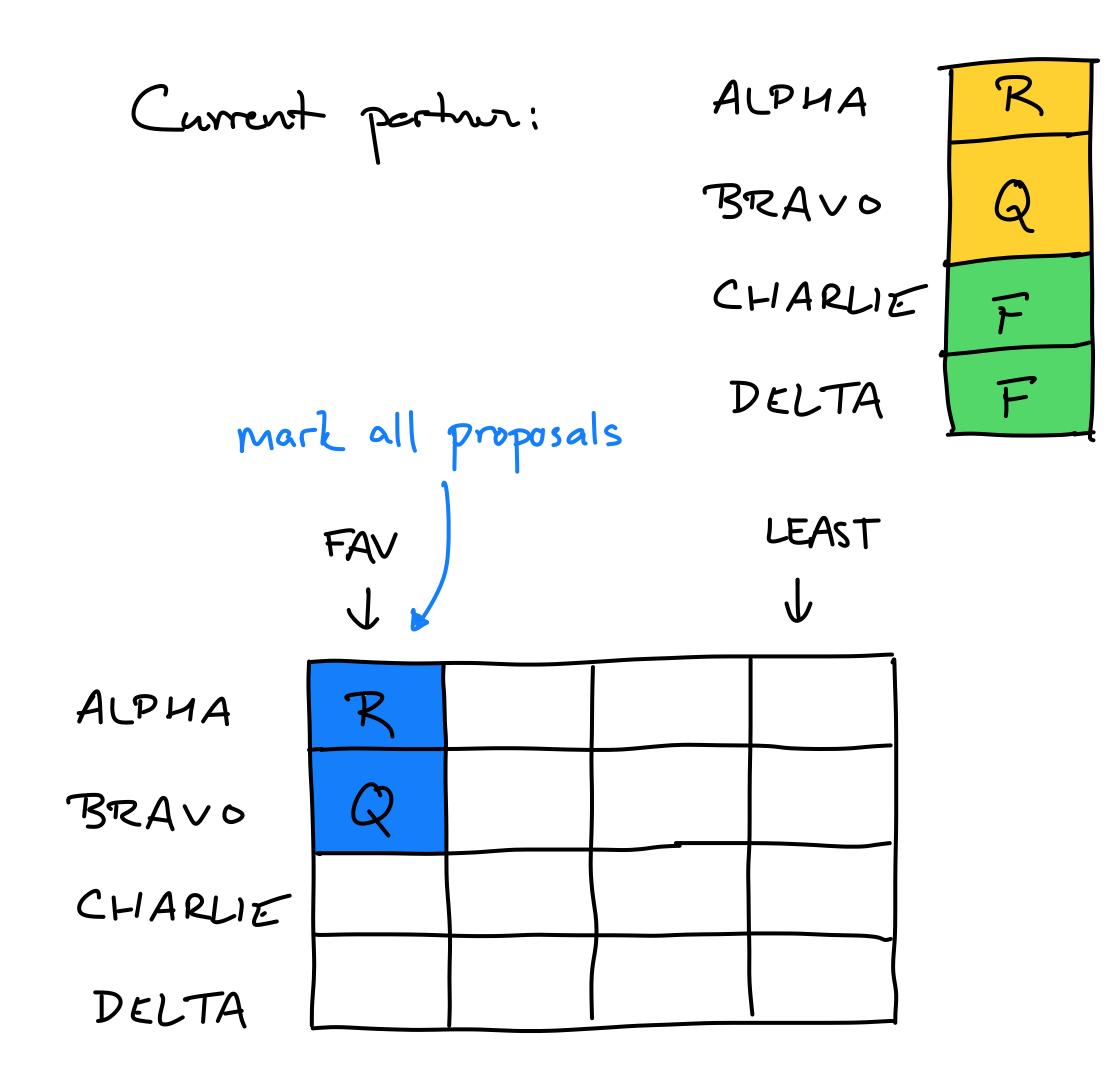
J

LEAST

 \mathbf{V}



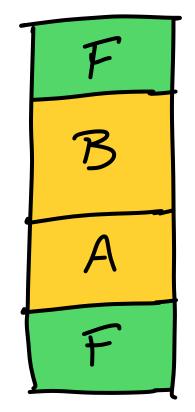
QUEBEC Romeo



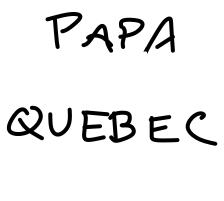
PAPA QUEBEC

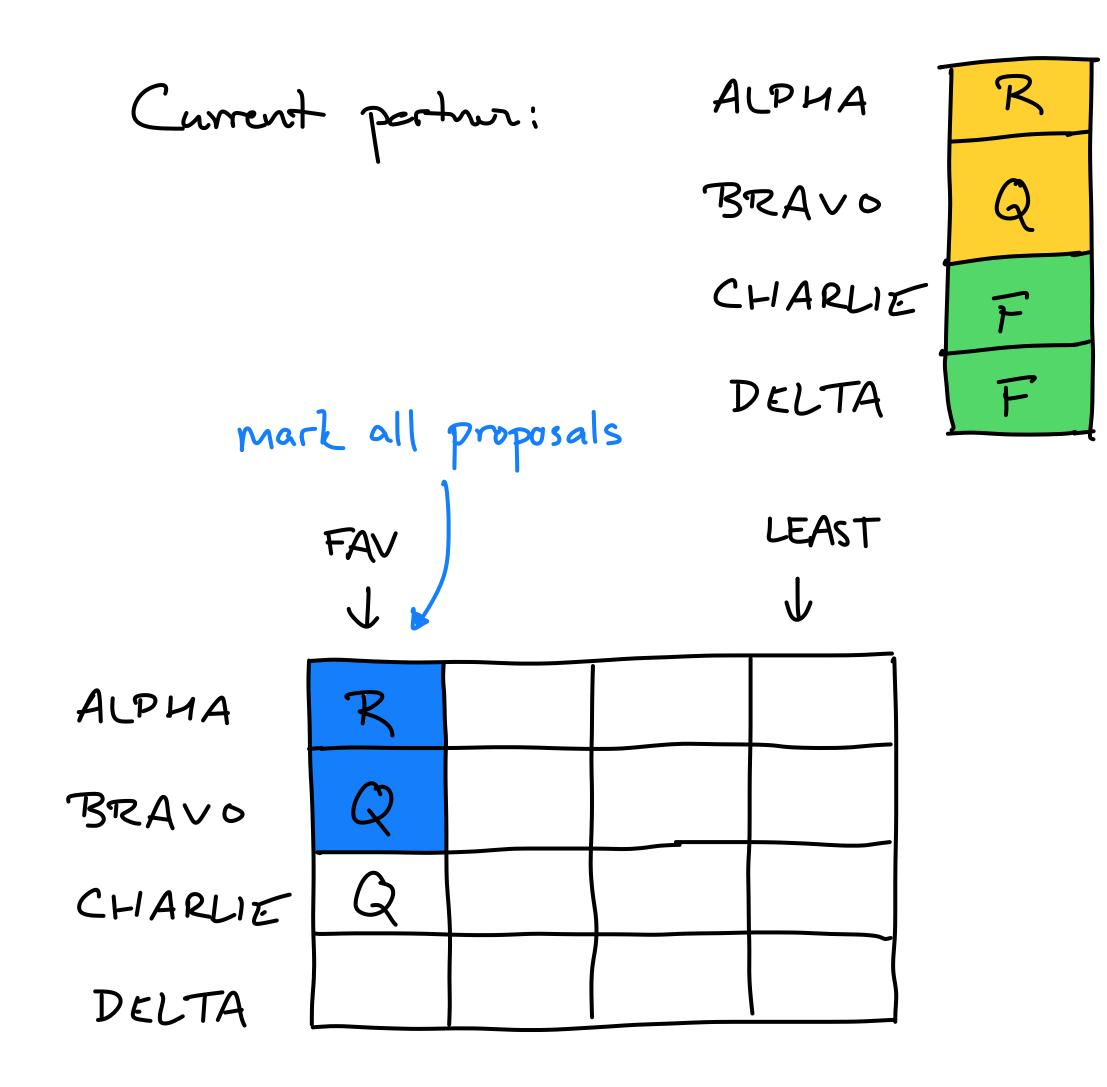
RUMEO

SIERRA



 \mathbf{V}

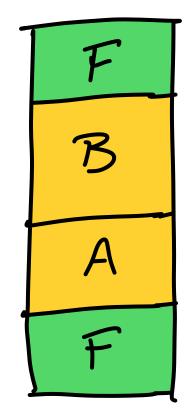




PAPA QUEBEC

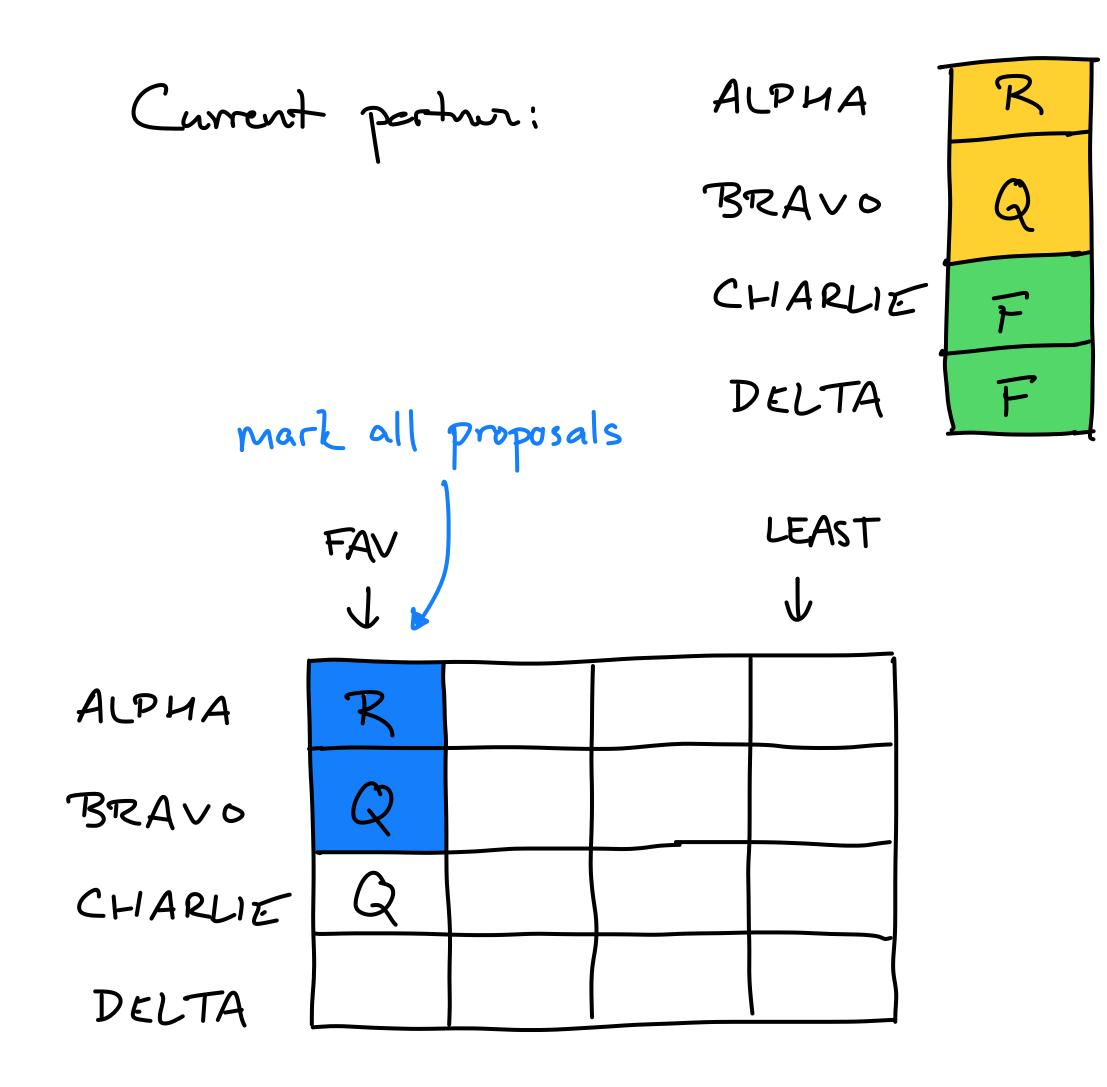
RUMEO

SIERRA



 \mathbf{V}

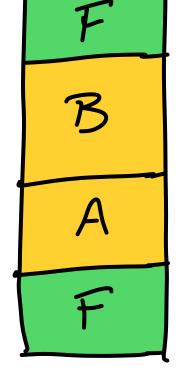
FAV



PAPA QUEBEC

RUMEO

SIERRA



Who do 1 prefor: A Brano OR Charlie?

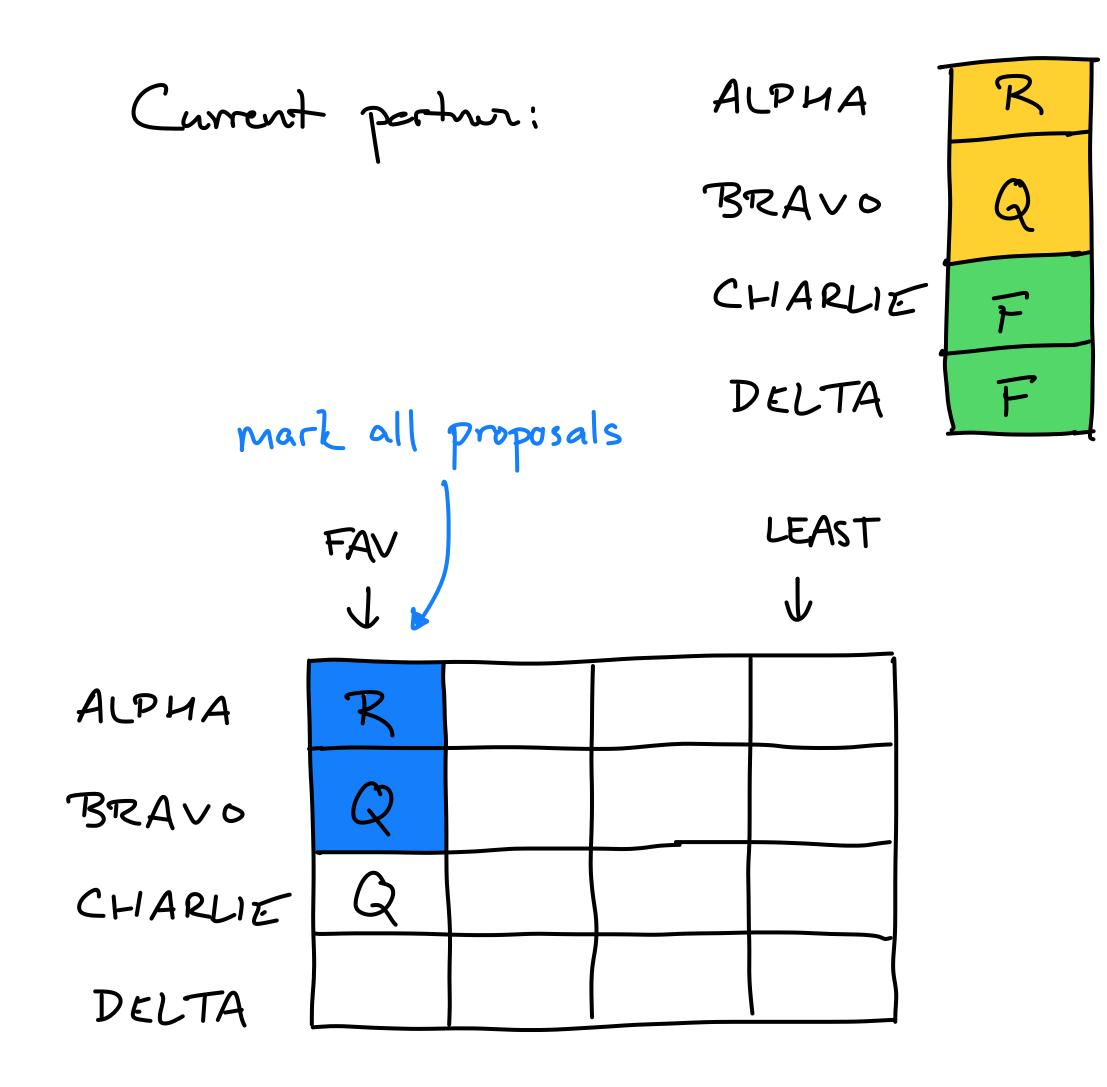
0

0

LEAST

0

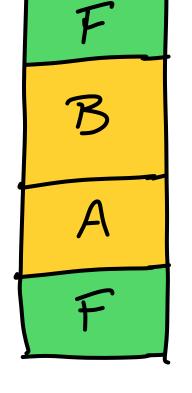
PAPA.	•		
QUEBEC			
RUMEO	-		
SIERRA			

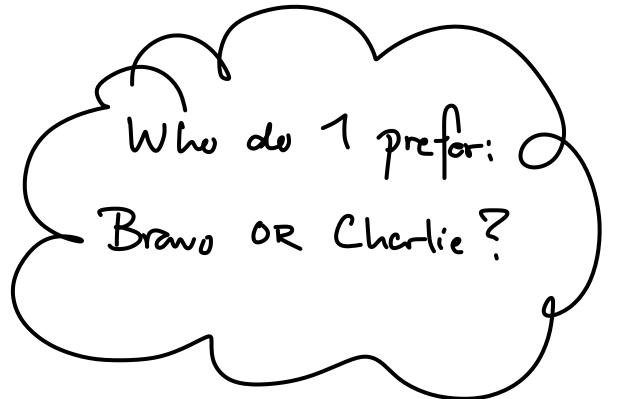


PAPA QUEBEC

RUMEO

SIERRA





FAV 0

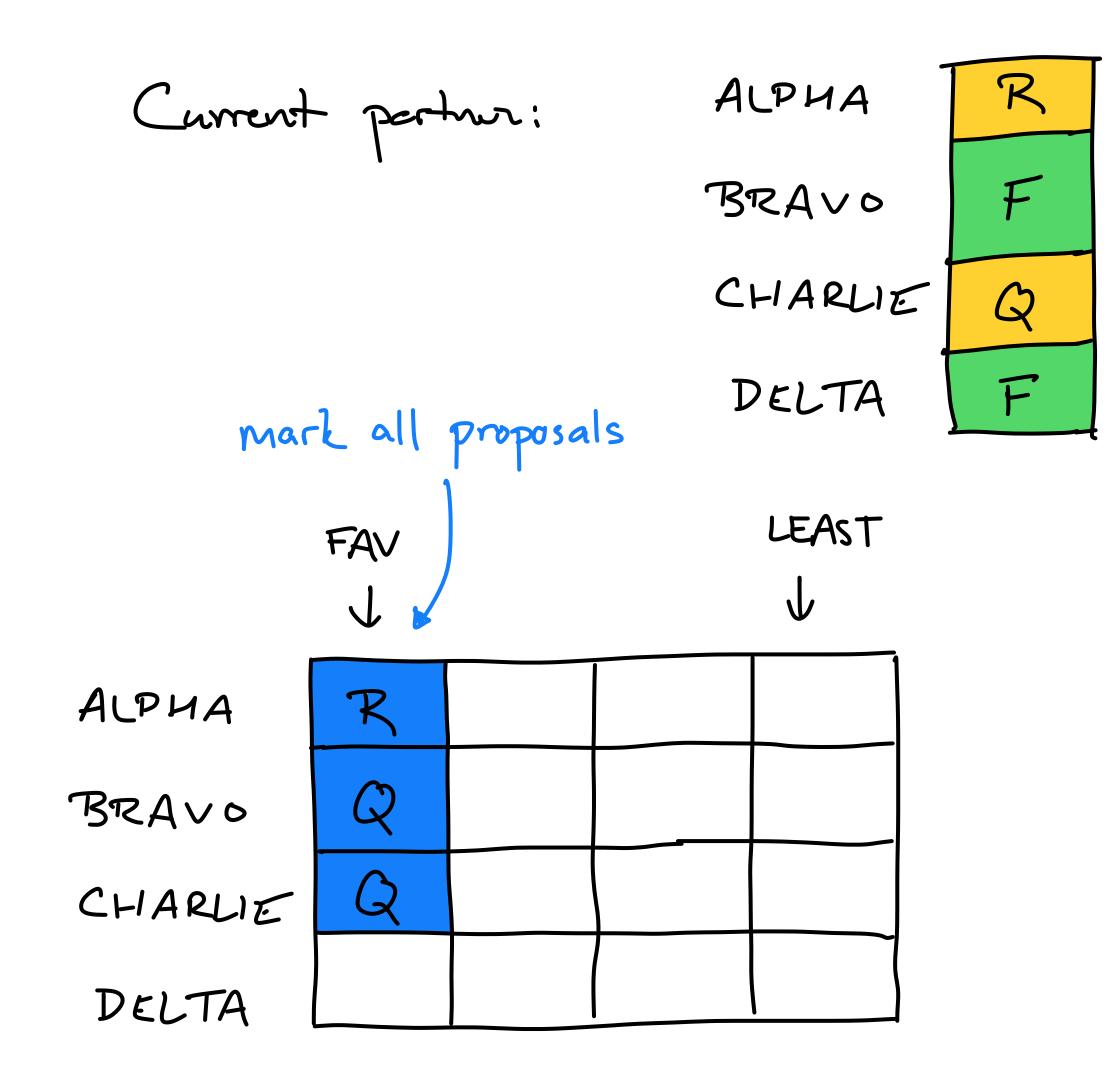
0

LEAST

0

0

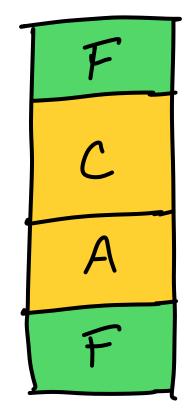
PAPA QUEBEC ROMEO



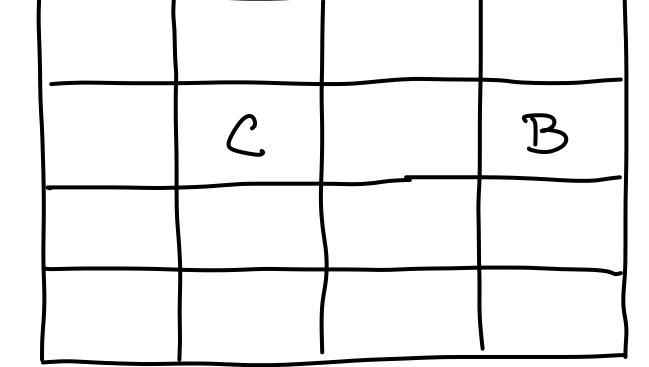
PAPA QUEBEC

RUMEO

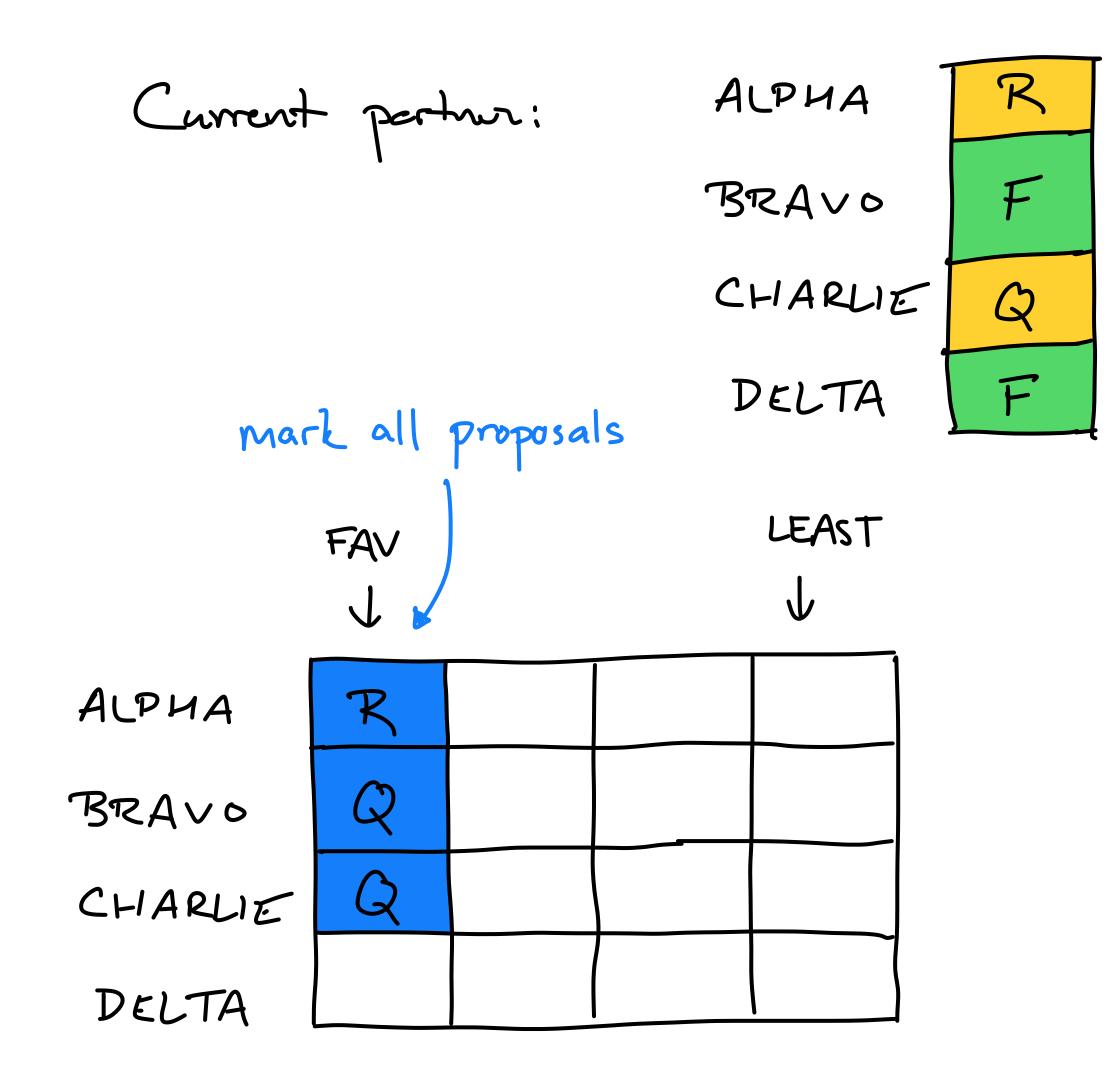
SIERRA



 \mathbf{V}



QUEBEC Romeo



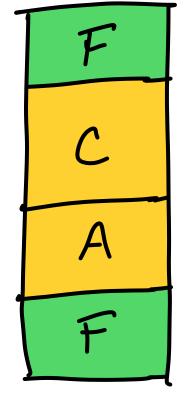
Pick the next free proposer How to pick?

PAPA

QUEBEC

ROMEO

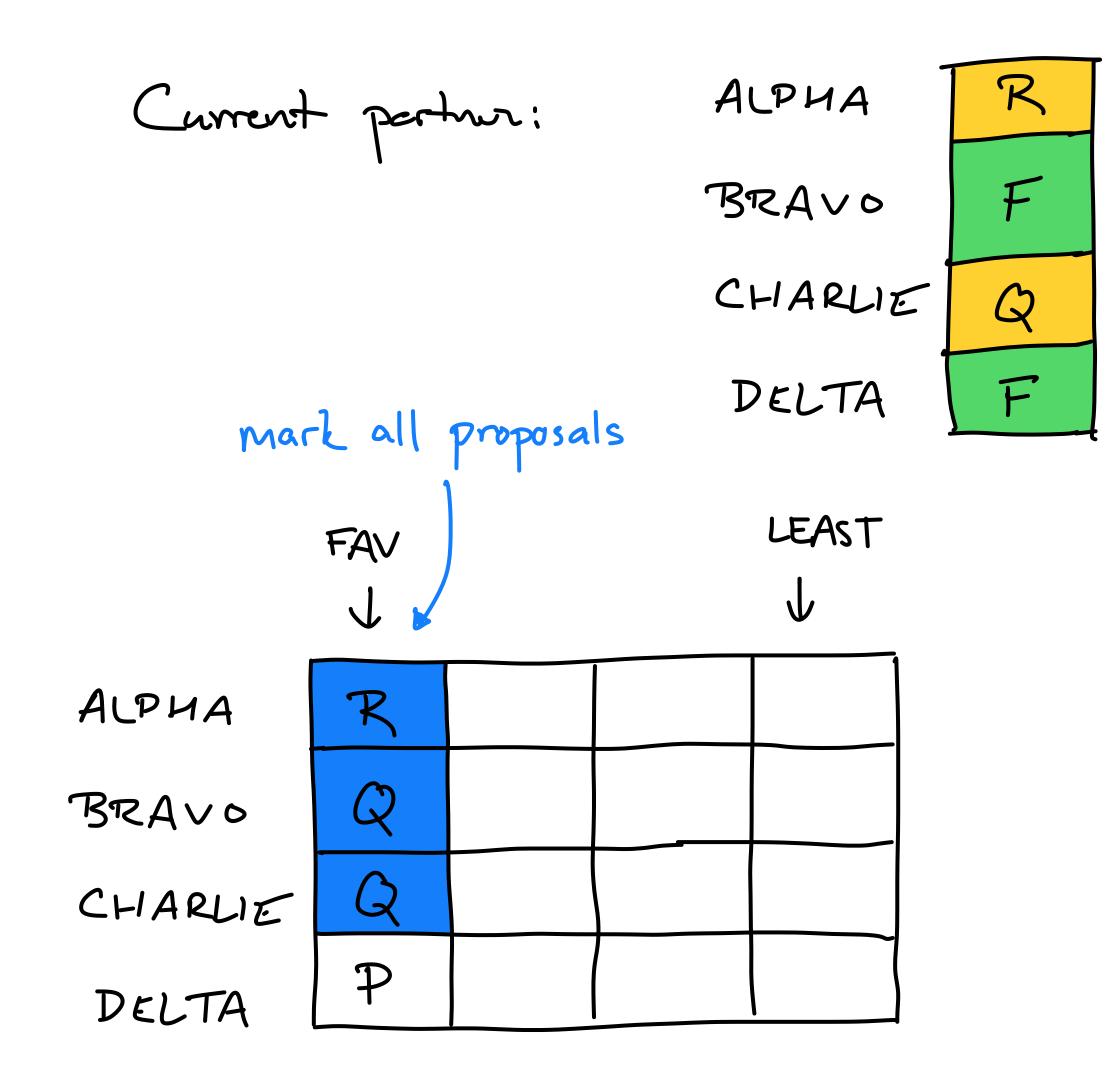
SIERRA



	C	B

PAPA QUEBEC

RUMEO



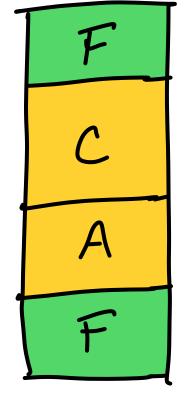
Pick the next free proposer How to pick?

PAPA

QUEBEC

RUMEO

SIERRA

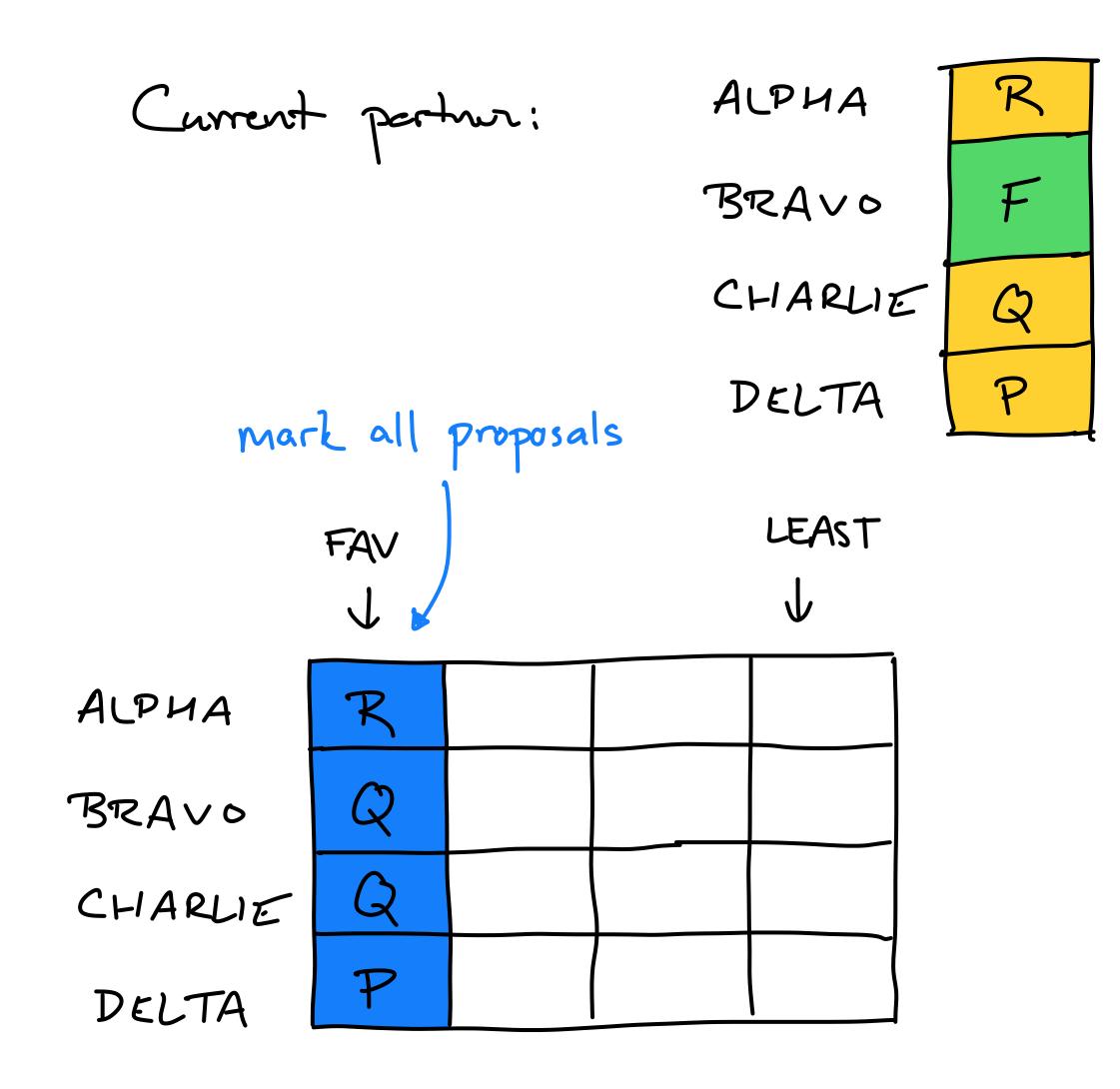


1

	C	B

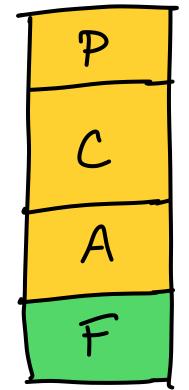
QUEBEC

RUMEO

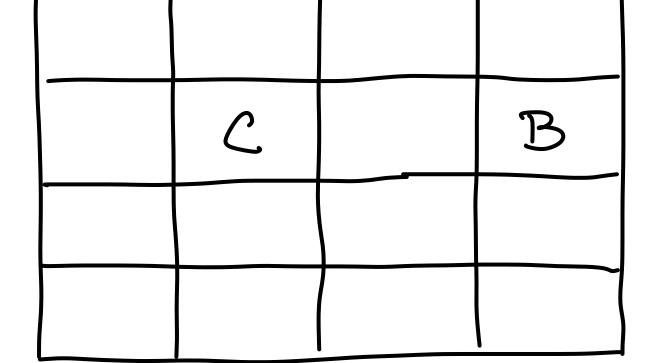


PAPA QUEBEC ROMEO

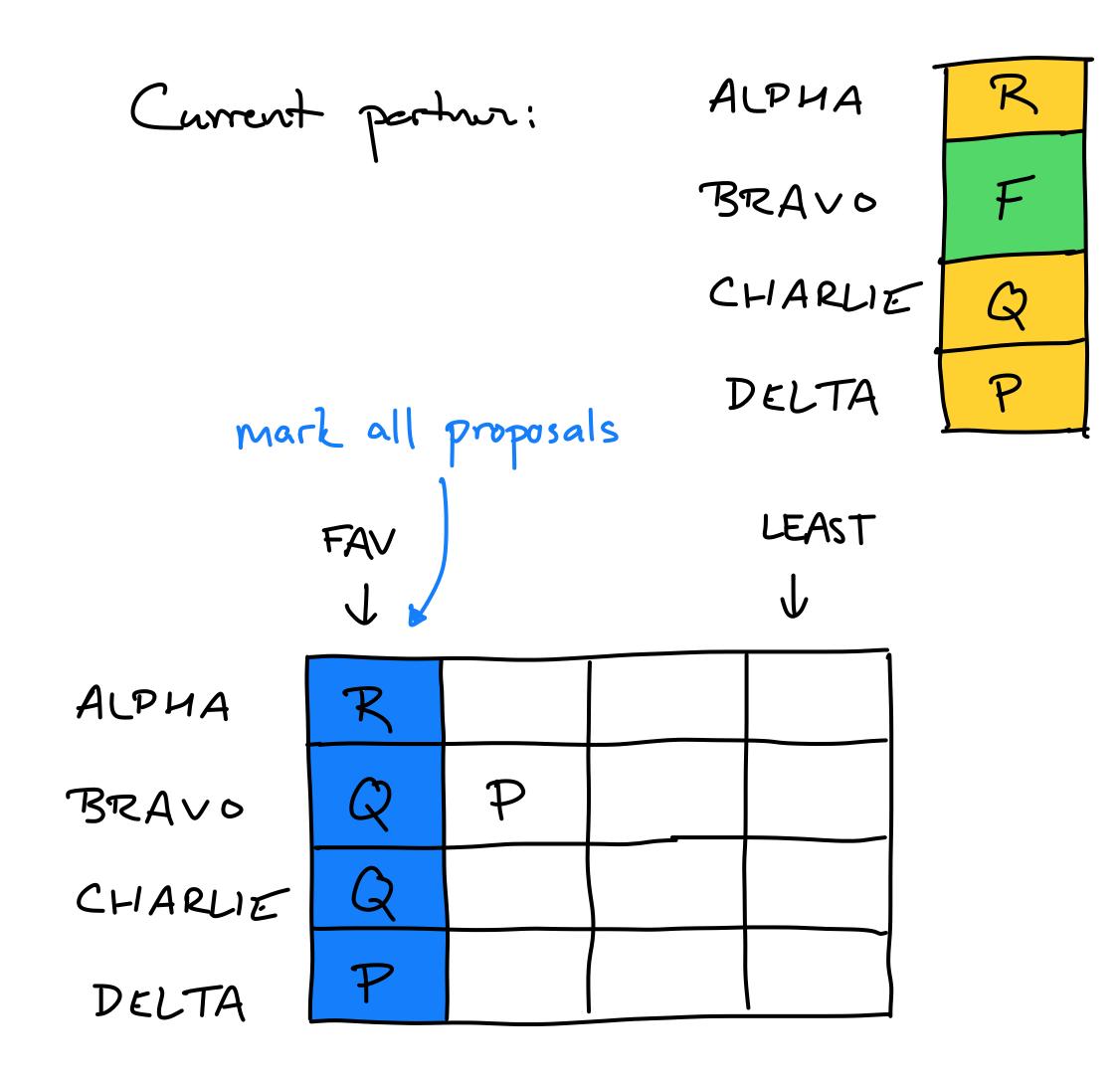
SIERRA



 \mathbf{V}

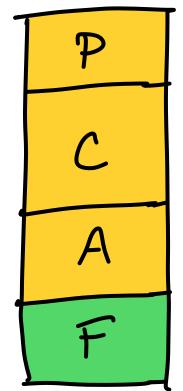


QUEBEC Romeo



PAPA QUEBEC ROMEO

SIERRA



LEAST

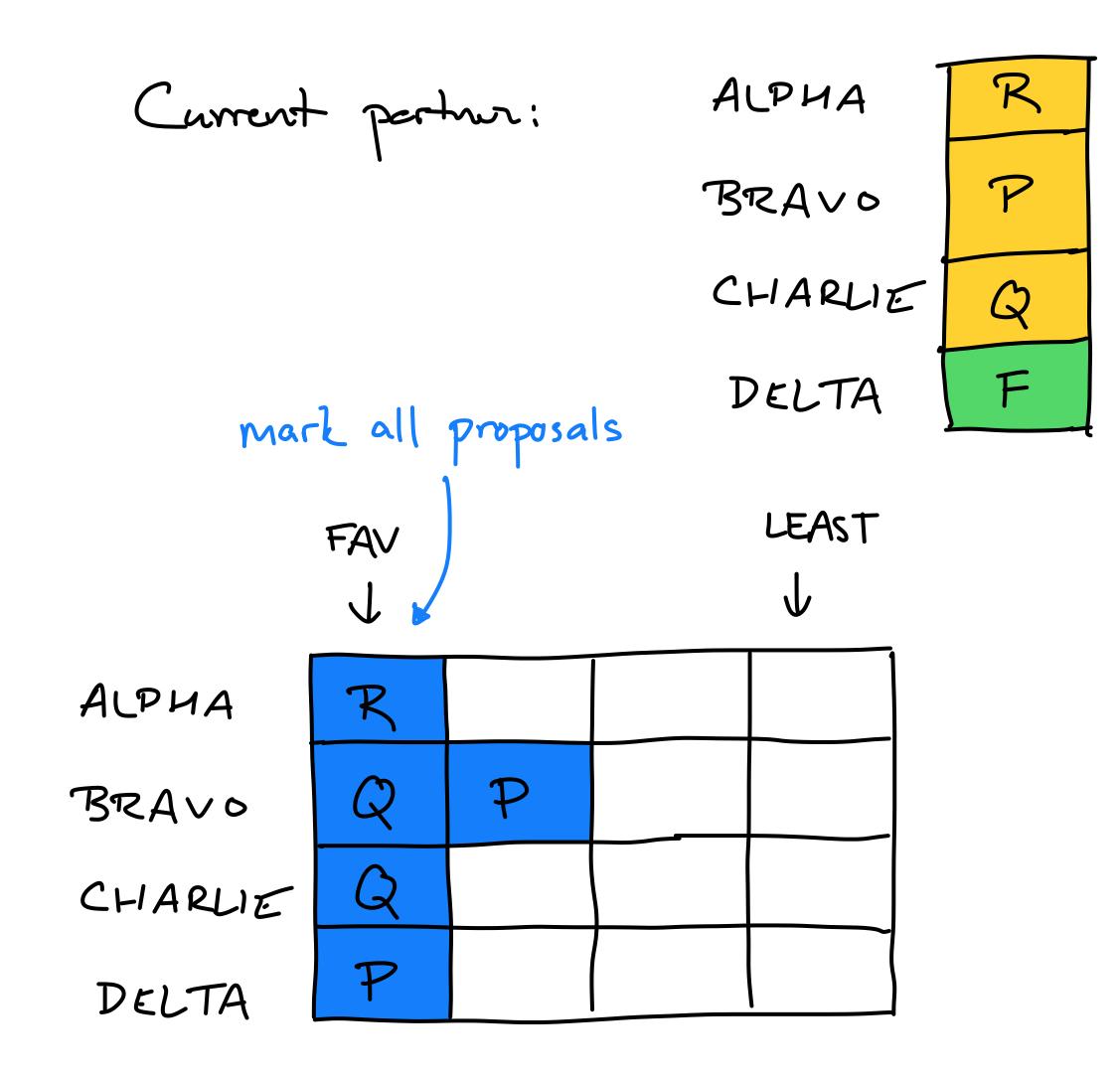
 \mathbf{V}

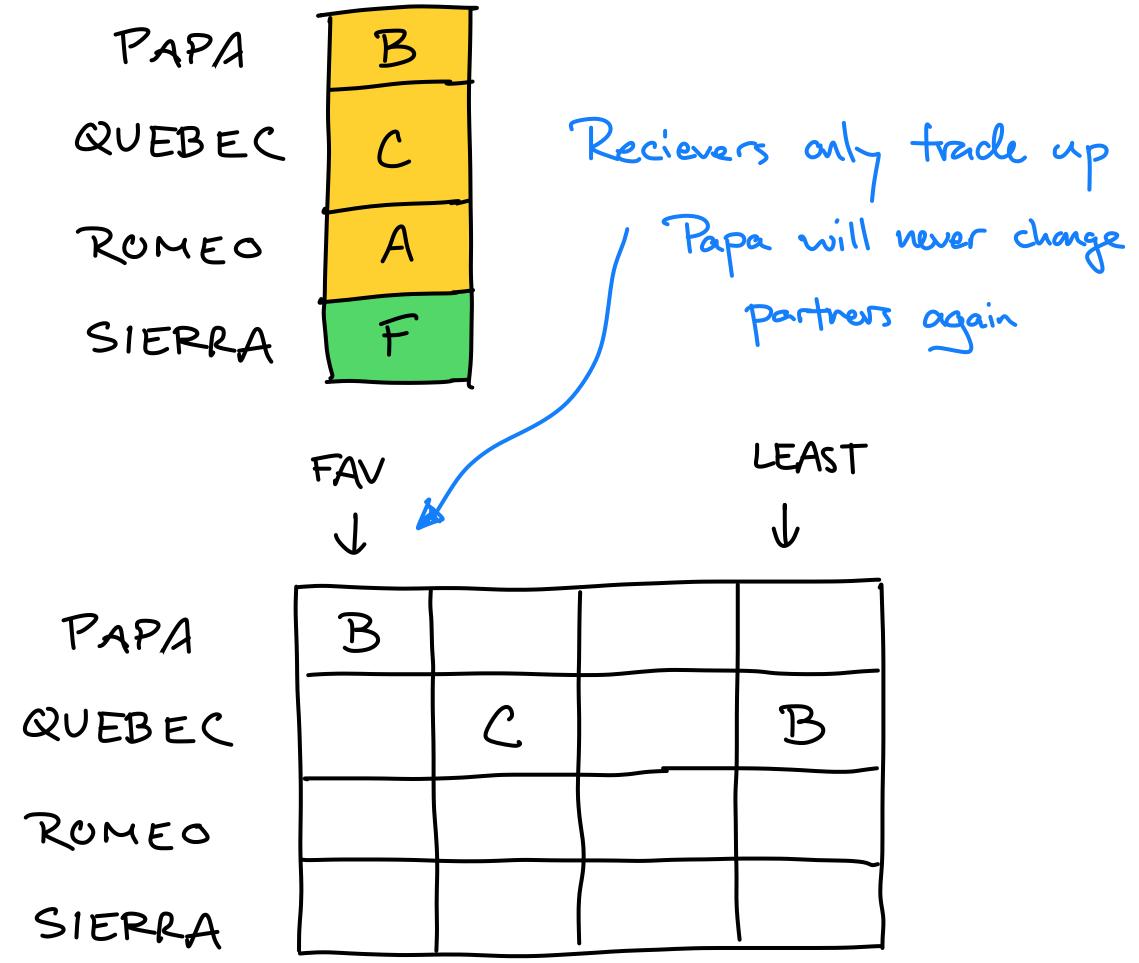
FAV

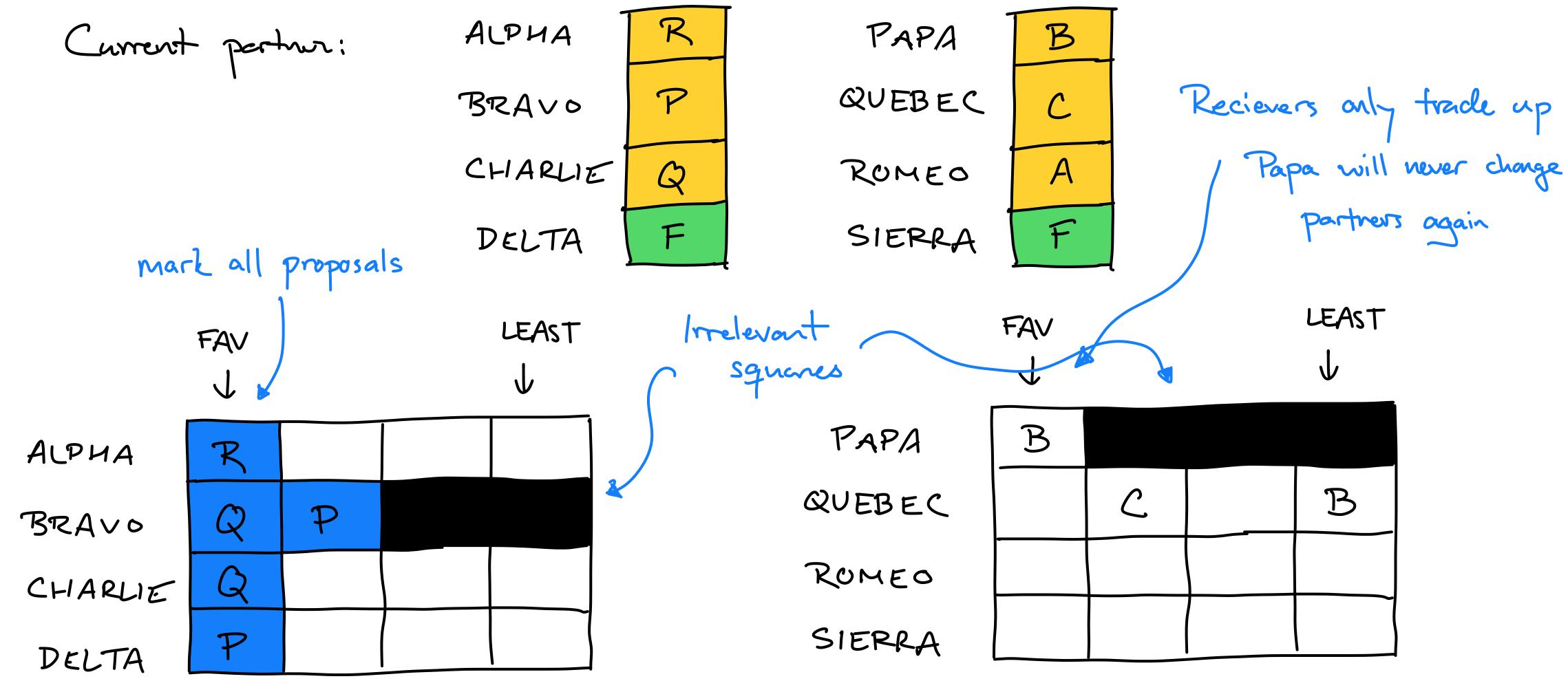


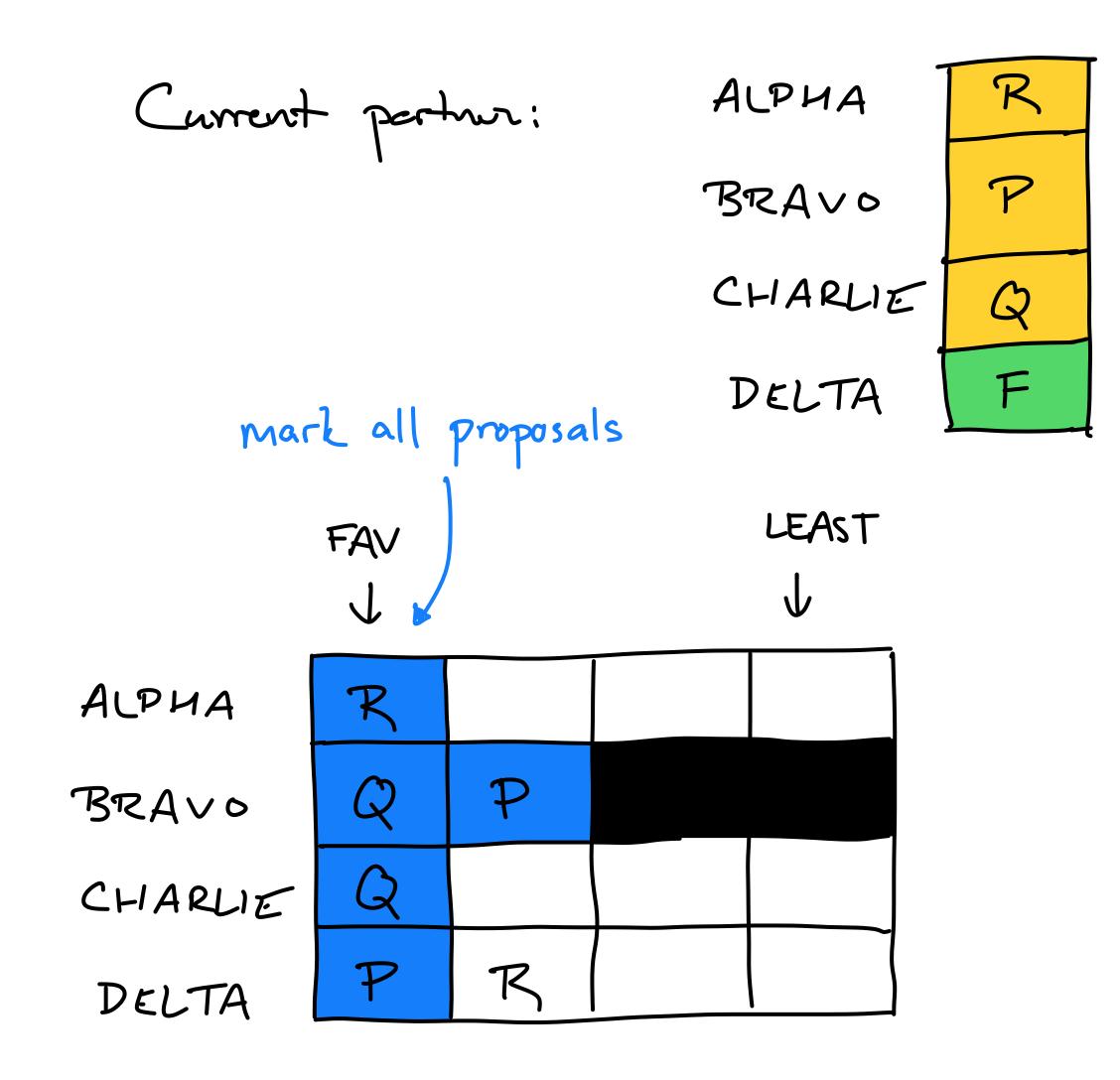
PAPA QUEBEC ROMEO SIERRA

	C	B
-		



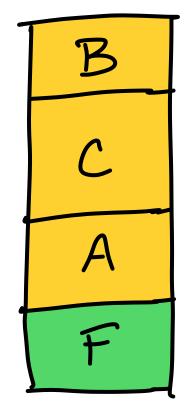




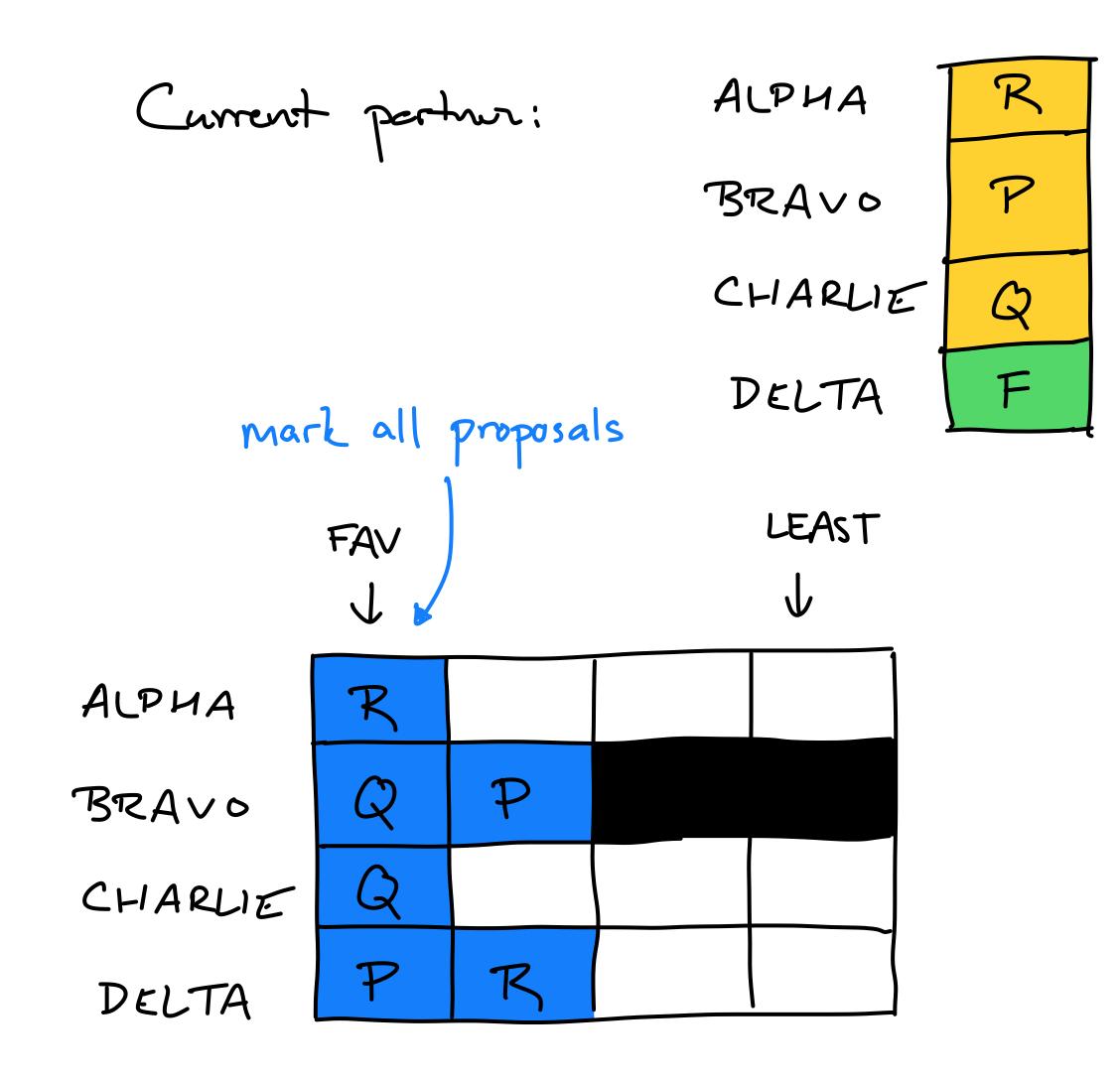


PAPA QUEBEC

RUMEO



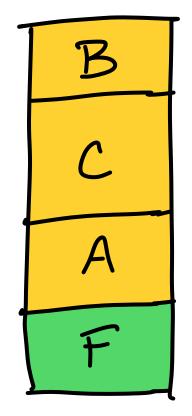
B		
	C	B
-		



PAPA QUEBEC

RUMEO

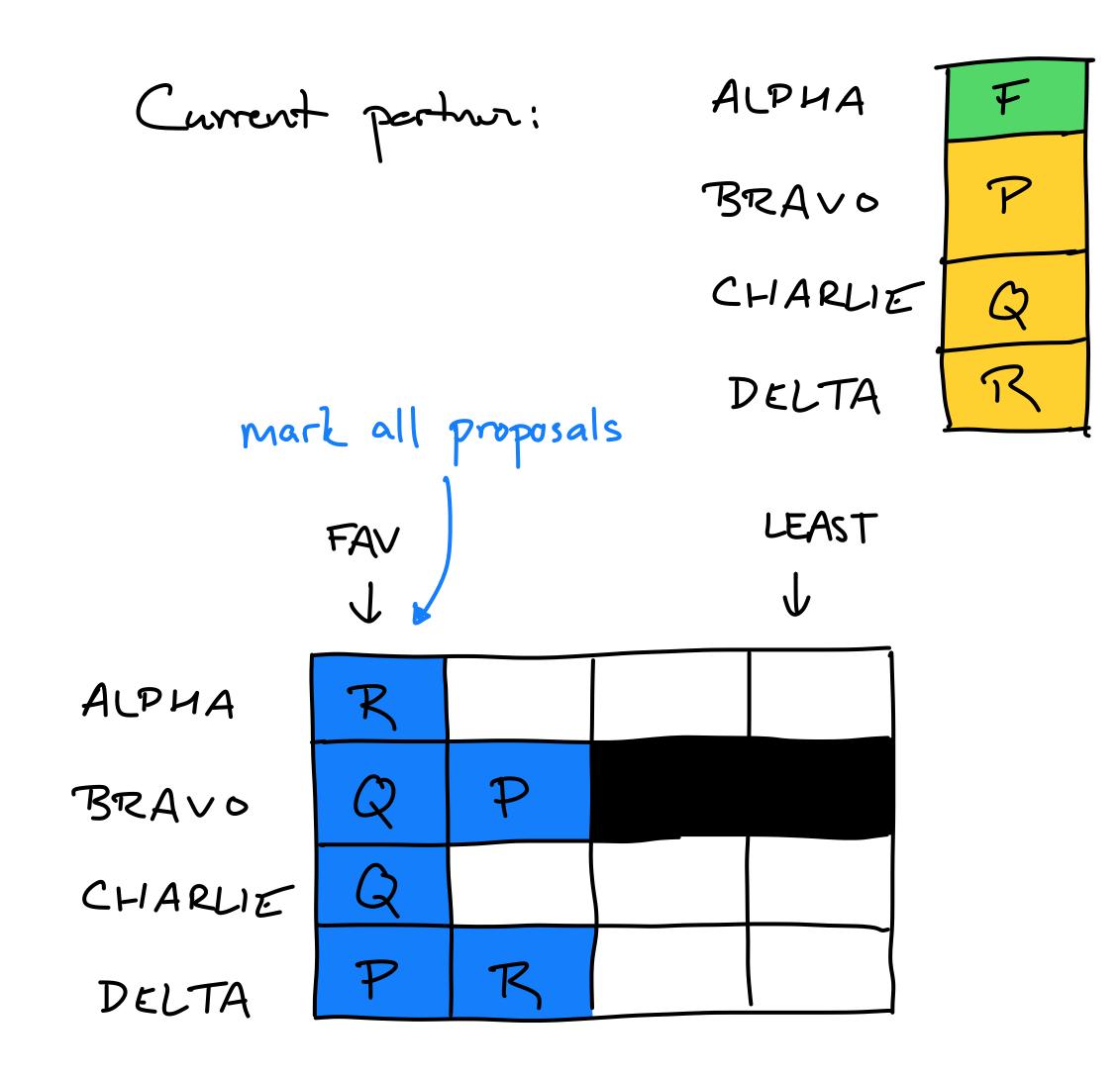
SIERRA



FAV

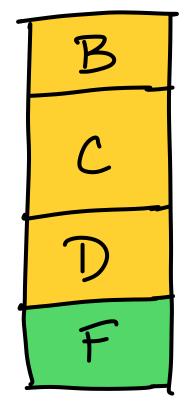
J

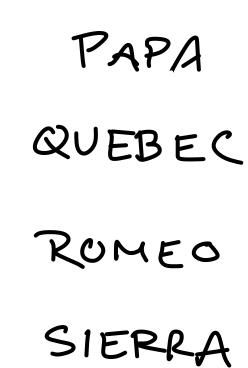
B			
	C		B
•	\mathcal{D}	A	



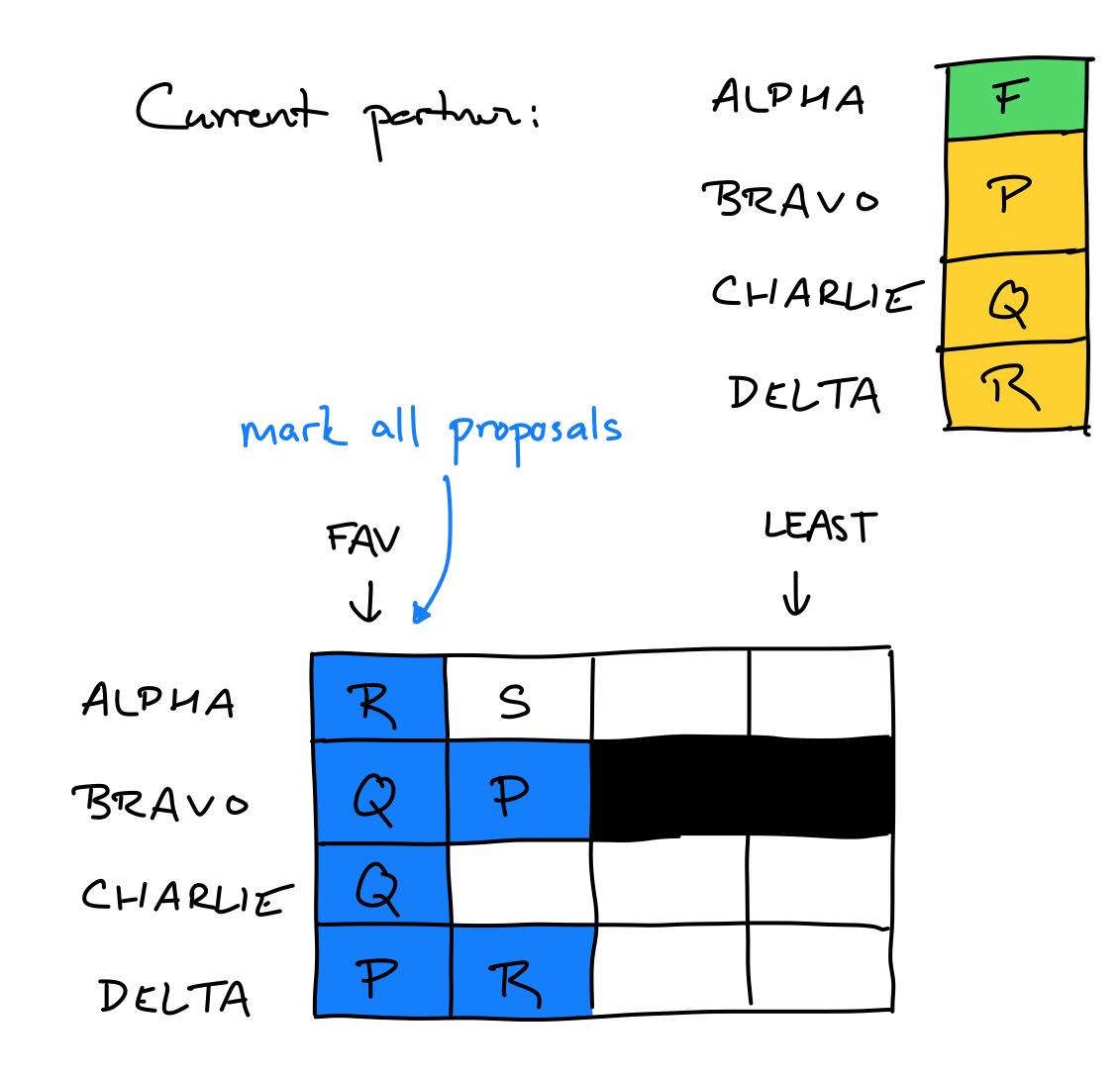
PAPA QUEBEC

RUMEO



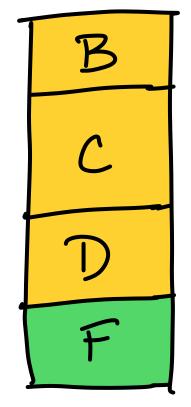


B			
	C		B
-	\mathcal{D}	A	



PAPA QUEBEC Romeo

SIERRA

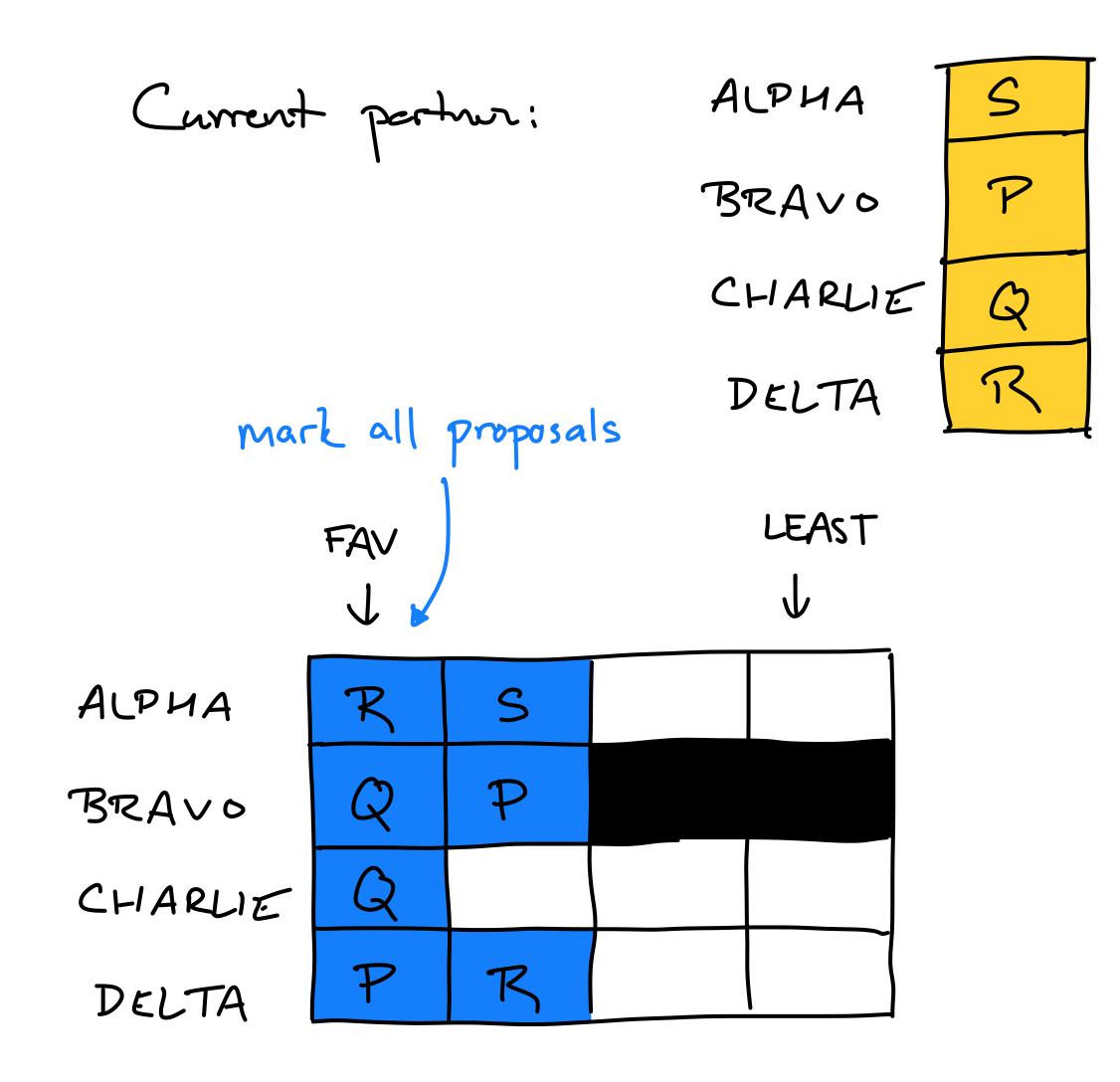


FAV

J



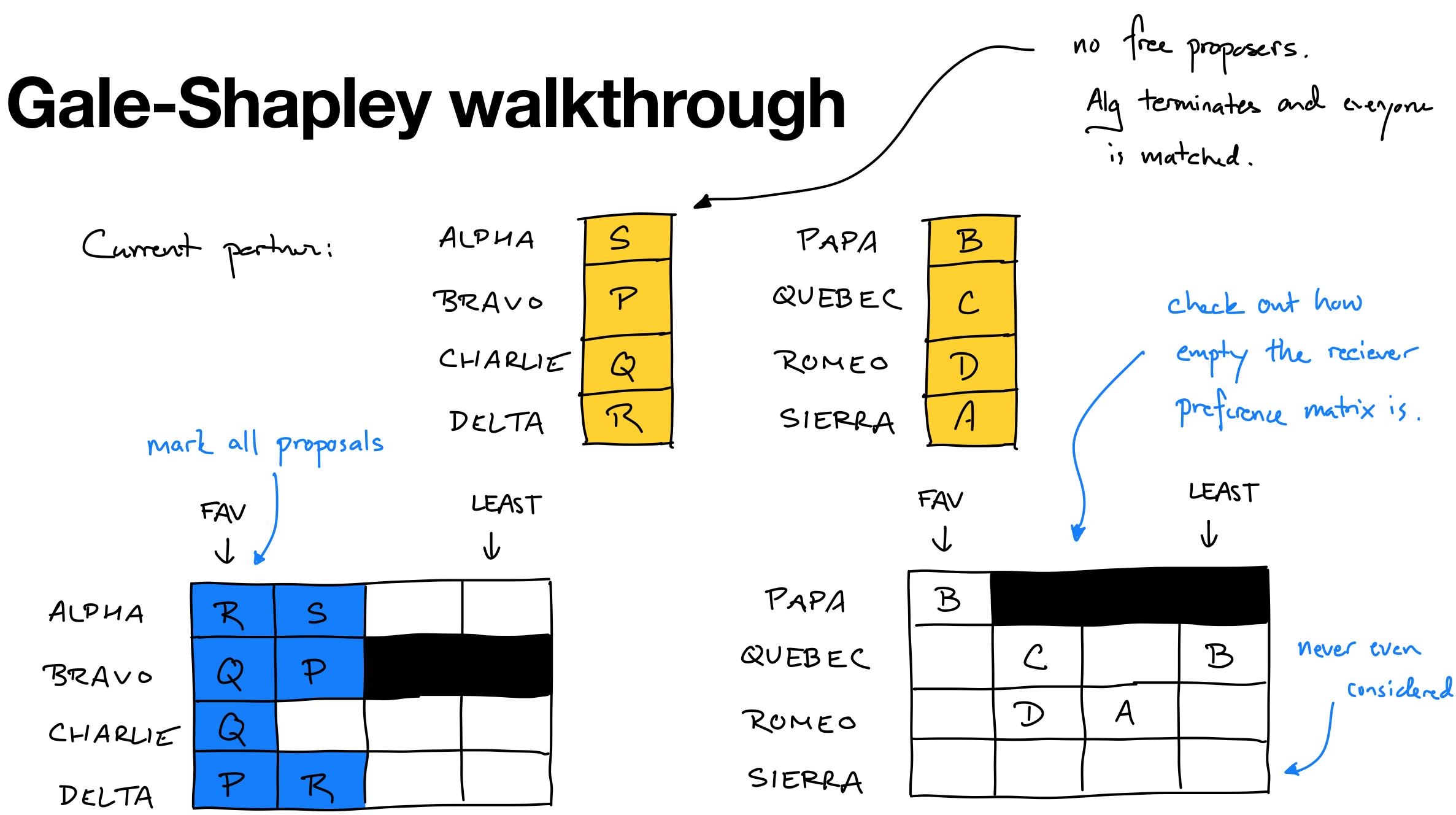
B			
	C		B
	\mathcal{D}	A	



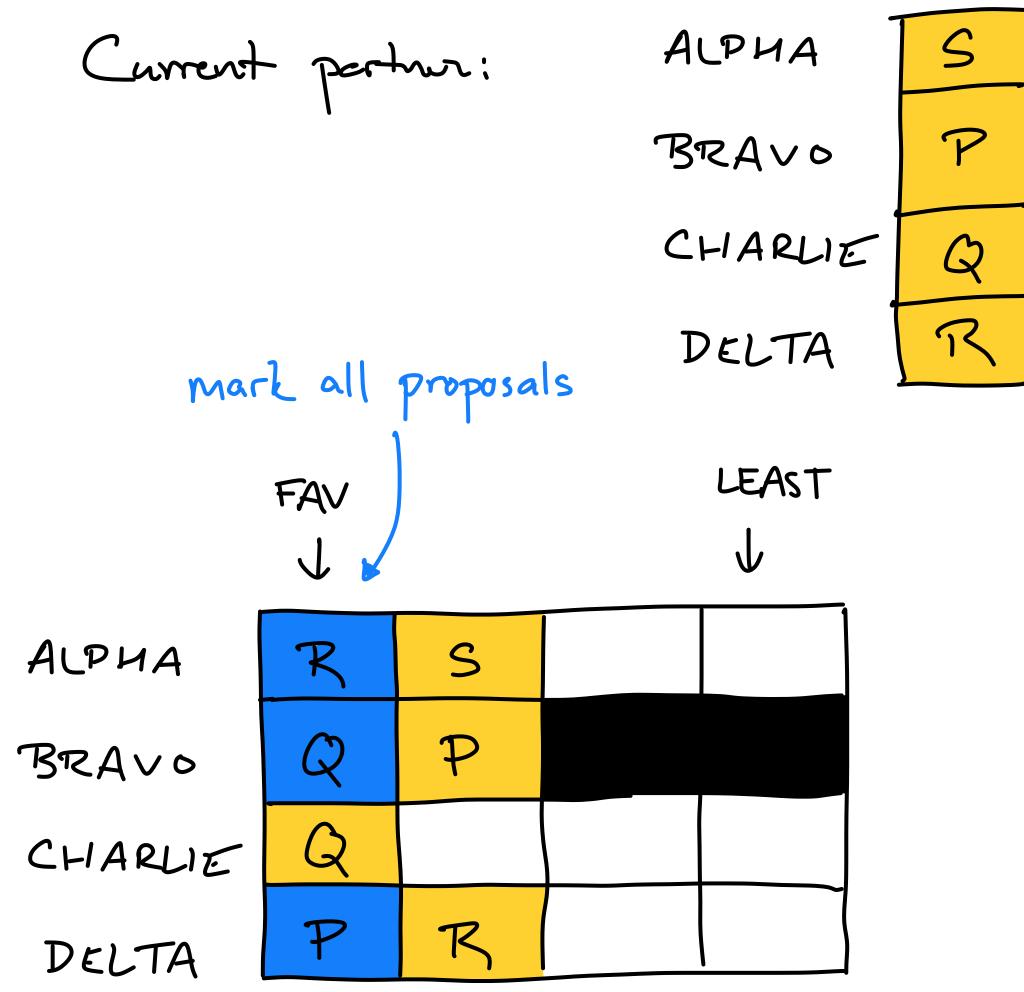
PAPA B QUEBEC C ROMEO D SIERRA A

PAPA
QUEBEC
RUMEO
SIERRA

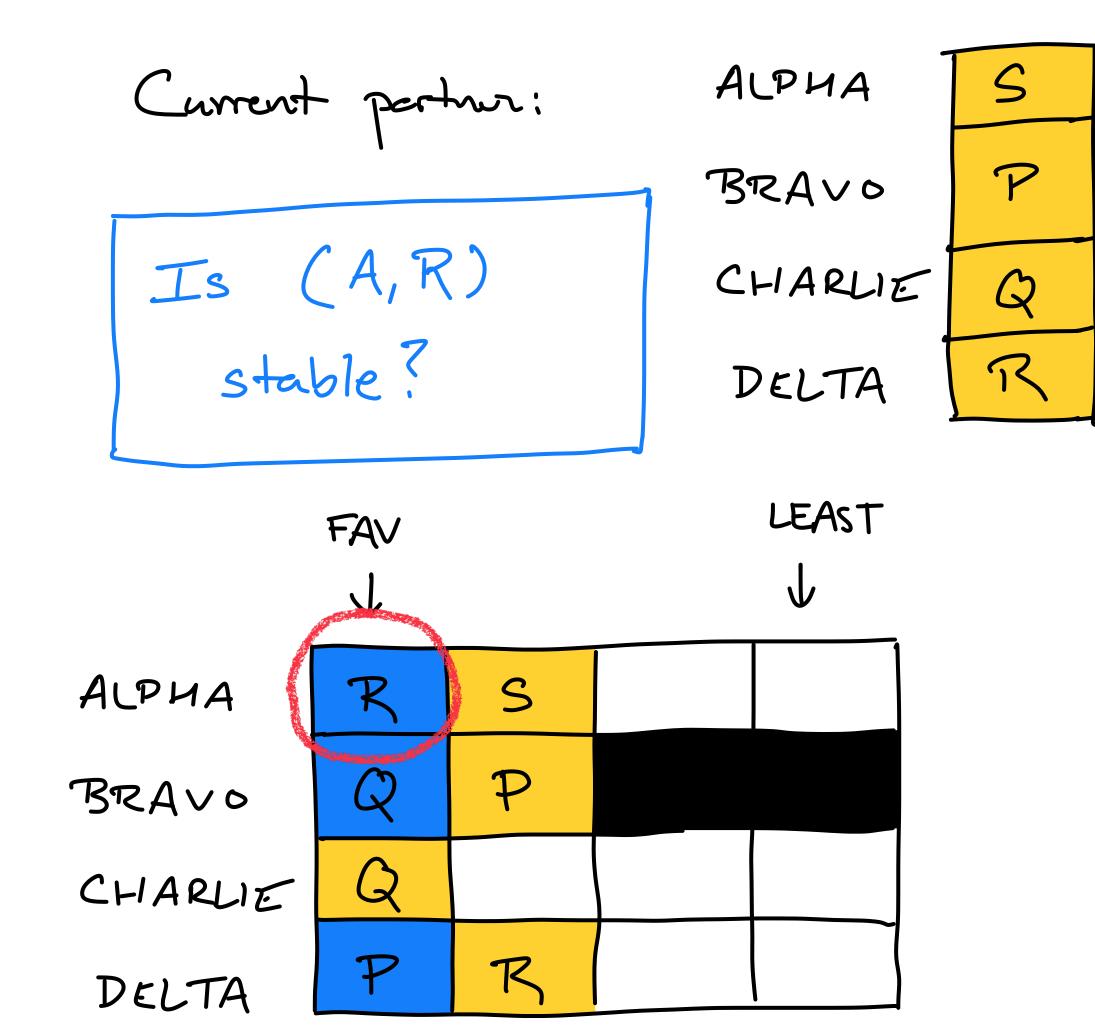
B			
	C		B
-	\mathcal{D}	A	



Gale-Shapley walkth



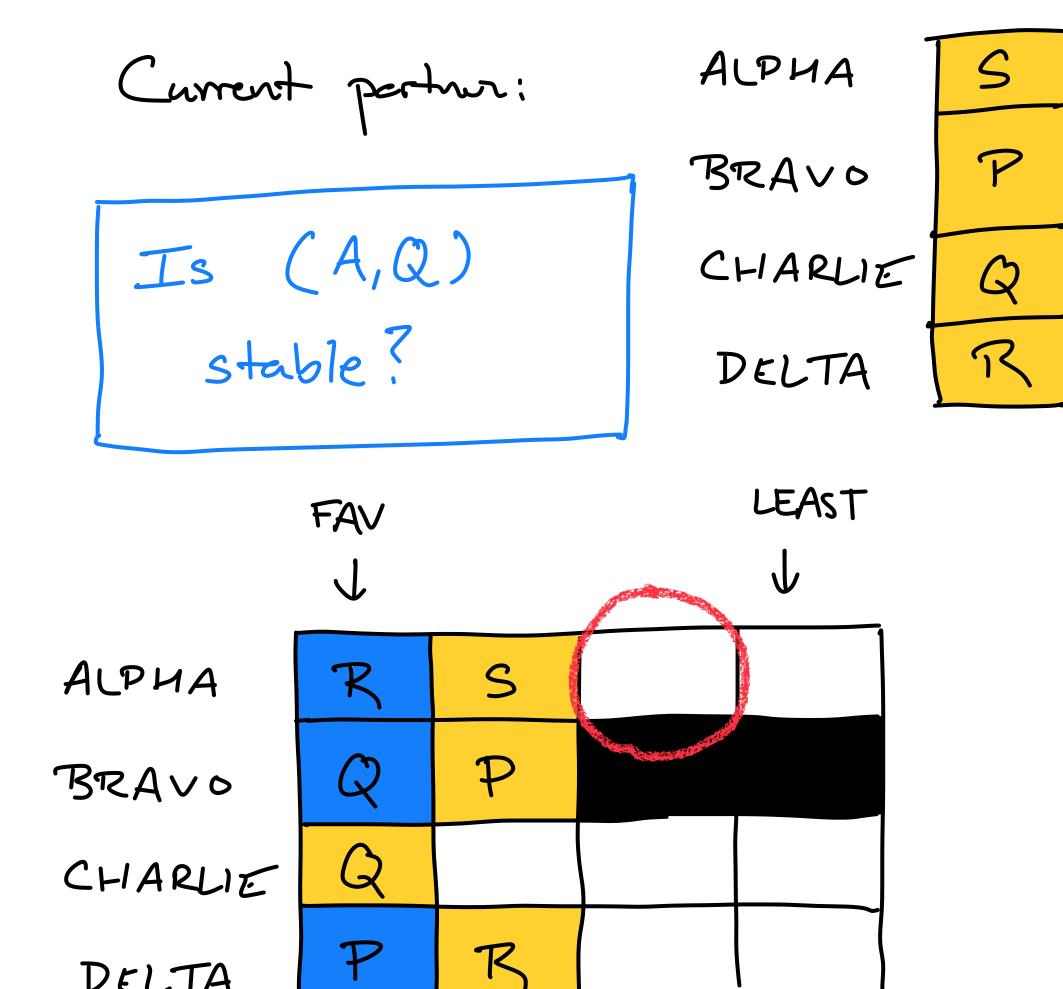
jone



PAPA B QUEBEC C RUMEO D A SIERRA

PAPA
QUEBEC
RUMEO
SIERRA

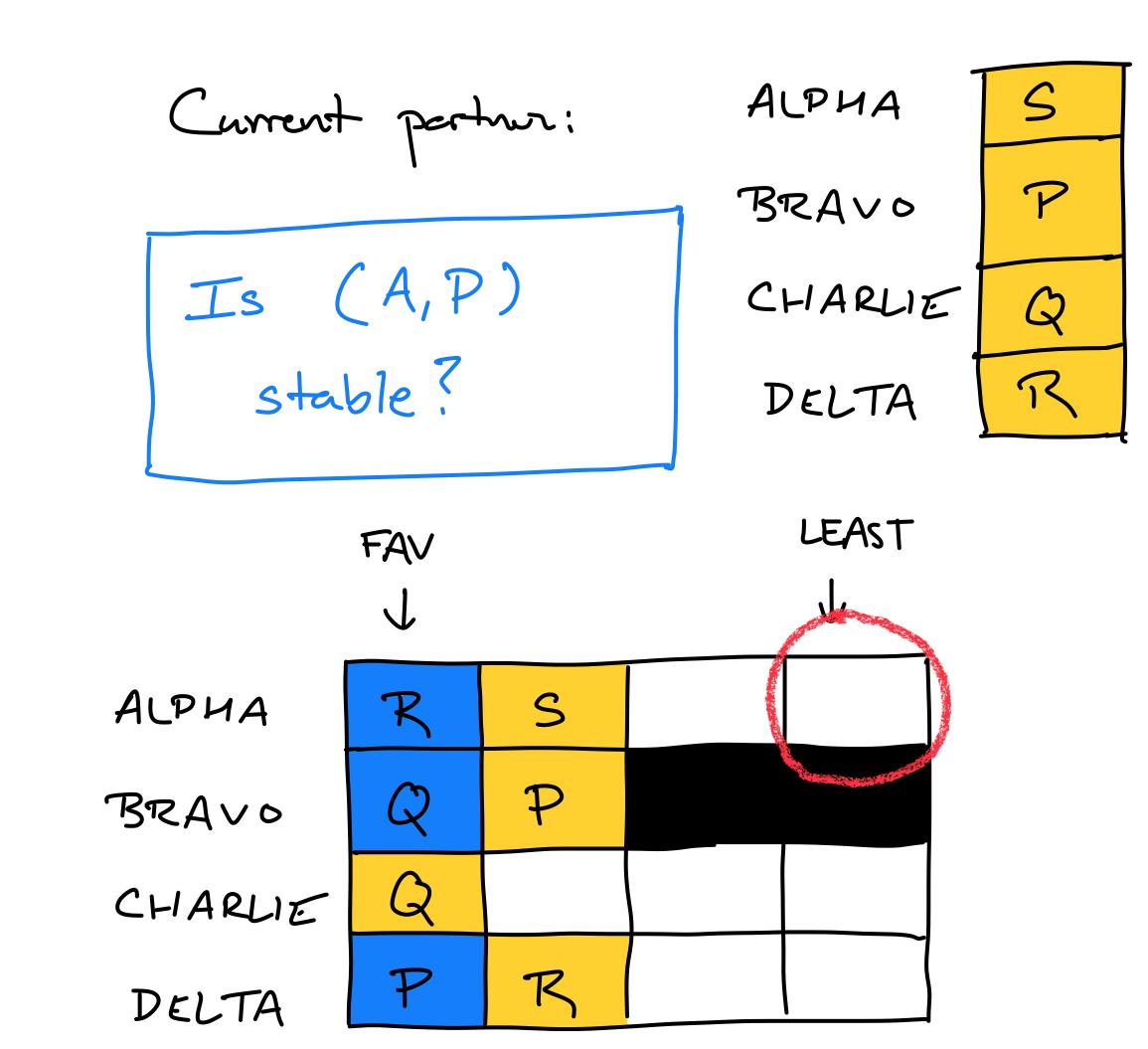
B			
	C		B
-	\mathcal{D}	A	



DELTA

PAPA B QUEBEC C RUMEO D A SIERRA

B			
	C		B
	\mathcal{D}	A	



PAPA B QUEBEC C ROMEO D SIERRA A

B			
	C		B
	\mathcal{D}	A	

Implementing stable matching

- Input length
 - $N := 2n^2$ words in length because 2n people \times preference list of length n.

 - Input length of $2n^2 \lceil \log_2 n \rceil$ bits.
- requires testing if each of the n^2 pairs (p, r) is stable.
- run?

• A "word" here is a number $\in [n] = \{1, 2, ..., n\}$. Takes $\lfloor \log_2 n \rfloor$ bits to represent.

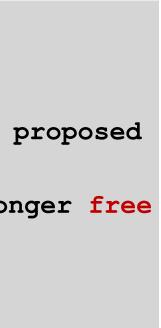
• Brute force algorithm: Try all n! possible matchings. Testing if a matching is stable

• Gale-Shapley algorithm: takes $\leq n^2$ iterations. How long does each iteration take to

Implementing Gale-Shapley in $O(n^2)$ time Comparing

- Input: 2 $n \times n$ representing the preferences of P and R:
 - $\operatorname{pref}_{P}[p][j], \operatorname{pref}_{R}[r][j]$
 - Assume the proposers and receivers are numbers 1,2,..., n
 - Each preference array is a *permutation* of {1,2,...,*n*}
- Data structure for the matching:
 - Maintain two arrays $M_P[p]$ and $M_R[r]$ denoting match of p and r
 - Initialize both arrays to all \perp , a symbol denoting that the match isn't set
 - If during the algorithm, (p, r) is matched, set $M_P[p] \leftarrow r, M_R[r] \leftarrow p$
- Making proposals:
 - Maintain a queue Q of all the free proposers. Initially Q contains all n proposers.
 - Maintain an array count [p] which counts how many proposals p has made so far. Initially all entries are 0.

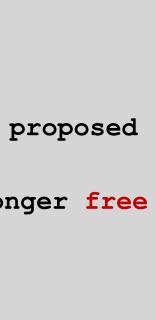
```
Initialize each person to be free
while (some p in P is free) {
   Choose some free p in P
   r = 1^{st} person on p's preference list to whom p has not yet proposed
   if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
   else if (r prefers p to current tentative match p')
       replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
```



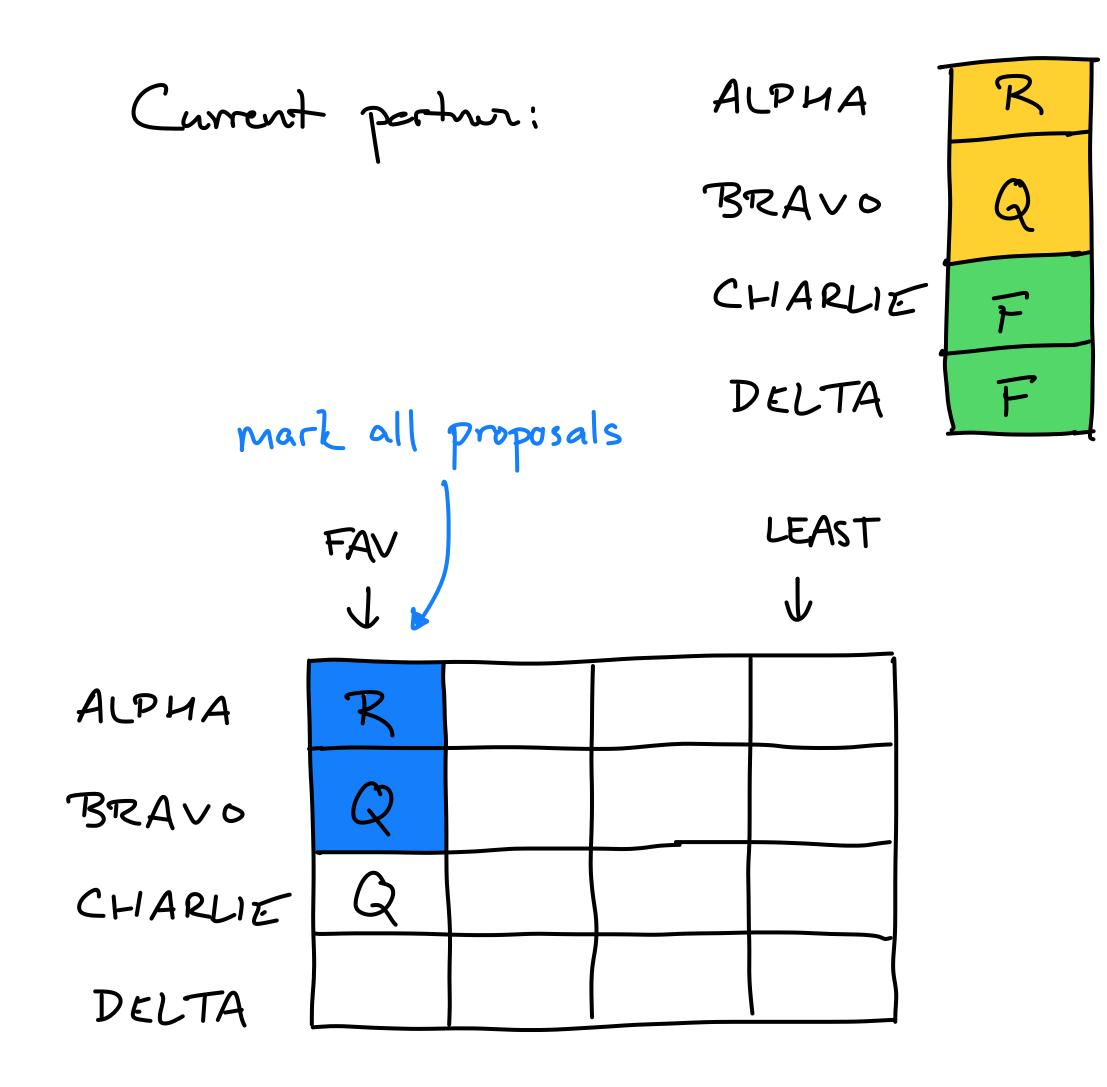
Implementing Gale-Shapley in $O(n^2)$ time **Rejecting & accepting proposals**

- How do we decide efficiently if receiver r prefers proposer p to proposer p'?
- Naïvely would take O(n) queries to read through $\operatorname{pref}_{R}[r][\cdot]$ to find both p and p'

```
Initialize each person to be free
while (some p in P is free) {
   Choose some free p in P
   r = 1^{st} person on p's preference list to whom p has not yet proposed
   if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
       replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
```



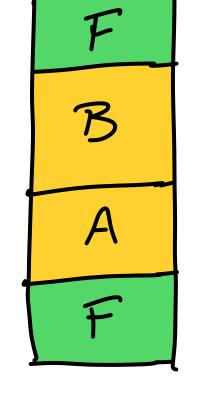
Gale-Shapley walkthrough



PAPA QUEBEC

RUMEO

SIERRA



Who do 1 prefor: A Brano OR Charlie?

0 FAV

0

J.

0

0

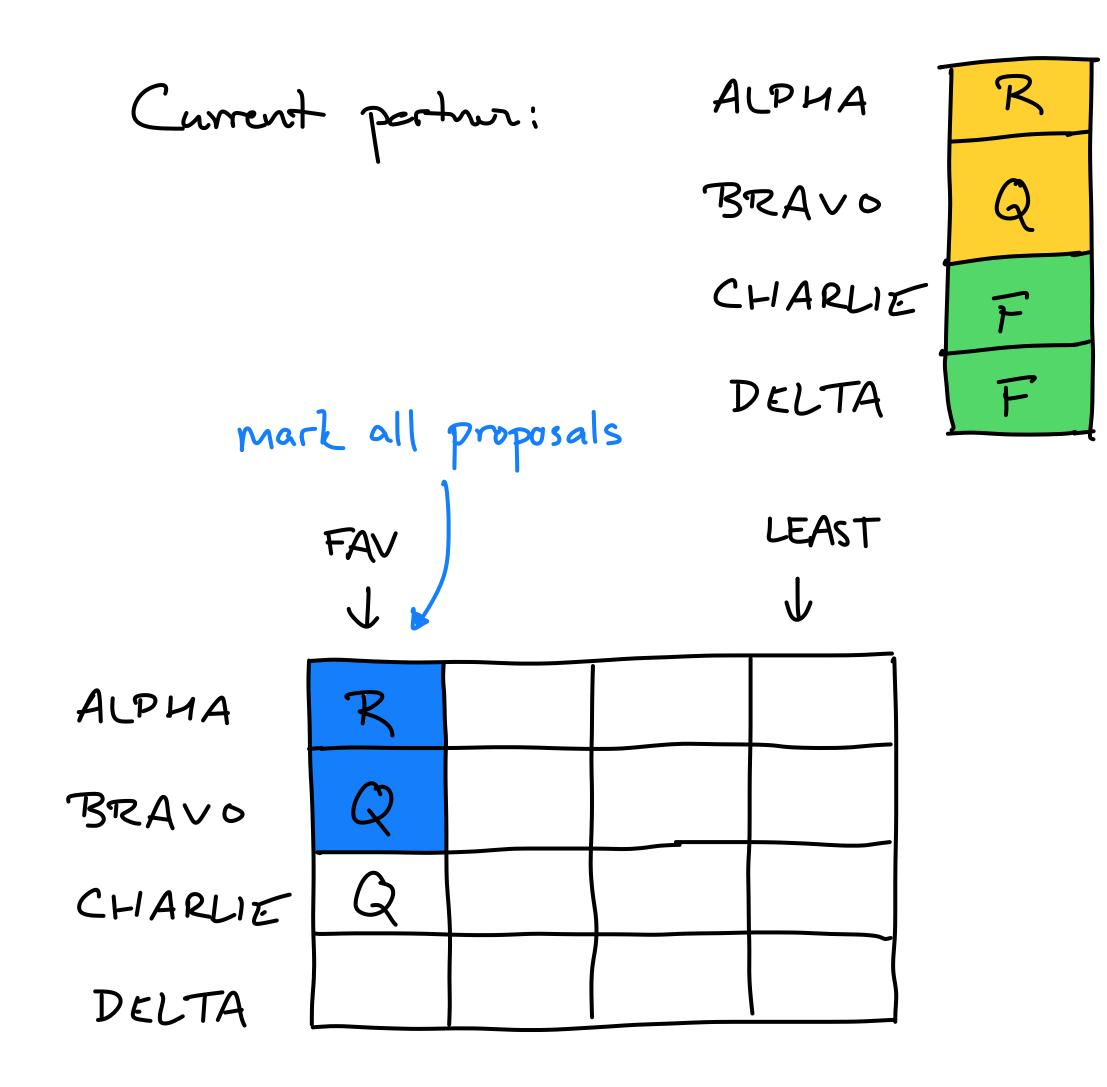
LEAST

 \mathbf{V}

RUMEO

SIERRA

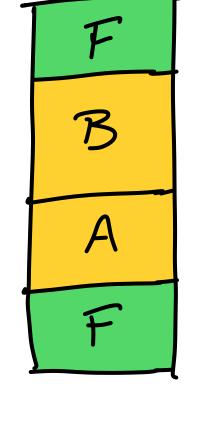
Gale-Shapley walkthrough

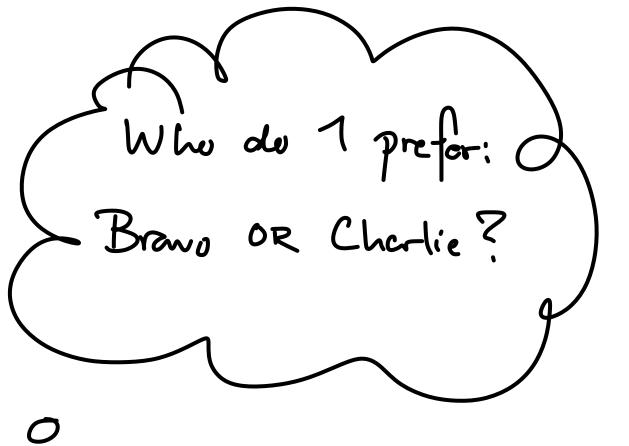


PAPA QUEBEC

RUMEO

SIERRA





0

0

LEAST

 \downarrow

	•		
C		C	B
3			
A			

PAPA QUEBEC Romeo

SIERRA

Implementing Gale-Shapley in $O(n^2)$ time **Rejecting & accepting proposals**

- How do we decide efficiently if receiver r prefers proposer p to proposer p'?
- Naïvely would take O(n) queries to read through $\operatorname{pref}_{R}[r][\cdot]$ to find both p and p'
- Instead, *precompute* the inverse list of preferences: $invpref_R[r][p]$.
- Property: $j = \operatorname{invpref}_{R}[r][p]$ if and only if $p = \operatorname{pref}_{R}[r][j].$
- Takes $O(n^2)$ time to precompute inverse list. Once computed, each comparison takes time O(1).

```
Initialize each person to be free
while (some p in P is free) {
    Choose some free p in P
    r = 1<sup>st</sup> person on p's preference list to whom p has not yet proposed
   if (r is free)
        tentatively match (p,r) //p and r both engaged, no longer free
    else if (r prefers p to current tentative match p')
        replace (p',r) by (p,r) //p now engaged, p' now free
    else
        r rejects p
```

r	1 st	2nd	3rd	4 th	5 th	6 th	7 th	8 th
pref	8	3	7	1	4	5	6	2
r	1	2	3	4	5	6	7	8
inverse	4 th	8 th	2nd	5 th	6 th	7 th	3rd	1st

invpref[r][pref[r][i]] = i

39

Implementing Gale-Shapley in $O(n^2)$ time

- When a proposer p becomes free, p starts proposing to new receivers previous steps of the algorithm. Update count [p] as rejections occur.
- Combined with the inverse list pre computation, we achieve that every there are a total n^2 possible pairs.
- can be covered in section.

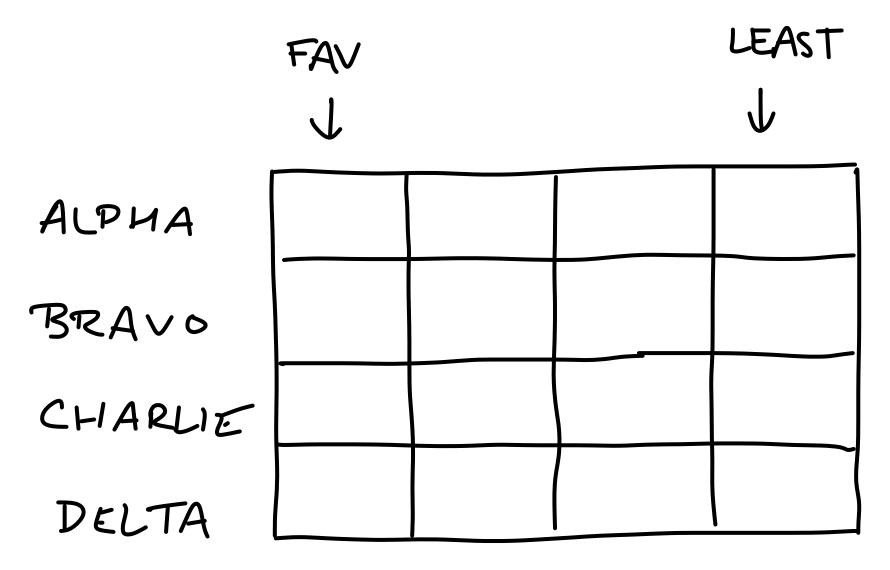
starting from count[p]. All previous receivers have been proposed to in

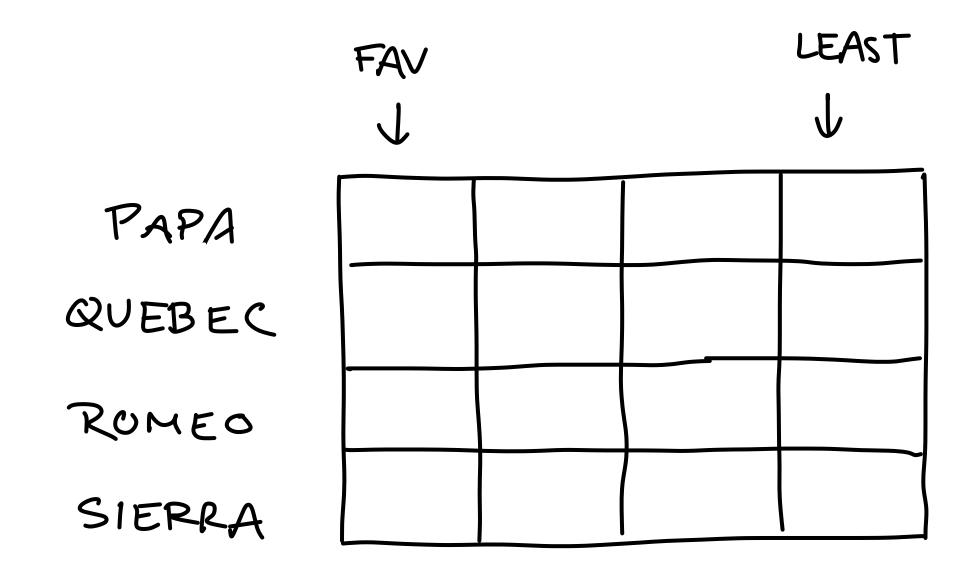
proposer-receiver pair (p, r) is considered in O(1) computational steps and

• This completes the entire time complexity argument of $O(n^2)$. More details

Does the ordering of the people matter?

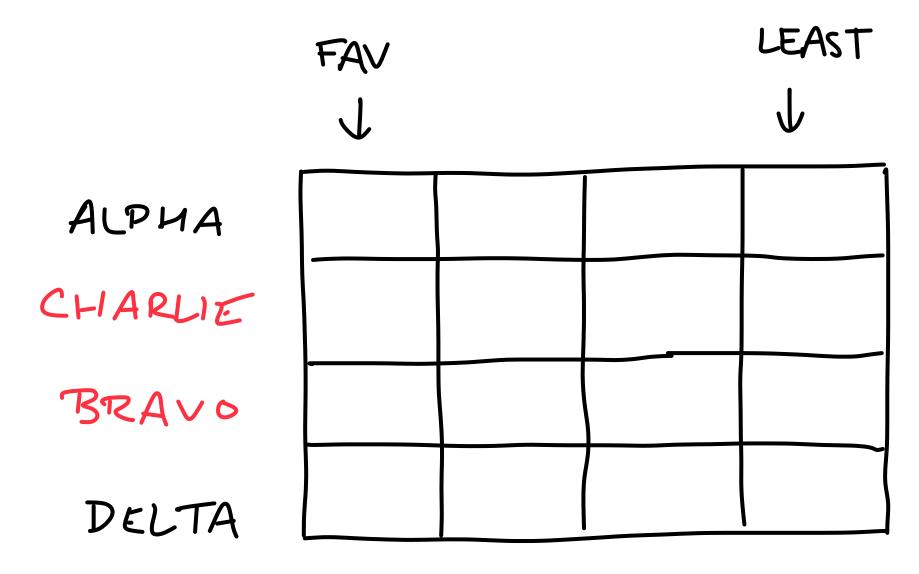
- We arbitrarily assigned the proposers and receivers indexes 1...n.
- Would a different assignment have occurred under a different ordering?
- Multiple stable matchings can exist!

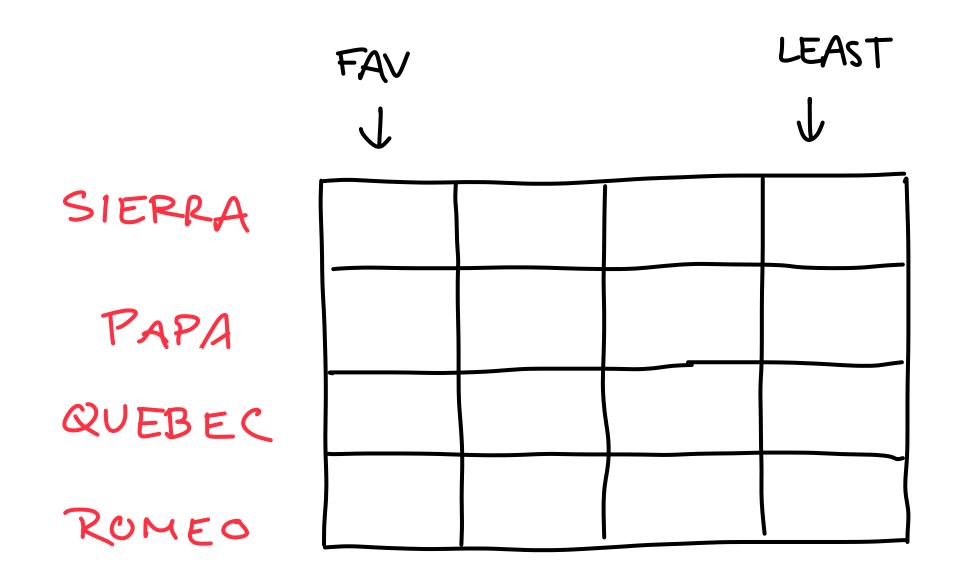




Does the ordering of the people matter?

- We arbitrarily assigned the proposers and receivers indexes 1...n.
- Would a different assignment have occurred under a different ordering?
- Multiple stable matchings can exist!





It's good to be a proposer **Proposer-optimality of Gale-Shapley**

- matched with their best *valid* partner
- containing (p, r)
- Lemma: Gale-Shapley always produces a proposer-optimal stable matching.
 - matter!
 - assignment.

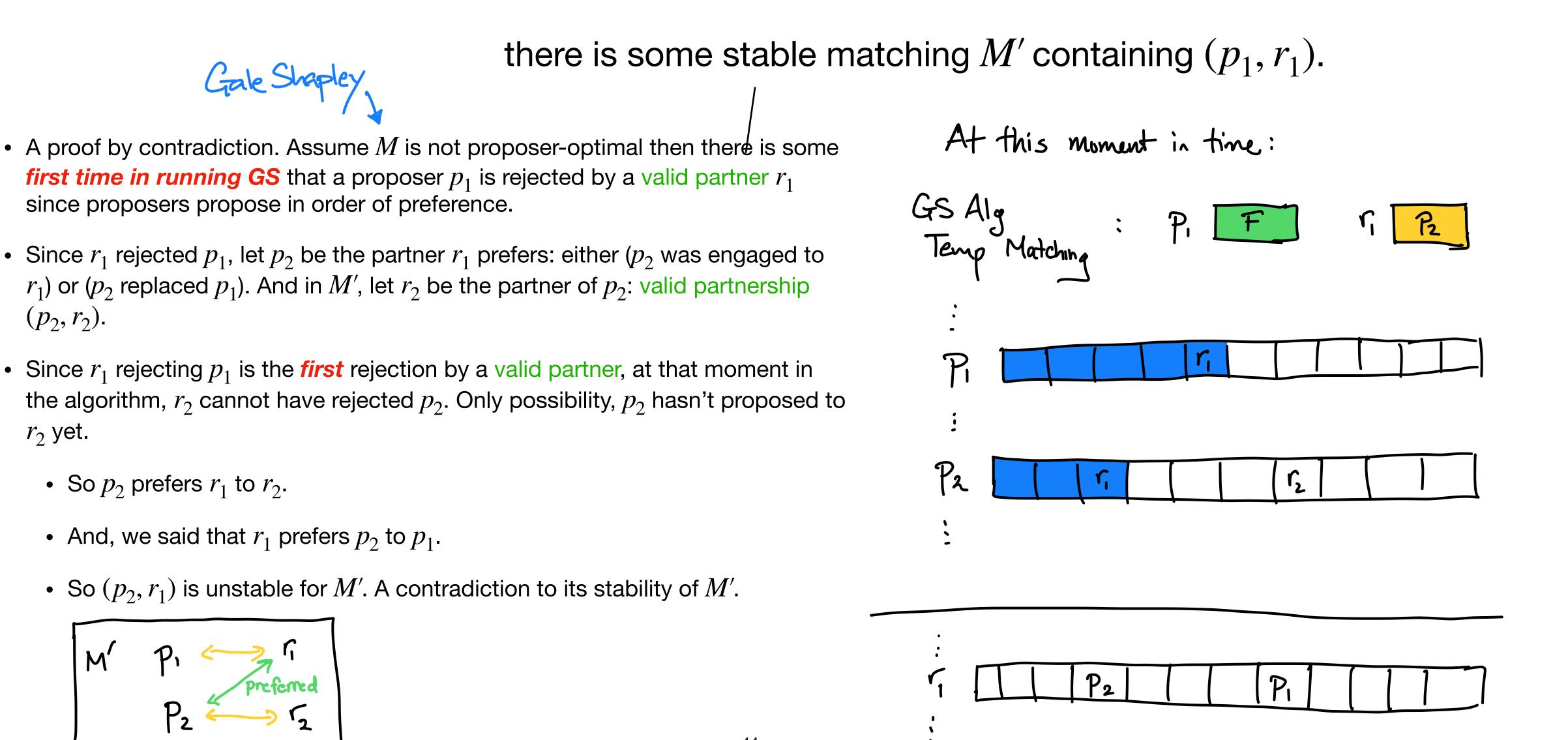
• Proposer-optimal: The proposer-optimal assignment is one in which every proposer p is

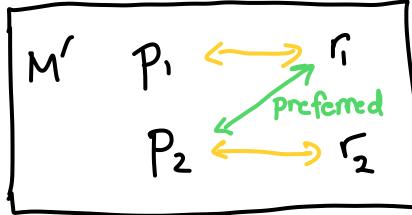
• Valid partnership: p and r is a valid partnership if there exists some stable matching

• Corollary: Gale-Shapley always produces the same assignment. I.e. ordering does not

• **Proof:** There is at most one proposer-optimal stable matching. Since Gale-Shapley always outputs a proposer-optimal stable matching, it always outputs the same

Proof of proposer-optimality



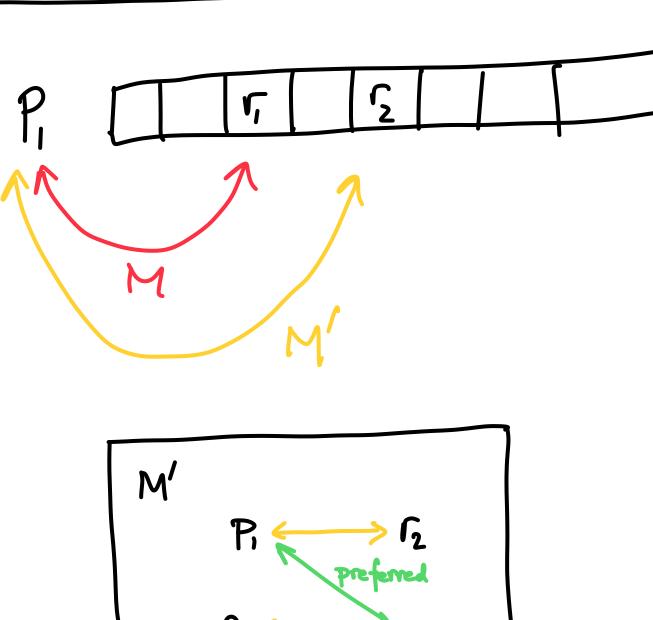


It's bad to be a receiver Receiver-pessimality of Gale-Shapley

- Receiver-pessimal: The receiver-pessimal assignment is one in which every receiver r is matched with their worst valid partner
- Valid partnership: p and r is a valid partnership if there exists some stable matching containing (p, r)
- Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

Proof of receiver-pessimality

- A proof by contradiction. Assume M is not receiverpressimal i.e. some receiver r_1 is matched to p_1 but p_1 is not the worst valid partner
 - There exists a M' stable matching in which r_1 is matched to p_2 but p_2 is lower ranked by r_1
 - Let r_2 be the match of p_1 in M'
- Proposer-optimality of M gives that p_1 prefers r_1 to r_2
 - (p_1, r_1) is unstable for M', a contradiction.



P

M

Natural extensions Example: Matching residents to hospitals

- Original form: proposers are hospitals and receivers are med. school residents
- Variations that make the problem different:
 - Some participants could declare some partners as unacceptable. (Rank = ∞).
 - Unequal number of proposers and receivers.
 - Participants can participate in more than one matching.
 - A different notion of "stability".
 - Residents may want to perform "couples matching".
- course.

Many natural variants turn out to be NP-complete! A topic we will discuss in depth later in the

Actual implementation

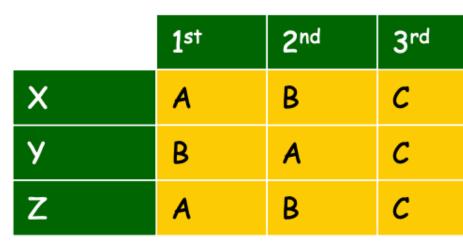
- NRMP (National Resident Matching Program)
 - 23,000+ residents legally bound by the outcome
 - Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)
 - Post-1995 has the hospitals as receivers (recall, receiver pessimality)
- Rural hospital dilemma
 - How to get residents to unpopular (often rural hospitals)?
 - Rural hospitals were often undersubscribed in matchings.

Meta-lessons from stable matching

- To design and analyze algorithms, isolate the underlying structure of the problem.
- Algorithms can have deep social ramifications that need to be understood. Algorithm design can have unintended consequences.
- Technique for study algorithms: Find the first time the "bad event" might happen in the running of the algorithm and prove it doesn't occur.
 - Variant of proof by contradiction.

Are you incentivized to lie?

- Should stable matching players lie about their preferences to get better outcomes? • By proposer optimality, a proposer has no incentive to lie.
- - Receivers are incentivized to lie.
- No mechanism can guarantee stable matchings and incentivize honesty. (Not proven in this class).



С

Group P Preference List

Group **R** True Preference List

1 ^{s†}	2 nd	3rd
У	Х	Z
X	У	Z
X	У	Z

	1 ^{s†}	2 nd	3 rd
A	У	Z	Х
В	Х	У	Z
С	X	У	Z

A pretends to prefer Z to X

Algorithmic complexity

Measuring algorithmic efficiency The RAM model

- RAM Model = "Random Access Machine" Model
- Each simple operation (arithmetic, evaluating if loop criteria, call, increment counter, etc.) takes one time step
- Accessing any one arithmetic number in memory takes one time step
- Measuring algorithm efficiency
 - Let input be (x_1, \ldots, x_n) with each x_i representing one arithmetic number
 - Runtime of algorithm is the number of "simple operations" taken to compute algorithm in RAM model.

Complexity analysis

- Input (x_1, \ldots, x_n) of length n.
- Multiple measures of complexity.
 - Worst-case: maximum # of steps taken on any input of length n
 - Best-case: minimum # of steps taken on any input of length n
 - Average-case: average # of steps taken over all input of length n

Complexity analysis

- The complexity of an alg. is a function T(n) for each input size $n \in \mathbb{N}$. • i.e. $T_{\text{worst}}(n)$ or $T_{\text{avg}}(n)$ could be two different functions.
- $T: \mathbb{N} \to \mathbb{N}$
- We are interested in understanding the overall behavior/shape of T, not the exact function.
- *m* edge graph.

• Sometimes there is more than one size parameter. T(n, m) for a n vertex and

Polynomial time A notion of efficiency

- c, k, d > 0.
 - polynomial.
 - Polynomial time is known as "efficient" in theoretical CS.

• A function T(n) is polynomial time if $T(n) \le cn^k + d$ for some constants

• Let k be the minimal such value. This is the degree of the dominating

Polynomial time A notion of efficiency

- A function T(n) is polynomial time if $T(n) \le cn^k + d$.
- Why **polynomial time**?
 - Scaling the instance by a constant factor so does the runtime.
 - computation can also be computed in polynomial time a *different* physically realizable model.
 - I.e. polynomial-time is a notion independent of model of computation.
 - Ideal for theoretical study of what problems are efficient and which are not.
 - Problem size grows by constant, then running time also grows by constant.
 - If $T(n) = cn^k + d$ then $T(2n) = c(2n)^k + d \le 2^k(cn^k + d) = 2^kT(n)$.

• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of

• Typically, polynomials for common algorithms are small polynomials cn, cn^2, cn^3, cn^4 . Rarely anything higher.

Big-O notation

Let $T, g : \mathbb{N} \to \mathbb{N}$. Then

- T(n) is o(g(n)) if $\lim_{n \to \infty} \frac{T(n)}{g(n)} = 0.$
- T(n) is $\Theta(g(n))$ if T(n) is O(g(n)) and T(n) is $\Omega(g(n))$.

• T(n) is O(g(n)) if $\exists c, n_0 > 0$ such that $T(n) \leq cg(n)$ when $n \geq n_0$.

• T(n) is $\Omega(g(n))$ if $\exists \epsilon, n_0 > 0$ such that $T(n) \ge \epsilon g(n)$ when $n \ge n_0$.