
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 2
The stable matching algorithm

 1



Previously in CSE 421…
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The propose and reject algorithm
Gale & Shapley 1962

The group  proposes and the group  receivesP R
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Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 

    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



The propose and reject algorithm
What have we learned?

• Proof of termination in  iterations. 


• Proof of perfection: everyone gets matched. 


• Proof of stability: the output matching is stable for all pairs. 


• What have we not talked about?


• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last 
proposer have it better?


• Is there a faster algorithm? 


• How do we extend to  proposers and  receivers?

n2 ✓

✓

✓

n n′ 
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Today
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Gale-Shapley walkthrough

6



Gale-Shapley walkthrough

7



Gale-Shapley walkthrough

8



Gale-Shapley walkthrough

9



Gale-Shapley walkthrough

10



Gale-Shapley walkthrough

11



Gale-Shapley walkthrough

12



Gale-Shapley walkthrough

13



Gale-Shapley walkthrough

14



Gale-Shapley walkthrough

15



Gale-Shapley walkthrough

16



Gale-Shapley walkthrough

17



Gale-Shapley walkthrough

18



Gale-Shapley walkthrough

19



Gale-Shapley walkthrough

20



Gale-Shapley walkthrough

21



Gale-Shapley walkthrough

22



Gale-Shapley walkthrough

23



Gale-Shapley walkthrough

24



Gale-Shapley walkthrough

25



Gale-Shapley walkthrough

26



Gale-Shapley walkthrough

27



Gale-Shapley walkthrough

28



Gale-Shapley walkthrough

29



Gale-Shapley walkthrough

30



Gale-Shapley walkthrough

31
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Gale-Shapley walkthrough
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Implementing stable matching

• Input length


•  words in length because   people  preference list of length . 


• A “word” here is a number  Takes  bits to represent.


• Input length of  bits.


• Brute force algorithm: Try all  possible matchings. Testing if a matching is stable 
requires testing if each of the  pairs  is stable.


• Gale-Shapley algorithm: takes  iterations. How long does each iteration take to 
run?

N := 2n2 2n × n

∈ [n] = {1,2,…, n} . ⌈log2 n⌉

2n2⌈log2 n⌉

n!
n2 (p, r)

≤ n2
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Implementing Gale-Shapley in  timeO(n2)
Comparing 

• Input: 2  representing the preferences of  and :


• 


• Assume the proposers and receivers are numbers 


• Each preference array is a permutation of  

• Data structure for the matching:


• Maintain two arrays  and  denoting match of  and 


• Initialize both arrays to all , a symbol denoting that the match isn’t set


• If during the algorithm,  is matched, set  

• Making proposals:


• Maintain a queue  of all the free proposers. Initially  contains all  proposers.


• Maintain an array  which counts how many proposals  has made so far. Initially all entries are 0.

n × n P R

prefP[p][ j], prefR[r][ j]

1,2,…, n

{1,2,…, n}

MP[p] MR[r] p r

⊥

(p, r) MP[p] ← r, MR[r] ← p

Q Q n

count[p] p
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Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 
    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Implementing Gale-Shapley in  timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver 
 prefers proposer  to proposer ? 


• Naïvely would take  queries to 
read through  to find both 

 and 

r p p′ 

O(n)
prefR[r][ ⋅ ]

p p′ 
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Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 
    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}



Gale-Shapley walkthrough
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Gale-Shapley walkthrough
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Implementing Gale-Shapley in  timeO(n2)
Rejecting & accepting proposals

• How do we decide efficiently if receiver  prefers 
proposer  to proposer ? 


• Naïvely would take  queries to read through 
 to find both  and 


• Instead, precompute the inverse list of 
preferences: .


• Property:  if and only if 
.


• Takes  time to precompute inverse list. Once 
computed, each comparison takes time . 

r
p p′ 

O(n)
prefR[r][ ⋅ ] p p′ 

invprefR[r][p]

j = invprefR[r][p]
p = prefR[r][ j]

O(n2)
O(1)

39

Initialize each person to be free. 
while (some p in P is free) { 
    Choose some free p in P 
    r = 1st person on p's preference list to whom p has not yet proposed 
    if (r is free) 
        tentatively match (p,r)   //p and r both engaged, no longer free 
    else if (r prefers p to current tentative match p’) 
        replace (p’,r) by (p,r)   //p now engaged, p’ now free 
    else 
        r rejects p 
}

pref

1st

8

2nd

7

3rd

3

4th

4

5th

1 5 26

6th 7th 8th𝒓

inverse 4th 2nd8th 6th5th 7th 1st3rd

1 2 3 4 5 6 7 8𝒓

for i = 1 to n 
 
   invpref[r][pref[r][i]] = i



Implementing Gale-Shapley in  timeO(n2)

• When a proposer  becomes free,  starts proposing to new receivers 
starting from . All previous receivers have been proposed to in 
previous steps of the algorithm. Update  as rejections occur.


• Combined with the inverse list pre computation, we achieve that every 
proposer-receiver pair  is considered in  computational steps and 
there are a total  possible pairs.


• This completes the entire time complexity argument of . More details 
can be covered in section.

p p
count[p]

count[p]

(p, r) O(1)
n2

O(n2)
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Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .


• Would a different assignment have occurred under a different ordering?


• Multiple stable matchings can exist!

1…n
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Does the ordering of the people matter?

• We arbitrarily assigned the proposers and receivers indexes .


• Would a different assignment have occurred under a different ordering?


• Multiple stable matchings can exist!

1…n
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It’s good to be a proposer
Proposer-optimality of Gale-Shapley

• Proposer-optimal: The proposer-optimal assignment is one in which every proposer  is 
matched with their best valid partner


• Valid partnership:  and  is a valid partnership if there exists some stable matching 
containing 


• Lemma: Gale-Shapley always produces a proposer-optimal stable matching.


• Corollary: Gale-Shapley always produces the same assignment. I.e. ordering does not 
matter!


• Proof: There is at most one proposer-optimal stable matching. Since Gale-Shapley 
always outputs a proposer-optimal stable matching, it always outputs the same 
assignment.

p

p r
(p, r)
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Proof of proposer-optimality

• A proof by contradiction. Assume  is not proposer-optimal then there is some 
first time in running GS that a proposer  is rejected by a valid partner  
since proposers propose in order of preference. 


• Since  rejected , let  be the partner  prefers: either (  was engaged to 
) or (  replaced ). And in , let  be the partner of : valid partnership 

. 


• Since  rejecting  is the first rejection by a valid partner, at that moment in 
the algorithm,  cannot have rejected . Only possibility,  hasn’t proposed to 

 yet.


• So  prefers  to . 


• And, we said that  prefers  to .


• So  is unstable for . A contradiction to its stability of . 

M
p1 r1

r1 p1 p2 r1 p2
r1 p2 p1 M′ r2 p2
(p2, r2)

r1 p1
r2 p2 p2

r2

p2 r1 r2

r1 p2 p1

(p2, r1) M′ M′ 
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there is some stable matching  containing .M′ (p1, r1)



It’s bad to be a receiver 
Receiver-pessimality of Gale-Shapley

• Receiver-pessimal: The receiver-pessimal assignment is one in which every 
receiver  is matched with their worst valid partner


• Valid partnership:  and  is a valid partnership if there exists some stable 
matching containing 


• Lemma: Gale-Shapley always produces a receiver-pessimal stable matching.

r

p r
(p, r)
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Proof of receiver-pessimality

• A proof by contradiction. Assume  is not receiver-
pessimal i.e. some receiver  is matched to  but  is 
not the worst valid partner


• There exists a  stable matching in which  is 
matched to  but  is lower ranked by 


• Let  be the match of  in 


• Proposer-optimality of  gives that  prefers  to 


•  is unstable for , a contradiction.

M
r1 p1 p1

M′ r1
p2 p2 r1

r2 p1 M′ 

M p1 r1 r2

(p1, r1) M′ 
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Natural extensions
Example: Matching residents to hospitals

• Original form: proposers are hospitals and receivers are med. school residents


• Variations that make the problem different:


• Some participants could declare some partners as unacceptable. (Rank = ).


• Unequal number of proposers and receivers.


• Participants can participate in more than one matching.


• A different notion of “stability”.


• Residents may want to perform “couples matching”.


• Many natural variants turn out to be -complete! A topic we will discuss in depth later in the 
course.

∞

𝖭𝖯
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Actual implementation

• NRMP (National Resident Matching Program)


• 23,000+ residents legally bound by the outcome


• Pre-1995 NRMP had the hospitals as proposers (recall, proposer optimality)


• Post-1995 has the hospitals as receivers (recall, receiver pessimality)


• Rural hospital dilemma


• How to get residents to unpopular (often rural hospitals)?


• Rural hospitals were often undersubscribed in matchings.
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Meta-lessons from stable matching

• To design and analyze algorithms, isolate the underlying structure of the 
problem.


• Algorithms can have deep social ramifications that need to be understood. 
Algorithm design can have unintended consequences.


• Technique for study algorithms: Find the first time the “bad event” might 
happen in the running of the algorithm and prove it doesn’t occur.


• Variant of proof by contradiction.
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Are you incentivized to lie?

• Should stable matching players lie about their preferences to get better outcomes?


• By proposer optimality, a proposer has no incentive to lie.


• Receivers are incentivized to lie.


• No mechanism can guarantee stable matchings and incentivize honesty. (Not proven 
in this class).
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Algorithmic complexity
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Measuring algorithmic efficiency
The RAM model

• RAM Model = “Random Access Machine” Model


• Each simple operation (arithmetic, evaluating if loop criteria, call, increment 
counter, etc.) takes one time step


• Accessing any one arithmetic number in memory takes one time step


• Measuring algorithm efficiency


• Let input be  with each  representing one arithmetic number


• Runtime of algorithm is the number of “simple operations” taken to compute 
algorithm in RAM model.

(x1, …, xn) xi
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Complexity analysis

• Input  of length .


• Multiple measures of complexity.


• Worst-case: maximum # of steps taken on any input of length 


• Best-case: minimum # of steps taken on any input of length 


• Average-case: average # of steps taken over all input of length 

(x1, …, xn) n

n

n

n
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Complexity analysis

• The complexity of an alg. is a function  for each input size .


• i.e.  or  could be two different functions.


• 


• We are interested in understanding the overall behavior/shape of , not the 
exact function.


• Sometimes there is more than one size parameter.  for a  vertex and 
 edge graph.

T(n) n ∈ ℕ

Tworst(n) Tavg(n)

T : ℕ → ℕ

T

T(n, m) n
m
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Polynomial time
A notion of efficiency

• A function  is polynomial time if  for some constants 



• Let  be the minimal such value. This is the degree of the dominating 
polynomial.


• Polynomial time is known as “efficient” in theoretical CS.

T(n) T(n) ≤ cnk + d
c, k, d > 0.

k
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Polynomial time
A notion of efficiency

• A function  is polynomial time if .


• Why polynomial time?


• Scaling the instance by a constant factor so does the runtime.


• Church-Turing thesis: Any function computable in polynomial time by a physically realizable model of 
computation can also be computed in polynomial time a different physically realizable model.


• I.e. polynomial-time is a notion independent of model of computation.


• Ideal for theoretical study of what problems are efficient and which are not.


• Problem size grows by constant, then running time also grows by constant. 


• If  then .


• Typically, polynomials for common algorithms are small polynomials . Rarely anything higher.

T(n) T(n) ≤ cnk + d

T(n) = cnk + d T(2n) = c(2n)k + d ≤ 2k(cnk + d) = 2kT(n)

cn, cn2, cn3, cn4
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Big-O notation

Let . Then


•  is  if  such that  when .


•  is  if 


•  is  if  such that  when .


•  is  if  is  and  is .

T, g : ℕ → ℕ

T(n) O(g(n)) ∃ c, n0 > 0 T(n) ≤ cg(n) n ≥ n0

T(n) o(g(n)) lim
n→∞

T(n)
g(n)

= 0.

T(n) Ω(g(n)) ∃ ϵ, n0 > 0 T(n) ≥ ϵg(n) n ≥ n0

T(n) Θ(g(n)) T(n) O(g(n)) T(n) Ω(g(n))
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