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The propose and reject algorithm
Gale & Shapley 1962
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The group £ proposes and the group R receives

Initialize each person to be free
while (some p in P 1is free) {
Choose some free p in P
r = 1st person on p's preference list to whom p has not yet proposed
if (r is free)
tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)
replace (p’,r) by (p,r) //p now engaged, p’ now free
else

r rejects p



The propose and reject algorithm

What have we learned?

. Proof of termination in 77 iterations. v/
» Proof of perfection: everyone gets matched. v/

» Proof of stability: the output matching is stable for all pairs. v/
 What have we not talked about?

e |s it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

* |s there a faster algorithm?

* How do we extend to 7 proposers and 7' receivers?
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Implementing stable matching

* |Input length
.« N := 2n” words in length because 27 people X preference list of length 7.

A “word” hereis anumber € [n| = {1,2,...,n} . Takes |log, n| bits to represent.
+ Input length of 21 [log, 1] bits.

» Brute force algorithm: Try all ! possible matchings. Testing if a matching is stable
requires testing if each of the 7~ pairs (p, r) is stable.

o Gale-Shapley algorithm: takes < n” iterations. How long does each iteration take to
run?
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Implementing Gale-Shapley in O(n?) time
Comparing

Initialize each person to be free

_ while (some p in P is free) {

 Input: 2 n X n representing the preferences of P and R: .
Choose some free p in P

r = 1st person on p's preference list to whom p has not yet proposed

':prefP[Fﬂ[j]fprefR[r]Lf] if (r is free)

tentatively match (p,r) //p and r both engaged, no longer free

 Assume the proposers and receivers are numbers 1,2,...,n Sles iF (r sEefems b e EnEEEE eoisiiee matan o)

replace (p’,r) by (p,r) //p now engaged, p’ now free

 Each preference array is a permutation of { 1,2,...,n} else

r rejects p

 Data structure for the matching:
 Maintain two arrays Mp|p| and My|r] denoting match of p and r
« Initialize both arrays to all 1, a symbol denoting that the match isn’t set

« If during the algorithm, (p, r) is matched, set Mp|p]| < r, Mp[r| < p

 Making proposals:
« Maintain a queue Q of all the free proposers. Initially O contains all n proposers.

« Maintain an array count| p] which counts how many proposals p has made so far. Initially all entries are 0.
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Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

« How do we decide efficiently if receiver Choose some free p in ?
,’? if=(]];sti:>e;'rs:en) on p's preference list to whom p has not yet proposed
r prefers prOpcser p to propcser p ) tentatively match (p,r) //p and r both engaged, no longer free

else if (r prefers p to current tentative match p’)

° Na|Ve|y WOUId take O(n) querles .tO elsereplace (0’ r) by (p,r) //p now engaged, p’ now free
read through prefy[r]| - ] to find both )

p and p’

r rejects p
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Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Implementing Gale-Shapley in O(n?) time
Rejecting & accepting proposals

Initialize each person to be free
while (some p in P is free) {

 How do we decide efficiently if receiver r prefers Choose some free p in P
/ r = 1st person on p's preference list to whom p has not yet proposed
proposer p to proposer p? ST

tentatively match (p,r) //p and r both engaged, no longer free
else if (r prefers p to current tentative match p’)

¢ Nalvely WOUId take O(I/l) quel’leS tO I’ead thrOugh replace (p’,r) by (p,r) //p now engaged, p’ now free

else

pretp[r][ - ] to find both p and p’ : rejects p

* |nstead, precompute the inverse list of

preferences: invprefp[r][p]. .

» Property: j = invpret,|r][p] if and only if

p = prefylrllj]. [N R CH TN CR

 Jakes O(nz) time to precompute inverse list. Once
computed, each comparison takes time O(1).

for i =1 to n
invpref[r] [pref[r] [1]] = 1
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Implementing Gale-Shapley in O(n?) time

* When a proposer p becomes free, p starts proposing to new receivers
starting from count|p|. All previous receivers have been proposed to in
previous steps of the algorithm. Update count|p| as rejections occur.

« Combined with the inverse list pre computation, we achieve that every
proposer-receiver pair (p, r) is considered in O(1) computational steps and
there are a total n° possible pairs.

* This completes the entire time complexity argument of O(nz). More detalls
can be covered In section.
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Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!
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Does the ordering of the people matter?

» We arbitrarily assigned the proposers and receivers indexes 1...n.
* Would a different assignment have occurred under a different ordering?

* Multiple stable matchings can exist!
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It’s good to be a proposer
Proposer-optimality of Gale-Shapley

 Proposer-optimal: The proposer-optimal assignment is one in which every proposer p Is
matched with their best valid partner

« Valid partnership: p and r is a valid partnership if there exists some stable matching
containing (p, r)

 Lemma: Gale-Shapley always produces a proposer-optimal stable matching.

* Corollary: Gale-Shapley always produces the same assignment. |.e. ordering does not
matter!

* Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley
always outputs a proposer-optimal stable matching, it always outputs the same
assignment.
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Proof of proposer-optimality

there is some stable matching M’ containing (py, ).

Grle 9“\’“7&

A proof by contradiction. Assume M is not proposer-optimal then thenZis some A"’ ’H/\i.S Momant™ ‘('\‘V\-L, ?
first time in running GS that a proposer p, is rejected by a valid partner r,
since proposers propose in order of preference. _—
prop prop P GSA\J 'P.I"j ﬂ[?zj
» Since r, rejected py, let p, be the partner r, prefers: either (p, was engaged to Tﬁ"‘\( Matchun
ry) or (p, replaced p;). And in M, let r, be the partner of p,: valid partnership
(D2, 72)-

 Since ry rejecting p, is the first rejection by a valid partner, at that moment in ? _ ‘ ’ [ J l ‘\

the algorithm, r, cannot have rejected p,. Only possibility, p, hasn’t proposed to
r, yet.

« So p, prefers r; to ;. ?& -:-_r ‘ ( " I K | l

« And, we said that r, prefers p, to p;.

 So (p,, ) is unstable for M’. A contradiction to its stability of M.

W o -

e T I Iml [ [ Tn] [ [T
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It’s bad to be a recelver

Receiver-pessimality of Gale-Shapley

 Recelver-pessimal: The receiver-pessimal assignment is one in which every
recelver r iIs matched with their worst valid partner

o Valid partnership: p and r is a valid partnership if there exists some stable
matching containing (p, r)

 Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.
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Proof of receiver-pessimality

* A proof by contradiction. Assume M is not receiver-

pessimal i.e. some receiver r; Is matched to p, but p, is
not the worst valid partner

» There exists a M’ stable matching in which 7 is
matched to p, but p, is lower ranked by r

» Let r, be the match of p; in M’
 Proposer-optimality of M gives that p, prefers r; to r,

e (py, ) is unstable for M’, a contradiction.
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Natural extensions

Example: Matching residents to hospitals

* QOriginal form: proposers are hospitals and receivers are med. school residents

» Variations that make the problem different:

e Some participants could declare some partners as unacceptable. (Rank = o0).
 Unequal number of proposers and receivers.

* Participants can participate in more than one matching.

» A different notion of “stability”.

* Residents may want to perform “couples matching”.

« Many natural variants turn out to be NP-complete! A topic we will discuss in depth later in the
course.
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Actual implementation

* NRMP (National Resident Matching Program)
o 23,000+ residents legally bound by the outcome
* Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)
 Post-1995 has the hospitals as receivers (recall, receiver pessimality)
* Rural hospital dilemma
 How to get residents to unpopular (often rural hospitals)?

* Rural hospitals were often undersubscribed in matchings.
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Meta-lessons from stable matching

* Jo design and analyze algorithms, isolate the underlying structure of the
problem.

* Algorithms can have deep social ramifications that need to be understood.
Algorithm design can have unintended consequences.

* Technique for study algorithms: Find the first time the “bad event” might
happen in the running of the algorithm and prove it doesn’t occur.

» Variant of proof by contradiction.
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Are you incentivized to lie?

e Should stable matching players lie about their preferences to get better outcomes?

By proposer optimality, a proposer has no incentive to lie.

e Recelvers are incentivized to lie.

 No mechanism can guarantee stable matchings and incentivize honesty. (Not proven

in this class).

A B
B A
A B

Group P Preference List

C
C
C

Y X |y
- T
< v O

Group R True Preference List

x
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Algorithmic complexity




Measuring algorithmic efficiency
The RAM model

e RAM Model = “Random Access Machine” Model

 Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

* Accessing any one arithmetic number in memory takes one time step
 Measuring algorithm efficiency
e Let input be (x{, ..., x,) with each x; representing one arithmetic number

 Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.
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Complexity analysis

e Input (xq, ..., x,) of length n.
* Multiple measures of complexity.
 Worst-case: maximum # of steps taken on any input of length n

* Best-case: minimum # of steps taken on any input of length n

 Average-case: average # of steps taken over all input of length n
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Complexity analysis

» The complexity of an alg. is a function 7(n) for each input size n € N.

e i.e. Tyor() or T,(n) could be two different functions.
e T:N — N

« We are interested in understanding the overall behavior/shape of 1, not the
exact function.

» Sometimes there is more than one size parameter. 1(n, m) for a n vertex and
m edge graph.
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Polynomial time

A notion of efficiency

« A function T(n) is polynomial time if T(n) < cn* + d for some constants

c,k,d> 0.

 Let k be the minimal such value. This is the degree of the dominating
polynomial.

* Polynomial time is known as “efficient” in theoretical CS.
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Polynomial time

A notion of efficiency

. A function T(n) is polynomial time if T(n) < cn* + d.
 Why polynomial time?
* Scaling the instance by a constant factor so does the runtime.

 Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

* |.e. polynomial-time is a notion independent of model of computation.
 |deal for theoretical study of what problems are efficient and which are not.
* Problem size grows by constant, then running time also grows by constant.

e If T(n) = cn® + d then T(2n) = c2n)* + d < 25(cn* + d) = 2*T(n).

 Typically, polynomials for common algorithms are small polynomials cn, cnz, cn3, cn® Rarely anything higher.
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Big-O notation

Let 7, 2 : Nl — N. Then

» [(n)is O(g(n))if 3 ¢,ny > 0 such that T(n) < cg(n) when n > n,.

. .. I(n)
. I(n)iso(g(n))if Iim =
n—oo g(n)

e [(n)is Q(g(n))if 3 €,ny > 0 such that T(n) > eg(n) when n > n,.

0.

e [(n)is®(g(n))if I'(n)is O(g(n))and T(n) is L2(g2(n)).



