
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 2
The stable matching algorithm

 1

Previously in CSE 421…

2

The propose and reject algorithm
Gale & Shapley 1962

The group proposes and the group receivesP R

3

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

The propose and reject algorithm
What have we learned?

• Proof of termination in iterations.

• Proof of perfection: everyone gets matched.

• Proof of stability: the output matching is stable for all pairs.

• What have we not talked about?

• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

• Is there a faster algorithm?

• How do we extend to proposers and receivers?

n2 ✓

✓

✓

n n′

4

Today

5

Gale-Shapley walkthrough

6

Gale-Shapley walkthrough

7

Gale-Shapley walkthrough

8

Gale-Shapley walkthrough

9

Gale-Shapley walkthrough

10

Gale-Shapley walkthrough

11

Gale-Shapley walkthrough

12

Gale-Shapley walkthrough

13

Gale-Shapley walkthrough

14

Gale-Shapley walkthrough

15

Gale-Shapley walkthrough

16

Gale-Shapley walkthrough

17

Gale-Shapley walkthrough

18

Gale-Shapley walkthrough

19

Gale-Shapley walkthrough

20

Gale-Shapley walkthrough

21

Gale-Shapley walkthrough

22

Gale-Shapley walkthrough

23

Gale-Shapley walkthrough

24

Gale-Shapley walkthrough

25

Gale-Shapley walkthrough

26

Gale-Shapley walkthrough

27

Gale-Shapley walkthrough

28

Gale-Shapley walkthrough

29

Gale-Shapley walkthrough

30

Gale-Shapley walkthrough

31

Gale-Shapley walkthrough

32

Gale-Shapley walkthrough

33

Implementing stable matching

• Input length

• words in length because people preference list of length .

• A “word” here is a number Takes bits to represent.

• Input length of bits.

• Brute force algorithm: Try all possible matchings. Testing if a matching is stable
requires testing if each of the pairs is stable.

• Gale-Shapley algorithm: takes iterations. How long does each iteration take to
run?

N := 2n2 2n × n

∈ [n] = {1,2,…, n} . ⌈log2 n⌉

2n2⌈log2 n⌉

n!
n2 (p, r)

≤ n2

34

Implementing Gale-Shapley in timeO(n2)
Comparing

• Input: 2 representing the preferences of and :

•

• Assume the proposers and receivers are numbers

• Each preference array is a permutation of  

• Data structure for the matching:

• Maintain two arrays and denoting match of and

• Initialize both arrays to all , a symbol denoting that the match isn’t set

• If during the algorithm, is matched, set  

• Making proposals:

• Maintain a queue of all the free proposers. Initially contains all proposers.

• Maintain an array which counts how many proposals has made so far. Initially all entries are 0.

n × n P R

prefP[p][j], prefR[r][j]

1,2,…, n

{1,2,…, n}

MP[p] MR[r] p r

⊥

(p, r) MP[p] ← r, MR[r] ← p

Q Q n

count[p] p

35

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Implementing Gale-Shapley in timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver
 prefers proposer to proposer ?

• Naïvely would take queries to
read through to find both

 and

r p p′

O(n)
prefR[r][⋅]

p p′

36

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

Gale-Shapley walkthrough

37

Gale-Shapley walkthrough

38

Implementing Gale-Shapley in timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver prefers
proposer to proposer ?

• Naïvely would take queries to read through
 to find both and

• Instead, precompute the inverse list of
preferences: .

• Property: if and only if
.

• Takes time to precompute inverse list. Once
computed, each comparison takes time .

r
p p′

O(n)
prefR[r][⋅] p p′

invprefR[r][p]

j = invprefR[r][p]
p = prefR[r][j]

O(n2)
O(1)

39

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th𝒓

inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8𝒓

for i = 1 to n

 invpref[r][pref[r][i]] = i

Implementing Gale-Shapley in timeO(n2)

• When a proposer becomes free, starts proposing to new receivers
starting from . All previous receivers have been proposed to in
previous steps of the algorithm. Update as rejections occur.

• Combined with the inverse list pre computation, we achieve that every
proposer-receiver pair is considered in computational steps and
there are a total possible pairs.

• This completes the entire time complexity argument of . More details
can be covered in section.

p p
count[p]

count[p]

(p, r) O(1)
n2

O(n2)

40

Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .

• Would a different assignment have occurred under a different ordering?

• Multiple stable matchings can exist!

1…n

41

Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .

• Would a different assignment have occurred under a different ordering?

• Multiple stable matchings can exist!

1…n

42

It’s good to be a proposer
Proposer-optimality of Gale-Shapley

• Proposer-optimal: The proposer-optimal assignment is one in which every proposer is
matched with their best valid partner

• Valid partnership: and is a valid partnership if there exists some stable matching
containing

• Lemma: Gale-Shapley always produces a proposer-optimal stable matching.

• Corollary: Gale-Shapley always produces the same assignment. I.e. ordering does not
matter!

• Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley
always outputs a proposer-optimal stable matching, it always outputs the same
assignment.

p

p r
(p, r)

43

Proof of proposer-optimality

• A proof by contradiction. Assume is not proposer-optimal then there is some
first time in running GS that a proposer is rejected by a valid partner
since proposers propose in order of preference.

• Since rejected , let be the partner prefers: either (was engaged to
) or (replaced). And in , let be the partner of : valid partnership

.

• Since rejecting is the first rejection by a valid partner, at that moment in
the algorithm, cannot have rejected . Only possibility, hasn’t proposed to

 yet.

• So prefers to .

• And, we said that prefers to .

• So is unstable for . A contradiction to its stability of .

M
p1 r1

r1 p1 p2 r1 p2
r1 p2 p1 M′ r2 p2
(p2, r2)

r1 p1
r2 p2 p2

r2

p2 r1 r2

r1 p2 p1

(p2, r1) M′ M′

44

there is some stable matching containing .M′ (p1, r1)

It’s bad to be a receiver
Receiver-pessimality of Gale-Shapley

• Receiver-pessimal: The receiver-pessimal assignment is one in which every
receiver is matched with their worst valid partner

• Valid partnership: and is a valid partnership if there exists some stable
matching containing

• Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

r

p r
(p, r)

45

Proof of receiver-pessimality

• A proof by contradiction. Assume is not receiver-
pessimal i.e. some receiver is matched to but is
not the worst valid partner

• There exists a stable matching in which is
matched to but is lower ranked by

• Let be the match of in

• Proposer-optimality of gives that prefers to

• is unstable for , a contradiction.

M
r1 p1 p1

M′ r1
p2 p2 r1

r2 p1 M′

M p1 r1 r2

(p1, r1) M′

46

Natural extensions
Example: Matching residents to hospitals

• Original form: proposers are hospitals and receivers are med. school residents

• Variations that make the problem different:

• Some participants could declare some partners as unacceptable. (Rank =).

• Unequal number of proposers and receivers.

• Participants can participate in more than one matching.

• A different notion of “stability”.

• Residents may want to perform “couples matching”.

• Many natural variants turn out to be -complete! A topic we will discuss in depth later in the
course.

∞

𝖭𝖯

47

Actual implementation

• NRMP (National Resident Matching Program)

• 23,000+ residents legally bound by the outcome

• Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)

• Post-1995 has the hospitals as receivers (recall, receiver pessimality)

• Rural hospital dilemma

• How to get residents to unpopular (often rural hospitals)?

• Rural hospitals were often undersubscribed in matchings.

48

Meta-lessons from stable matching

• To design and analyze algorithms, isolate the underlying structure of the
problem.

• Algorithms can have deep social ramifications that need to be understood.
Algorithm design can have unintended consequences.

• Technique for study algorithms: Find the first time the “bad event” might
happen in the running of the algorithm and prove it doesn’t occur.

• Variant of proof by contradiction.

49

Are you incentivized to lie?

• Should stable matching players lie about their preferences to get better outcomes?

• By proposer optimality, a proposer has no incentive to lie.

• Receivers are incentivized to lie.

• No mechanism can guarantee stable matchings and incentivize honesty. (Not proven
in this class).

50

Algorithmic complexity

51

Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model

• Each simple operation (arithmetic, evaluating if loop criteria, call, increment
counter, etc.) takes one time step

• Accessing any one arithmetic number in memory takes one time step

• Measuring algorithm efficiency

• Let input be with each representing one arithmetic number

• Runtime of algorithm is the number of “simple operations” taken to compute
algorithm in RAM model.

(x1, …, xn) xi

52

Complexity analysis

• Input of length .

• Multiple measures of complexity.

• Worst-case: maximum # of steps taken on any input of length

• Best-case: minimum # of steps taken on any input of length

• Average-case: average # of steps taken over all input of length

(x1, …, xn) n

n

n

n

53

Complexity analysis

• The complexity of an alg. is a function for each input size .

• i.e. or could be two different functions.

•

• We are interested in understanding the overall behavior/shape of , not the
exact function.

• Sometimes there is more than one size parameter. for a vertex and
 edge graph.

T(n) n ∈ ℕ

Tworst(n) Tavg(n)

T : ℕ → ℕ

T

T(n, m) n
m

54

Polynomial time
A notion of efficiency

• A function is polynomial time if for some constants

• Let be the minimal such value. This is the degree of the dominating
polynomial.

• Polynomial time is known as “efficient” in theoretical CS.

T(n) T(n) ≤ cnk + d
c, k, d > 0.

k

55

Polynomial time
A notion of efficiency

• A function is polynomial time if .

• Why polynomial time?

• Scaling the instance by a constant factor so does the runtime.

• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of
computation can also be computed in polynomial time a different physically realizable model.

• I.e. polynomial-time is a notion independent of model of computation.

• Ideal for theoretical study of what problems are efficient and which are not.

• Problem size grows by constant, then running time also grows by constant.

• If then .

• Typically, polynomials for common algorithms are small polynomials . Rarely anything higher.

T(n) T(n) ≤ cnk + d

T(n) = cnk + d T(2n) = c(2n)k + d ≤ 2k(cnk + d) = 2kT(n)

cn, cn2, cn3, cn4

56

Big-O notation

Let . Then

• is if such that when .

• is if

• is if such that when .

• is if is and is .

T, g : ℕ → ℕ

T(n) O(g(n)) ∃ c, n0 > 0 T(n) ≤ cg(n) n ≥ n0

T(n) o(g(n)) lim
n→∞

T(n)
g(n)

= 0.

T(n) Ω(g(n)) ∃ ϵ, n0 > 0 T(n) ≥ ϵg(n) n ≥ n0

T(n) Θ(g(n)) T(n) O(g(n)) T(n) Ω(g(n))

57

