Lecture 19

Linear programming |

Chinmay Nirkhe | CSE 421 Spring 2025




Optimization problems

* Optimization problems are the most of the problems we have seen

 An optimization problem is described by some functionf : 2 — R and asubset ] C 2.
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» Goalistofindx € I'suchthatforally €1, f(x) > f(y) — i.e. x is the argmax of f with respectto I .
« Ex.:Knapsack. X ={S:8 C [n]}, I = {8 : weight($) < W}, f(S) = value(S)

. Ex. Shortest path s — 1. £ = {seq. of edges},I" = {paths}, f(p) = ) _ w(e)

eep

« Ex. Greedy. X = {job assignments}, I = {non — overlapping}, f(x) = value(x)



Linear programming

* An optimization problem paradigm

» Both the optimization function f and feasible region I are linear.
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Linear algebra/geometry review
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Linear algebra/geometry review
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Convex polytope

* Definition: The following are equivalent.

» Foray,...,a, € R"and by, ...,b, €I

T .
a. x < b; is a convex polytope.

e Given a matrix A € R™" and a vector b € R, the set of x € |

Ax < b is a convex polytope.

« Given a set of points y;, ..., y, € |

" the set of x € R" such that

" such that

", the convex hull conv(y, ..., y,) is a
convex polytope. A convex hull conv(y, ..., y,) is the intersection of all
convex sets containing the points yy, ..., y;.
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Meaning of convexity

 Definition: FF C R" is a convex region if for all x, y € F, the line segment Xy
is contained in ' — i.e.for4A € [0,1],Ax+ (1 — A)y € F.

— R is convex if {(x,y) € R"™ : y > f(x)} is

o Definition: A function f : |
a convex region.
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Optimizing a linear function
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Linear programming example
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Linear programming standard form
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Linear programming examples

« Some we have seen
 Max flow / min cut
* Shortest paths
 Some we have not
o Zero-sum games

* |Linear regression

» Approximation algorithms for some NP-complete problems
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Max flow as a linear program
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Max flow as a linear program
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Max flow as a linear program

e Let (G, c, s, ) be a flow network. Then

the max flow f € R” is the vector
optimizing the following LP:

 Letg = l{e out of s}

 For each vertex v € V\{s, t}, let
h, ==+ 1, qutofvi — Licinto v1-
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Max flow as a linear program

» Max flow on a graph with | V| = n, | E| = m is equivalent to a linear program
over m variables and m 4+ 2(n — 2) = O(m + n) constraints

* |f we had a very fast algorithm for solving linear programs then it would imply
a very fast algorithm for max flow.

» Second, since max flow is a special case of linear programs, the algorithms
we discovered for max flow may inspire algorithms for LPs.

 We will see an algorithm for LPs in next lecture.
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The value of expressing problems as LPs

* Due to the prevalence of LPs, many optimizations are known
 We know LPs can be solved in polynomial time
 Makes writing down a problem as an LP a good first step
* Writing a problem as a linear program, can make a solution apparent
* Arguing correctness of an LP can be easier

* Applying duality (next!) can give a different perspective on the problem
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Minimization linear programs
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Shortest paths as an LP

 Input: Directed graph G = (V, E) and vertices s, ¢

e Output: (Length) of shortest path s ~ 1

e Claim: The length of the shortest path is the solution
to the following “flow-like” LP.

* Proof (sketch):

* (=) :Apath of length £ corresponds to a valid flow.

e (<) :Aflowisthe sum of < m flows along paths.
Since total flow is 1, the flow can be thought of as a
probability distribution over paths. So, the LP’s
feasible solution is an expectation over paths.
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Linear programming feasibility

» Recall, the feasible region of a standard LPisI = {x : Ax < b,x > 0}.
» Definition: The LP is infeasible if I = @.

. Definition: The LP is unbounded if ¢ ' x can be arbitrarily large for some
xel.

e Even just deciding if a LP is feasible or not, seems like a challenging problem.

19



Where are the optimums of LPs

 Theorem: If an optimum exists for an LP, it is a global optimum.

 Proof: Recall we are maximizing ¢

"x subjecttox € Tand is

convex.

fc'x < c'zfor x,z € 1, then x is not a global optimum.

Consider thelinexz € I'. Thenx' :=x+ e(z — x) € 1 for
small € > 0 and

c'x=c'x+ec'(z—x)>c'x

So x is not a local optimum.

This proves the contrapositive.
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Convex polytope

» Definition: A vertex z of a convex polytope 1 is any point such that z is not
the midpoint of any line segment Xy € 1 for x # y.

» Remark: If v, ..., v, are all the vertices of a convex polytope |, then
[ = conv(v,, ..., v,), the convex hull of the vertices.

 Theorem: If the optimum of a standard linear program is finite, then the
optimum must be achieved at some vertex.
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Convex polytope

 Theorem: If the optimum of a standard linear program is finite, then the optimum
must be achieved at some vertex.

 Proof: Let vy, ..., v, be the vertices of the feasible region | .

vford>0and ¥r A =1.

« Then every point x € 1 equals Z i—1 %M

i1 MV

* By linearity of objective function,

_ kT
. c'x= Zl Aic'v; <maxi_ ¢y,

e So one of the vertices must do better than the vertex x.
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The string example / ’ \
Minimization as maximization 2

* Recall the shortest path problem from s to ¢ >y

* |t is easiest seen as a minimization problem \U

* Now, imagine each edge is a piece of yarn of /\
length w(e) with knots tied at the vertices S' c ; 2 - P

 Pull the yarn apart at s and 7 till it is taut

* The strings that are taut form the shortest
path from s to ¢ max Ky = K

* And yet pulling the yarn sounds like a f\f' St We-<(uw) Xy~ %y £ d(e)
maximization problem
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Linear program duality

 Consider a salesman who
sells either pens or markers.

» He sells pens for $; and
markers for 5.

e There are material restrictions
due to labor, ink, and plastic.

2
.
L
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Linear programming duality

» Now let’s imagine there are market prices for the 3 materials: y;, y;, yp.

» It is only economical to sell apen if y, L, + y;I; + yplp > §,;
 The left hand side is the cost to make a pen

* And the right hand side is the profit
o Similarly, sell markers only if y; L, + y;I, + ypP, > 5.

e Therefore, it Is In the market’s interest to minimize the total available
materials while the salesman can still sell his goods. This is the dual problem.
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Linear programming duality
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Linear programming duality

max S, x ot S.z Xy
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Linear programming duality

max S, x ot S.z Xy

S.t. Lyx, + L, x <L

L y




Linear programming duality
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Linear programming duality
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(Weak duality)

e Theorem:

 If x € R"is feasible for () and y € |

c'x<y'Ax<b'y.

Linear programming duality

e If (&) is unbounded, then (2) is infeasible.

e If (&) is unbounded, then (&) is infeasible.

e lfc'x=b"yforx €l

" is feasible for () and y € |

" is feasible for (&), then

" is feasible for (&),

then x is an optimal solution for (&) and y is an optimal solution for (9).
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Proving weak duality

. Let’s prove when both LPs are feasible, that ¢ ' x < yTAx < bTy.

Snee 7 s fusble £ CP). T, yT(4x) 2 974
Axelb, %20, O ‘"‘L’T7

g,‘,\% 7 1S ‘&\C&s'\la\c_ %ﬂ' CF:D>I AV\A, C.T{x = CA-ry )TX
Alyze , Y2 0. () - G A)x
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Proving weak duality

e If (&) is unbounded
e Thenforall N € N, there exists x € ' suchthat N < ¢ 'x
e If () is feasible,
. then for any feasible y, c'x < y'Ax < b'y.
e Jogether, this proves that bTy IS not finite, a contradiction.
» Therefore, if (<) is unbounded, then (2) is infeasible.

« Similarly, if (&) is unbounded, then (&) is infeasible.
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Proving weak duality

T

. Lastly, since ¢ 'x = b 'y for some feasible x and feasible y,

e Assume for contradiction, there exists x’s.t. ch’ > C x = bT
e Then, c'x' < yTAx’ < yTb by first argument in weak quality.

 This is a contradiction, proving no x’ exists. So x is optimal.

» Similar argument proves that y is also optimal.
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Max flow/min cut is an example of duality

* We have actually seen this duality before!

« We saw that for any flow f and any s-t cut (S, T'), that v(f) < c¢(S, T).
« Max flow is an example of an LP.

 And min cut is its dual LP.

* We will formalize this on the next slide.

* Recall, our algorithm for min cut was to first solve max flow and then look at
which edges are saturated with flow.
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Max flow as a linear program

e Let (G, c, s, ) be a flow network. Then

the max flow f € R” is the vector
optimizing the following LP:

 Letg = l{e out of s}

 For each vertex v € V\{s, t}, let
h, ==+ 1, qutofvi — Licinto v1-
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An observation about duality

e If the primal () is an optimization with n variables and m equations,

e then the dual (&) is an optimization with m variables and n equations

 Lesson: If we are interested in computing the dual of an LP, its often easier to first
find an equivalent LP that has few equations (even at the cost of many variables)

» Lesson: The m equations of the primal (<) correspond to the m equations of the
dual (&). We should see this resemblance.
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Min cut LP

e The trouble is that our max flow LP has m variables and m + 2n — 2
equations

 This will yield an “unnatural” LP for min cut with m + 2n — 2 equations

* [t will be hard to see that this LP is equivalent to the min cut problem
[—c—l0.-0]"y
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A different LP for max flow

* |et’'s come up with a different LP for
max flow

¢ Let P be the set of paths s ~ ¢

» | P| could exponential in the
number of vertices

e The new LP (&) will have | P ]|
variables and m equations

 Therefore, its dual (') will have m
variables and | P| equations

e We will see that max flow

= (P) = (P') = (D') = min cut
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A different LP for max flow

MO X
* |et’'s come up with a different LP for

max flow ’
) - 5.t
¢ Let P be the set of paths s ~ ¢

» | P| could exponential in the
number of vertices

e The new LP (&) will have | P ]|
variables and m equations Mmin

1
 Therefore, its dual (2") will have m (D) -
variables and | P| equations S £

:lT- X

2.

PzeeP

* We will see that max flow e . geF

= (P) = (P') = (D') = min cut
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A different LP for max flow

-
MaX o

» We need to show that min cut = (&2"). ,

* (Proof Sketch): CP) ) 5.t Z < C(e) Vee E,

* If we have an s-t cut (S, 7)), P: 6eP
consider letting y be the indicator
vector for the edges crossing the X 20
cut
| T
e Therefore, (Y) < min cut min C 7
1
» Conversely, a y minimizing (<), (D) =
can be seen as an expectation over S.E£. Z 7& > 1 \7/ ']> e?
min cuts. !
€ eeF

e Therefore, (£') > min cut.
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Lessons from duality

* We reproved the max flow/min cut duality from the flow unit of this course

 Observation: Min cut does not have an intuitive poly-sized LP
» However, it does have a m variable and | P| equations sized LP

 Therefore, its has a dual (max flow) with | P | variables and m equations
 Max flow also has a simple poly-sized LP and an efficient algorithm

 |ntuitively, this is why we solve min cut by solving max flow and looking at
saturated edges. It's sometimes algorithmically easier to solve a problem over

Its dual.
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Theorems worth knowing

« Weak duality theorem

 Theorem: The dual of a dual is the original primal.

e Proof is an exercise.

» Theorem: LPs of n variables and m equations can be solved in poly(n, m)
time.

* We will not prove this in this course. Algorithm is quite complex. We will,
however, discuss algorithms for LPs.
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What’s a problem LPs can’t solve?

Vertex cover . s S
/ \ ¢« . — ol /
e Input: an undirected graph XN L.
G — (Va E) \ ’/

o Output: aminimalsetS CV
such that every edge contains

at least one endpoint from S.

 [here seems to be a pretty
obvious LP for this problem.

What goes wrong? st Xy ¢ L Y veV

X+t Xy21l Y e=(uv)e
—W\U‘Q— S V\O‘HAB ens nan "'\’10\‘]' ’H\L Y

O\D‘HN\&\ Solubhen X will be '\/\l'tﬁef‘ . X 20
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What’s a problem LPs can’t solve?

Vertex cover Ex. T LP solubion is 7 O each Verfey
\ (a) LP mip is 72_"
* Input: an undirected graph ) (%) opFmal sol has value 2

o Output: aminimalsetS CV
such that every edge contains

at least one endpoint from S.
Wun Z 7('\/

ON;. Nvanable %Koy gaf e,w.?/ 've.r’lfoc V.

ve'\/

 [here seems to be a pretty
obvious LP for this problem.

What goes wrong? st Xy ¢ L Y veV

X+t Xy21l Y e=(uv)e
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LP relaxation

Vertex cover

e The LP we tried to write for vertex
cover yields a fractional solution

e |tis a “relaxation” of the vertex cover

problem from integer to fractional
solutions

e |n the relaxation we increase the
feasible space from integer
coordinates to include all solutions

* Can be used to generate
randomized approximation
algorithms for vertex cover.
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Max flow versus vertex cover

 Why can max flow natively guarantee integer solutions while vertex cover
cannot?

* Recall, the optimum of an LP occurs at a vertex

* The vertices of an LP correspond to points where linear equations are exactly
satisfied

* Turns out flow equations when exactly satisfied always have integer solutions

* Quite a beautiful piece of mathematics

e Too technical to warrant more time In this course
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The simplex method

* Finally, we are going to cover an algorithm for solving LPs

* The algorithm is called the simplex method and it will be unique amongst the
algorithms we study In this course

* The simplex method runs incredibly fast in practice and is super useful

« However, it can run in exponential time in the worst case even when there
exist other polynomial time algorithms for the problem

o |ater on, we will take a high-level glance at algorithms for solving LPs that are
known to run in polynomial time
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The simplex method

o Simplex is a greedy algorithm

 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction
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The simplex method

o Simplex is a greedy algorithm

 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction
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The simplex method

o Simplex is a greedy algorithm

 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction
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The simplex method

o Simplex is a greedy algorithm

 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction
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The simplex method

o Simplex is a greedy algorithm

 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction
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The simplex method

0\]‘ C.alau 'Po'\f\“' away ’Fﬂaw‘
C, So 0~|_°§ l/\os\‘l‘s
o Simplex is a greedy algorithm
 High-level algorithm:

o Start from a vertex of the polytope

* |n each step, move to the neighboring

vertex that optimizes c'x

 Equivalently, move along the edge
pointing the most in the ¢ direction

54



The simplex method

» We are effectively consider a graph G = (V, E)
whose interior is the feasible region | .

* |f we consider a feasible region defined by 9,
[[={Ax < bl forA € R™" b e R"™

 Then, each vertex can be described by which n of
the m equations are exactly satisfied

 Describe vertices by points in {0,1 }"" of Hamming
weight n

* Two vertices are neighbors if they share all but 1
equation or equiv. the descriptions differ in two bits
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The simplex method
Digging deeper into the algorithm

* Algorithm has two major steps:
« Finding the first vertex (if one even exists as 1" could be infeasible)
 Moving along an edge

 Moving along an edge:
 Currently at a vertex described by n out of m equations

 Can consider all possible vertices that share all but one equation

e At mostn - (m — n) neighbors

* Gives a polynomial time algorithm for moving along an edge
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The simplex method

Digging deeper into the algorithm

* Finding the first vertex
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The simplex method

* We have not given runtimes for the simplex method
on purpose

* The runtime can be exponential because the
algorithm goes on the outside of the polytope
which could have lots of vertices, edges, and
facets

 However, simplex runs remarkably well in practice

* |s there a reconciliation? An algorithm that may do
okay In practice but has guaranteed worst case
runtime that is polynomial?
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Interior point and ellipsoid methods

* Interior point:
* Keep track of a point /nside the polytope

* Follow a trajectory through the interior to optimal
solution

* Solve a sequence of easier problems to approximate
original LP, gradually becoming more accurate

 Runs about as fast as simplex in practice and has
guarantees on runtime

* The “state-of-the-art” algorithm and a key step in
optimal algorithms for problems like max flow
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Interior point and ellipsoid methods

D\\‘)SO J

* Ellipsoid method:
* Using LP duality, convert problem from optimizing a
linear polytope to finding a feasible point in a different

polytope |

» Generate a sequence of ellipsoids that always contain I
 Each time find a smaller ellipsoid (by guaranteed ratio)
until the center of the ellipsoid must be in I

* \ery slow In practice but first guaranteed algorithm for
solving LPs
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Interior point and ellipsoid methods

* Ellipsoid method:

* Using LP duality, convert problem from optimizing a
linear polytope to finding a feasible point in a different

polytope |

» Generate a sequence of ellipsoids that always contain I

 Each time find a smaller ellipsoid (by guaranteed ratio)
until the center of the ellipsoid must be in I

* \ery slow In practice but first guaranteed algorithm for
solving LPs
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Interior point and ellipsoid methods

* Ellipsoid method:

* Using LP duality, convert problem from optimizing a
linear polytope to finding a feasible point in a different

polytope |

» Generate a sequence of ellipsoids that always contain I

 Each time find a smaller ellipsoid (by guaranteed ratio)
until the center of the ellipsoid must be in I

* \ery slow In practice but first guaranteed algorithm for
solving LPs
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Zero-sum games



