Lecture 19 Linear programming I

Chinmay Nirkhe | CSE 421 Spring 2025

1

Optimization problems

- Optimization problems are the most of the problems we have seen
- An optimization problem is described by some function $f: \Sigma \to \mathbb{R}$ and a subset $\Gamma \subseteq \Sigma$.

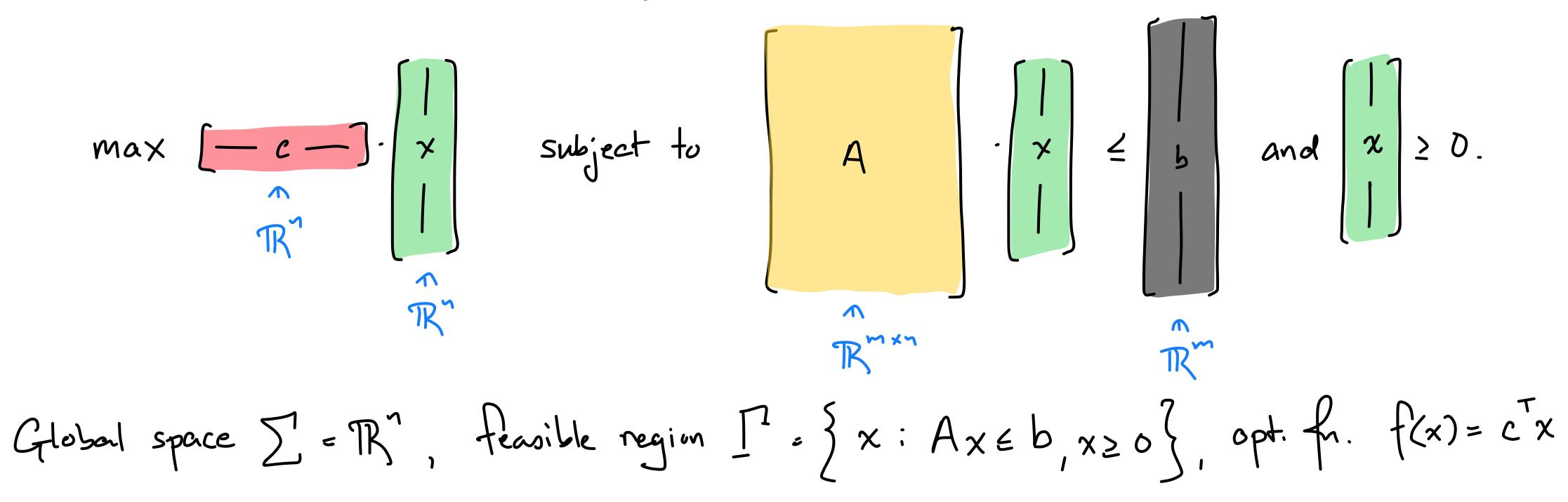
- Ex.: Knapsack. $\Sigma = \{S : S \subseteq [n]\}, \Gamma = \{S : weight(S) \leq W\}, f(S) = value(S)$
- Ex. Shortest path $s \to t$. $\Sigma = \{ seq. of edges \}, \Gamma = \{ paths \}, f(p) = \sum_{e \in p} w(e) \}$
- Ex. Greedy. $\Sigma = \{\text{job assignments}\}, \Gamma = \{\text{non overlapping}\}, f(x) = \text{value}(x)$

Optimization feasible function region

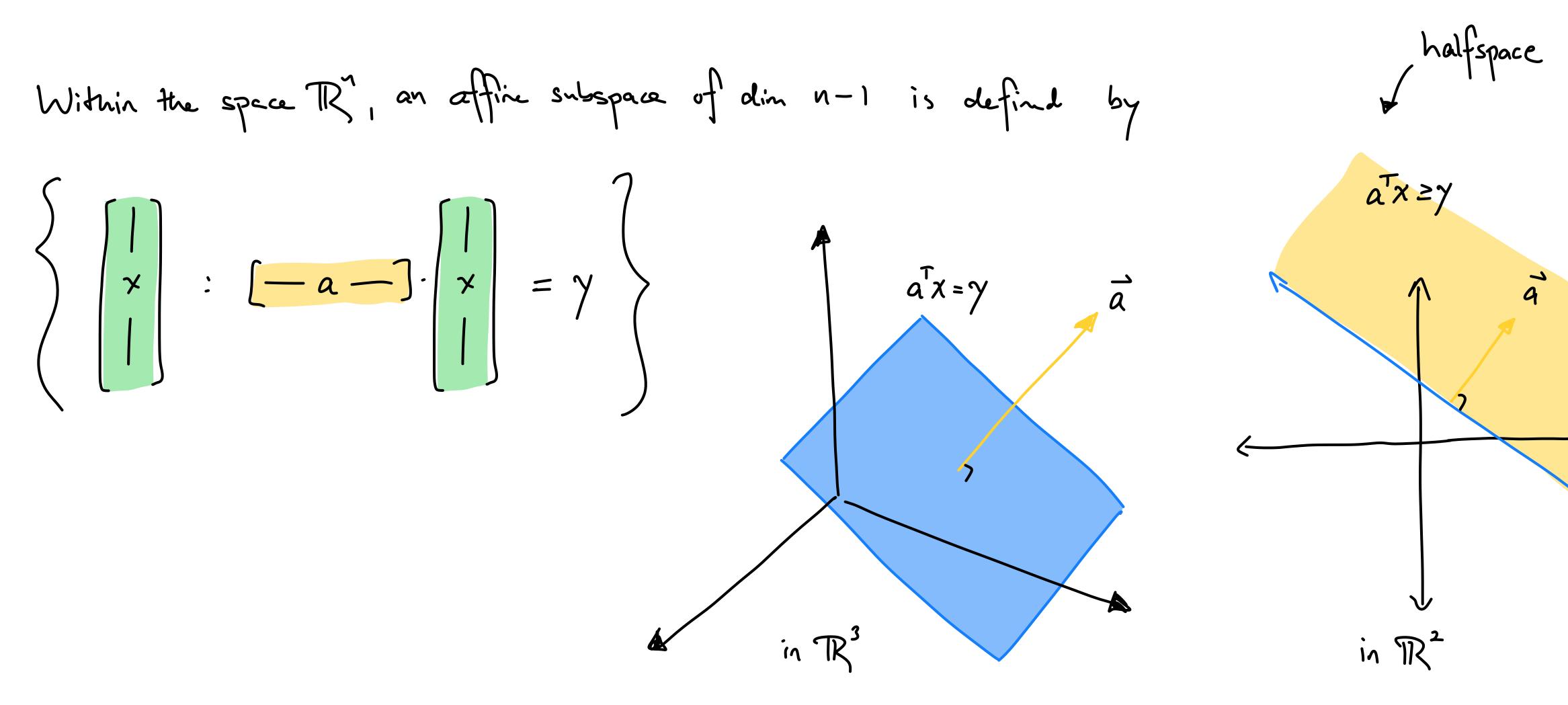
• Goal is to find $x \in \Gamma$ such that for all $y \in \Gamma$, $f(x) \ge f(y) - i.e. x$ is the argmax of f with respect to Γ .

Linear programming

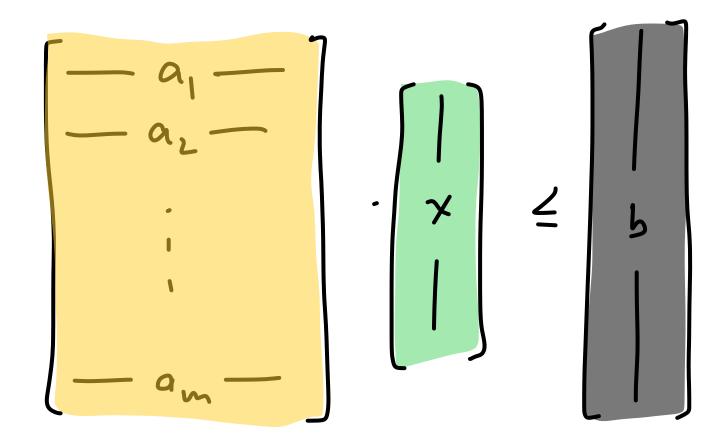
- An optimization problem paradigm
- Both the optimization function f and feasible region Γ are linear.

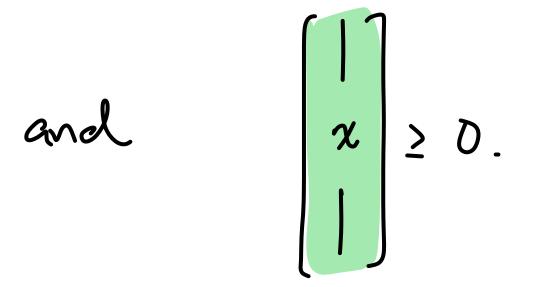


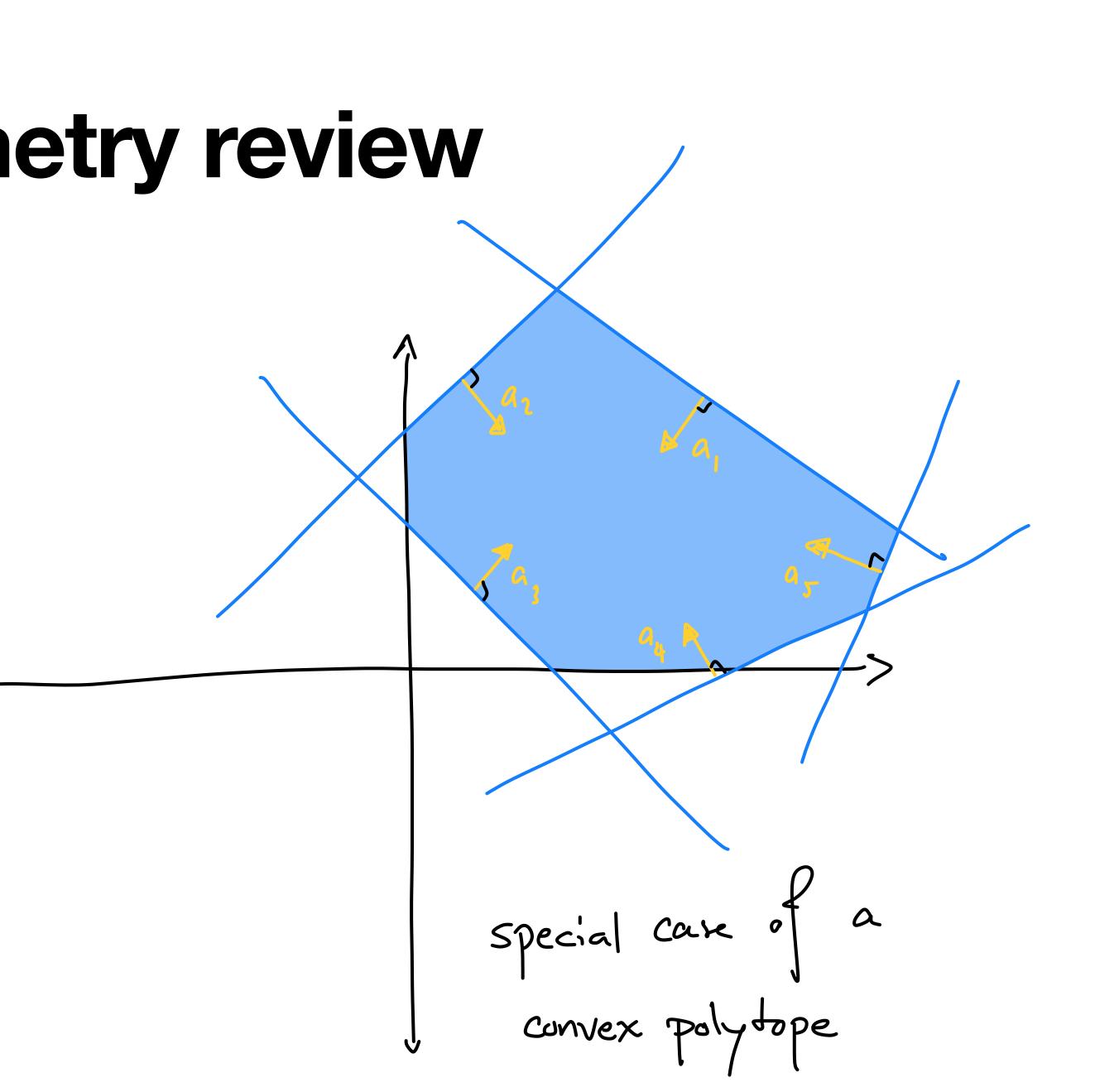
Linear algebra/geometry review



Linear algebra/geometry review







Convex polytope

- **Definition:** The following are equivalent.
 - $a_i^{\mathsf{T}} x \leq b_i$ is a convex polytope.
 - $Ax \leq b$ is a convex polytope.
 - convex sets containing the points y_1, \ldots, y_k .

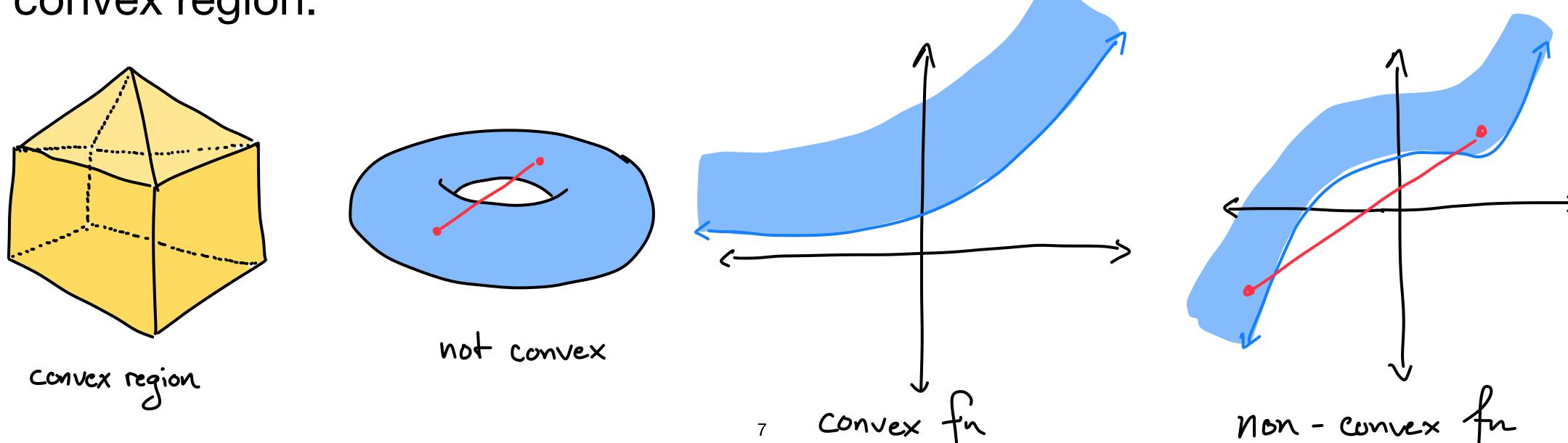
• For $a_1, \ldots, a_m \in \mathbb{R}^n$ and $b_1, \ldots, b_m \in \mathbb{R}^m$, the set of $x \in \mathbb{R}^n$ such that

• Given a matrix $A \in \mathbb{R}^{m \times n}$ and a vector $b \in \mathbb{R}^m$, the set of $x \in \mathbb{R}^n$ such that

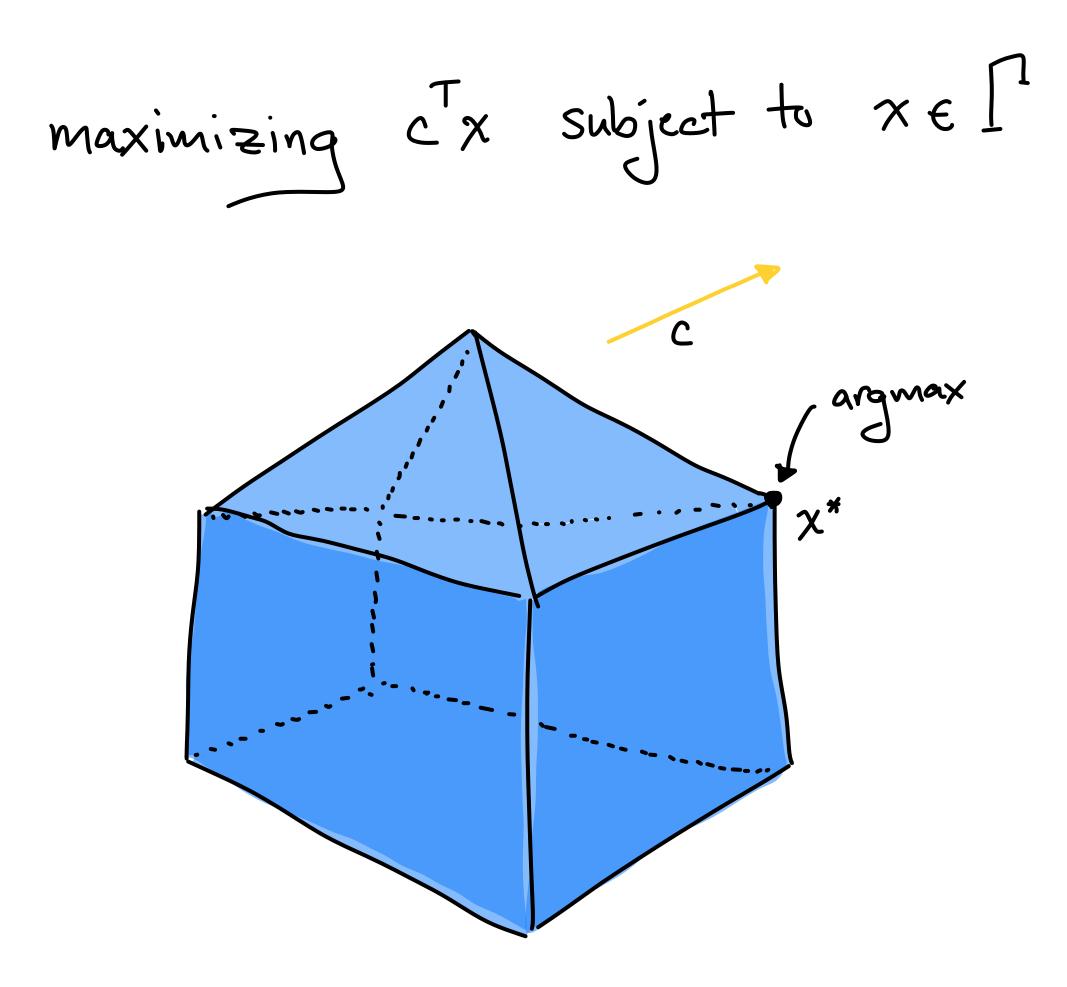
• Given a set of points $y_1, \ldots, y_k \in \mathbb{R}^n$, the convex hull $conv(y_1, \ldots, y_k)$ is a convex polytope. A convex hull $conv(y_1, ..., y_k)$ is the intersection of all

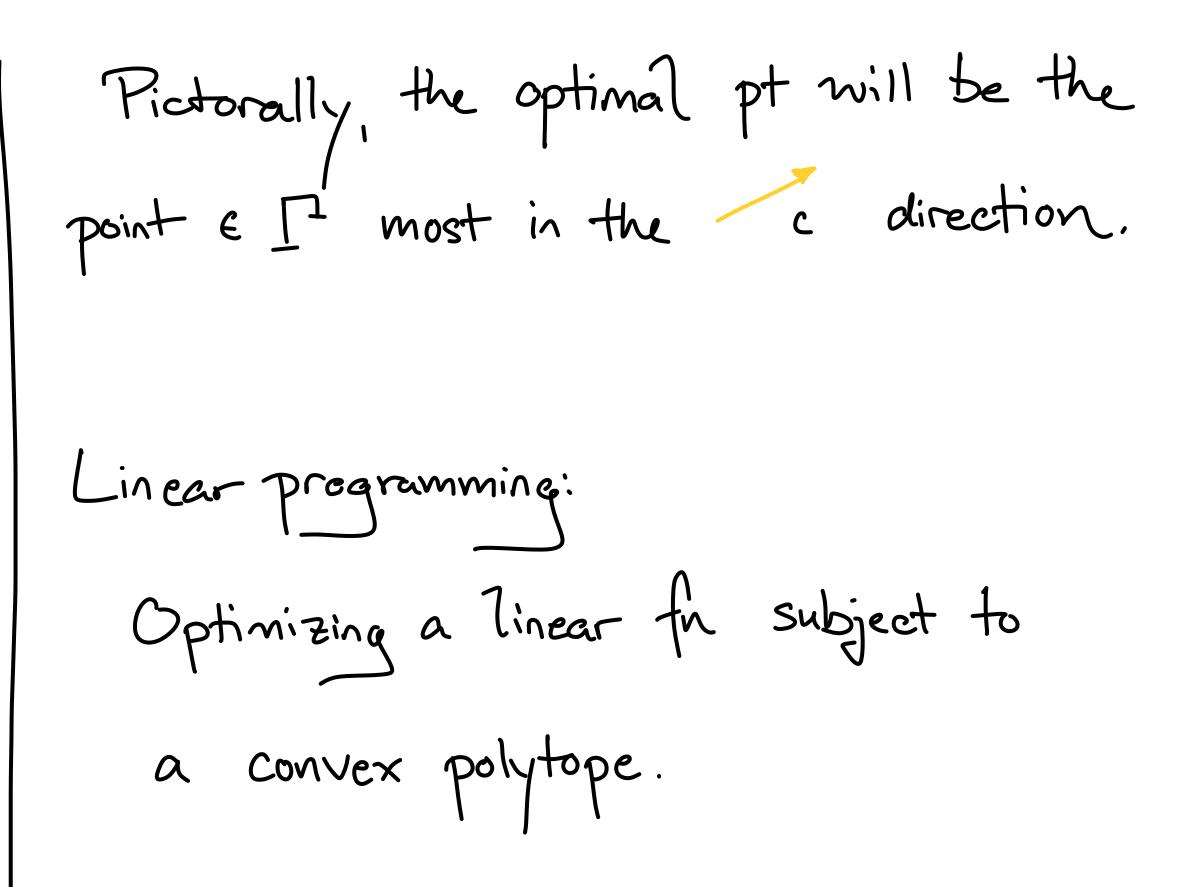
Meaning of convexity

- **Definition:** $F \subseteq \mathbb{R}^n$ is a **convex region** if for all $x, y \in F$, the line segment \overline{xy} is contained in F i.e. for $\lambda \in [0,1], \lambda x + (1 \lambda)y \in F$.
- **Definition:** A function $f : \mathbb{R}^n \to \mathbb{R}$ is **convex** if $\{(x, y) \in \mathbb{R}^{n+1} : y \ge f(x)\}$ is a convex region.



Optimizing a linear function

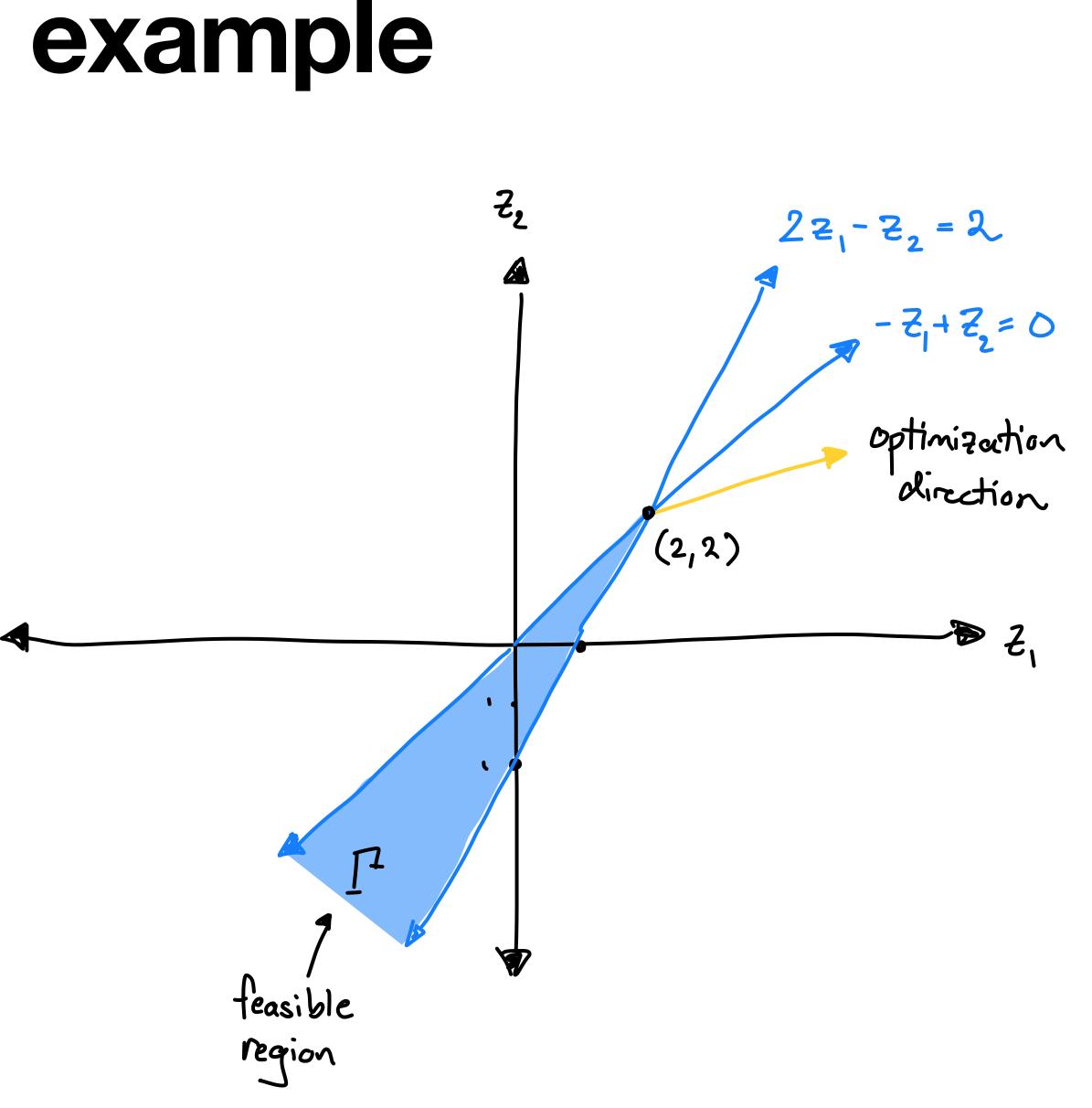




Linear programming example

Maximize 10Z, +Z2

- Subject to $2z_1 z_2 \leq 2$ $-z_1 + z_2 \leq 0$



Linear programming standard form

Max CX

s.t.
$$\begin{cases} A \chi \leq b \\ \chi \geq 0 \end{cases}$$

Any optimization over convex polytope
$$\Gamma$$
 is equinoptimization over a LP of standard form

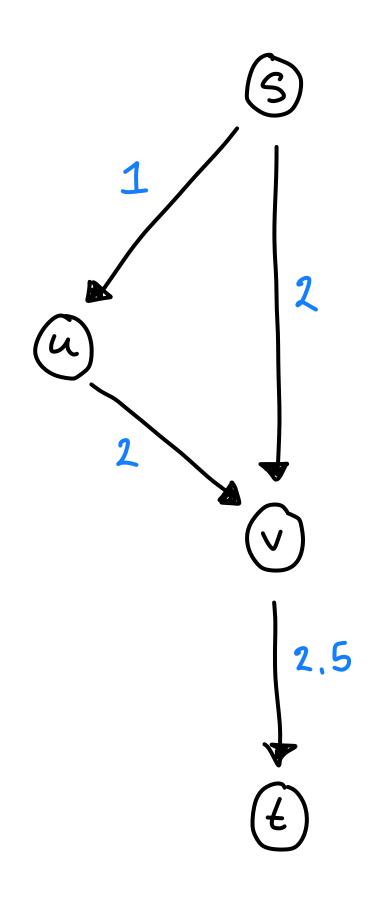
$$\begin{cases} max \ c^{\mathsf{T}}z \\ s.t. \ Az \leq b \end{cases} = \begin{cases} max \ C_1Z_1 + C_2Z_2 + \dots + CZ_n \\ s.t. \ a_1^{\mathsf{T}}z \leq b_1, \dots, a_m^{\mathsf{T}}z \leq b_m \end{cases}$$

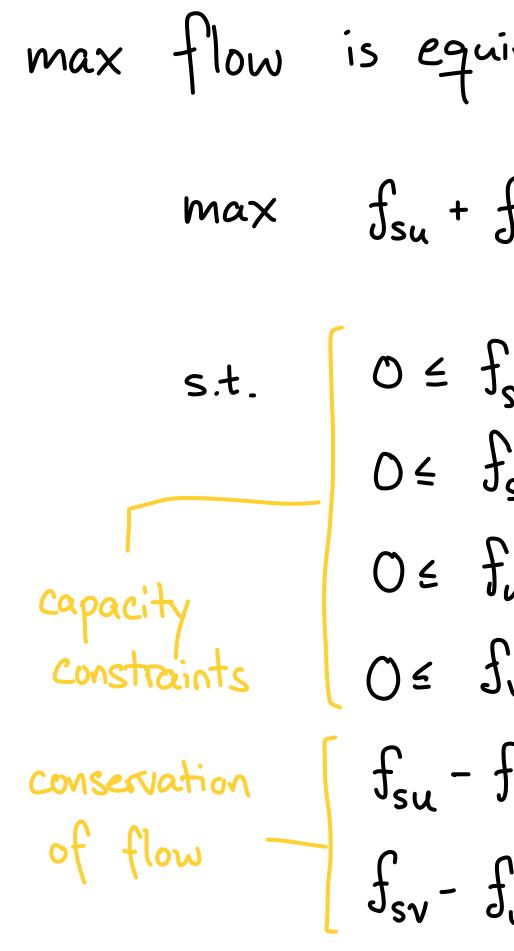
with
$$\chi_{i}^{(n)} - \chi_{i}^{(-)}$$
 with $\chi_{i}^{(+)}, \chi_{i}^{(-)} \ge 0$.
 $C_{1}(\chi_{1}^{(+)} - \chi_{1}^{(-)}) + \dots + C_{n}(\chi_{n}^{(+)} - \chi_{n}^{(-)})$
 $a_{1}^{T}(\chi^{(+)} - \chi^{(-)}) \le b_{1}, \dots, a_{m}^{T}(\chi^{(+)} - \chi^{(-)}) \le b_{m}$
 $\chi^{(+)} \ge 0, \chi^{(-)} \ge 0$

J.

Linear programming examples

- Some we have seen
 - Max flow / min cut
 - Shortest paths
- Some we have not
 - Zero-sum games
 - Linear regression
 - Approximation algorithms for some NP-complete problems





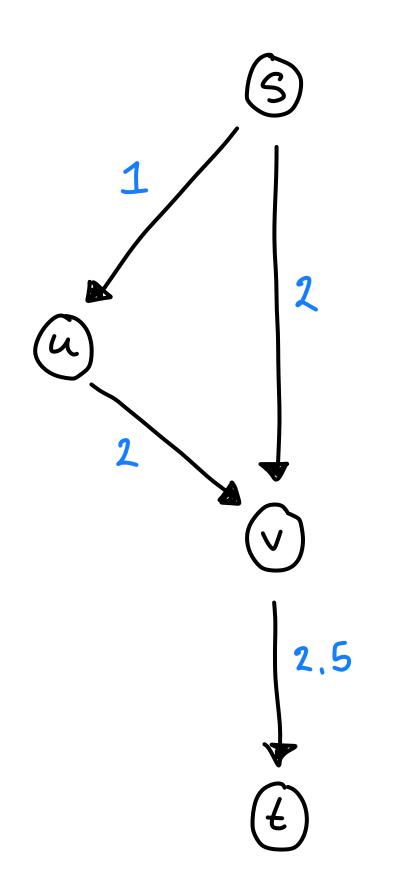
uivalent to
fix
fsv

$$f_{sv} \leq 1$$

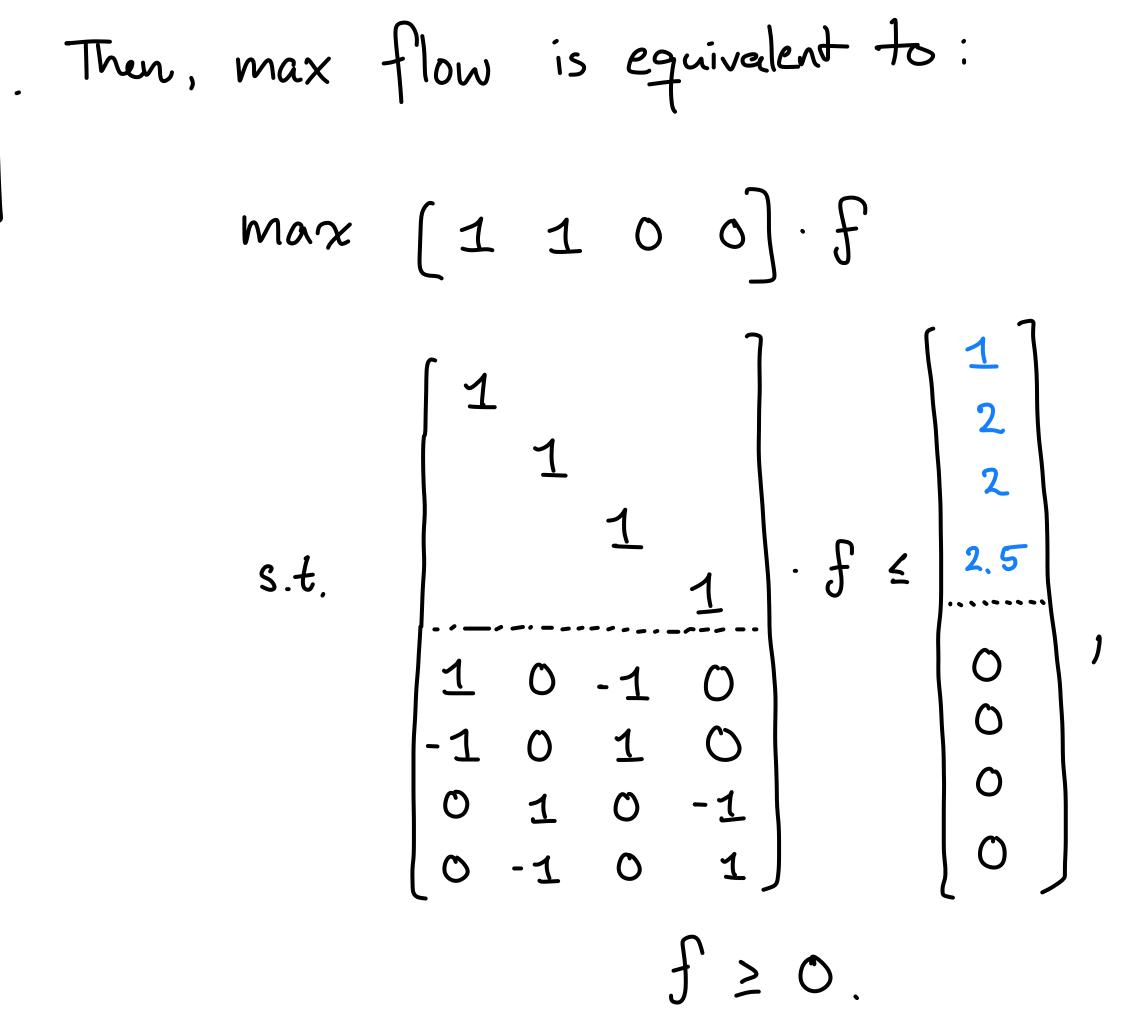
 $f_{sv} \leq 2$
 $f_{uv} \leq 2$
 $f_{uv} \leq 2$
 $f_{uv} \leq 2$
 $f_{uv} = 0$
 $f_{uv} = 0$
 $f_{sv} + f_{uv} + f_{ve} \leq 0$
 $f_{uv} = 0$
 $f_{uv} = 0$
 $f_{sv} + f_{uv} + f_{ve} \leq 0$

12

n.



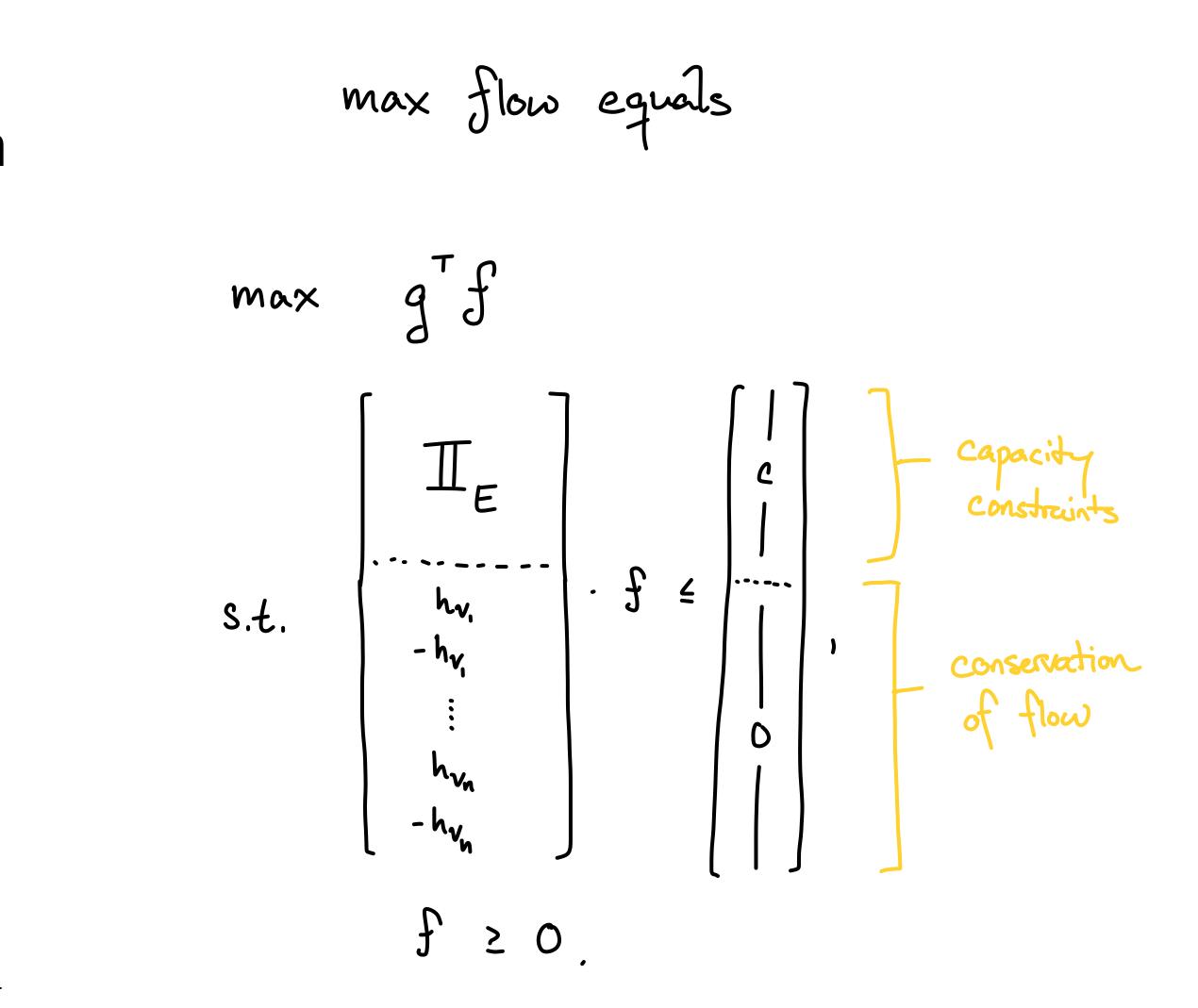
$$\begin{array}{c} \text{et} \quad f = \left[\begin{array}{c} f_{su} \\ f_{sv} \\ f_{uv} \\ f_{uv} \\ f_{v_{4}} \end{array} \right]$$



• Let (G, c, s, t) be a flow network. Then the max flow $f \in \mathbb{R}^E$ is the vector optimizing the following LP:

• Let
$$g = \mathbf{1}_{\{e \text{ out of } s\}}$$

• For each vertex $v \in V \setminus \{s, t\}$, let $h_v = + \mathbf{1}_{\{e \text{ out of } v\}} - \mathbf{1}_{\{e \text{ into } v\}}$

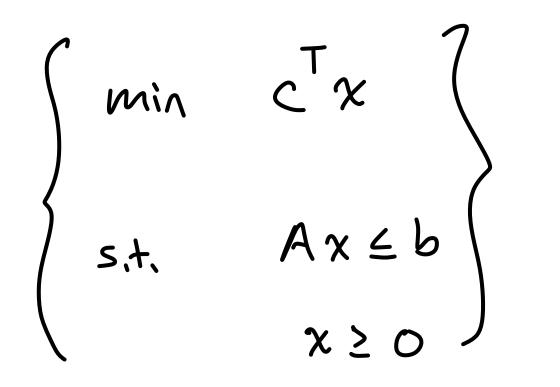


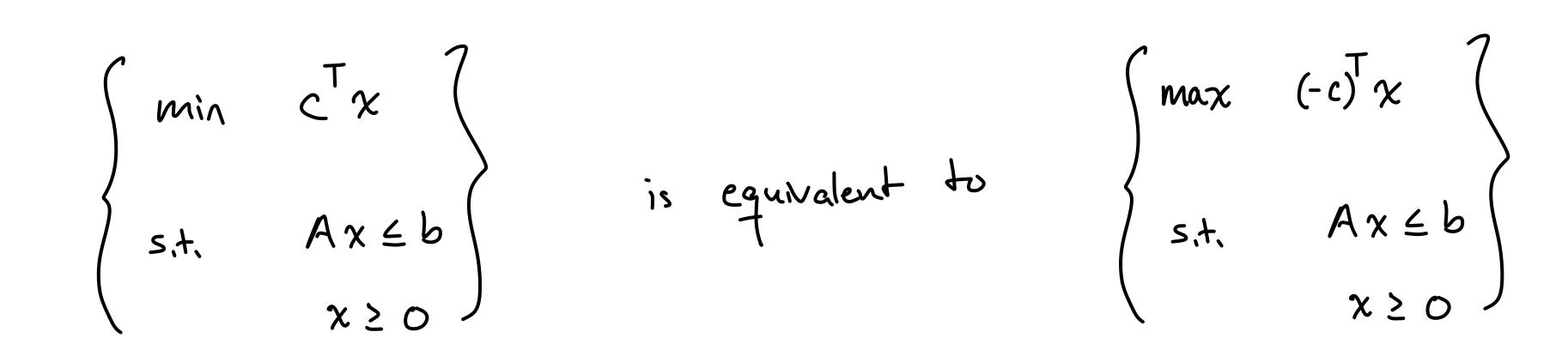
- Max flow on a graph with |V| = n, |E| = m is equivalent to a linear program over *m* variables and m + 2(n - 2) = O(m + n) constraints
- If we had a very fast algorithm for solving linear programs then it would imply a very fast algorithm for max flow.
- Second, since max flow is a special case of linear programs, the algorithms we discovered for max flow may inspire algorithms for LPs.
- We will see an algorithm for LPs in next lecture.

The value of expressing problems as LPs

- Due to the prevalence of LPs, many optimizations are known
- We know LPs can be solved in polynomial time
 - Makes writing down a problem as an LP a good first step
- Writing a problem as a linear program, can make a solution apparent
- Arguing correctness of an LP can be easier
- Applying duality (next!) can give a different perspective on the problem

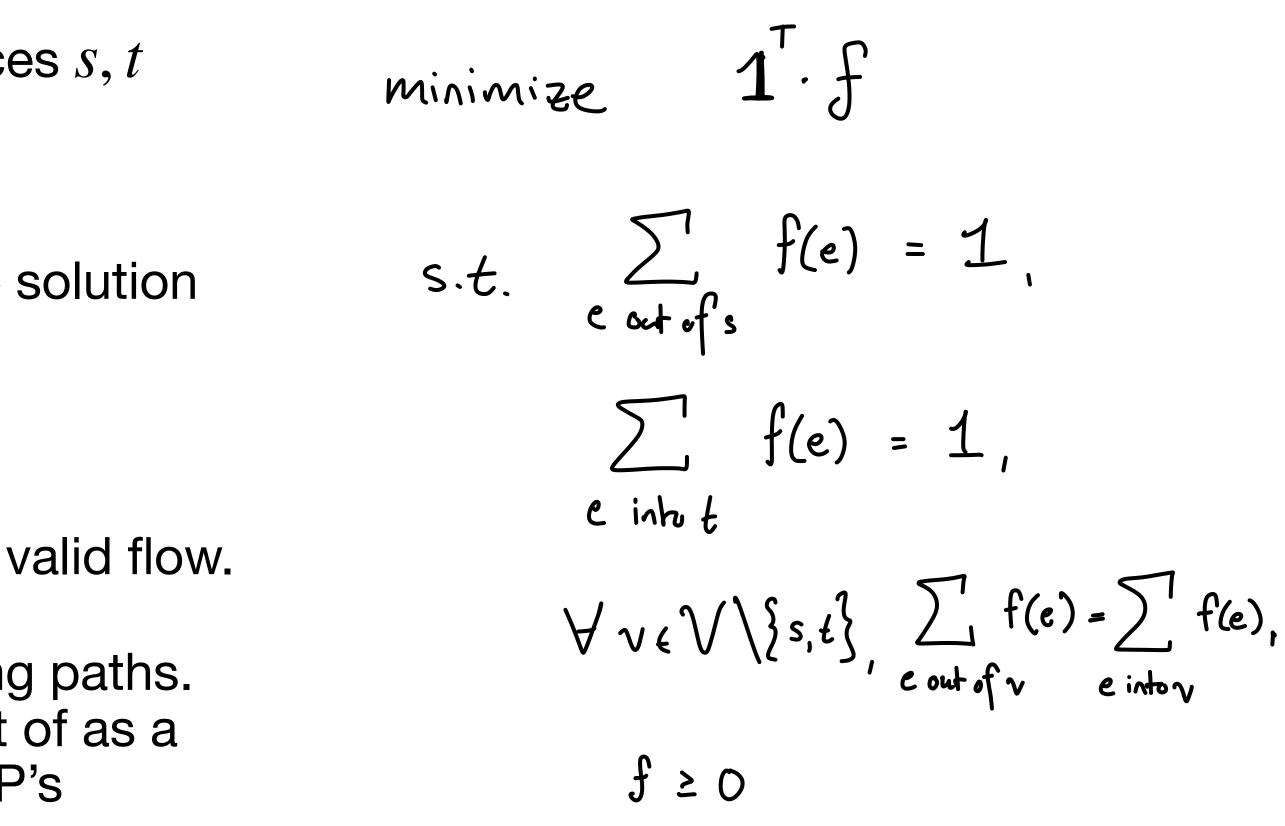
Minimization linear programs





Shortest paths as an LP

- Input: Directed graph G = (V, E) and vertices s, t
- Output: (Length) of shortest path $s \sim t$
- Claim: The length of the shortest path is the solution to the following "flow-like" LP.
- **Proof (sketch):**
- (\Rightarrow) : A path of length ℓ corresponds to a valid flow.
- (\Leftarrow) : A flow is the sum of $\leq m$ flows along paths. Since total flow is 1, the flow can be thought of as a probability distribution over paths. So, the LP's feasible solution is an expectation over paths.



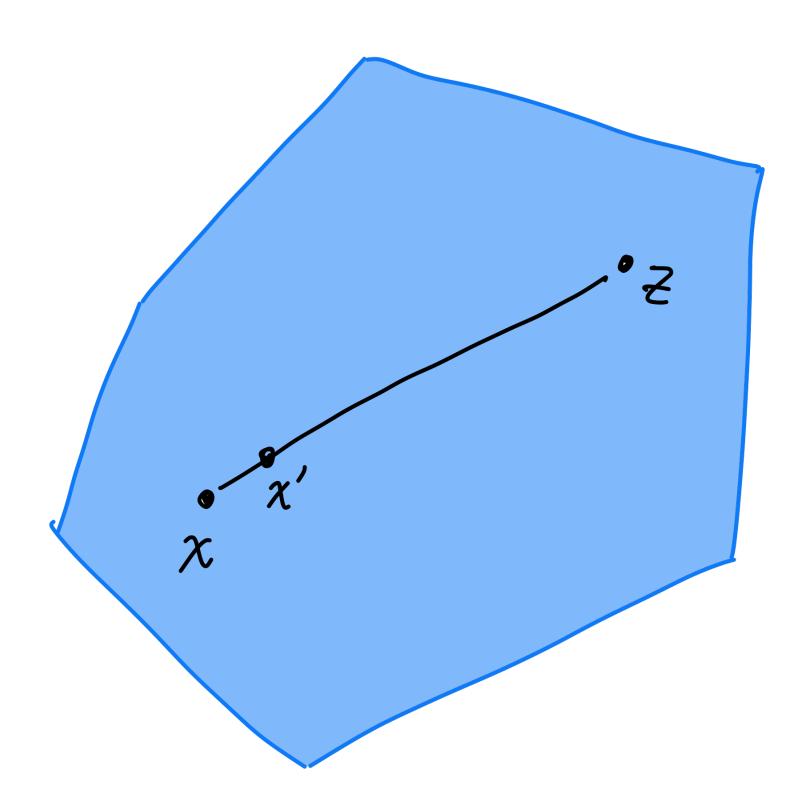
Linear programming feasibility

- Recall, the feasible region of a standard LP is $\Gamma = \{x : Ax \le b, x \ge 0\}$.
- **Definition:** The LP is *infeasible* if $\Gamma = \emptyset$.
- **Definition:** The LP is *unbounded* if $c^{\top}x$ can be arbitrarily large for some $x \in \Gamma$.

• Even just deciding if a LP is feasible or not, seems like a challenging problem.

Where are the optimums of LPs

- **Theorem:** If an optimum exists for an LP, it is a global optimum.
- **Proof:** Recall we are maximizing $c^{\top}x$ subject to $x \in \Gamma$ and Γ is convex.
 - If $c^{\top}x < c^{\top}z$ for $x, z \in \Gamma$, then x is not a global optimum.
 - Consider the line $\overline{xz} \in \Gamma$. Then $x' := x + \epsilon(z x) \in \Gamma$ for small $\epsilon > 0$ and
 - $c^{\top}x' = c^{\top}x + \epsilon c^{\top}(z x) > c^{\top}x$.
 - So x is not a local optimum.
 - This proves the contrapositive.



Convex polytope

- **Definition:** A vertex *z* of a convex polytope Γ is any point such that *z* is not the midpoint of any line segment $\overline{xy} \in \Gamma$ for $x \neq y$.
- **Remark:** If $v_1, ..., v_k$ are all the vertices of a convex polytope Γ , then $\Gamma = \operatorname{conv}(v_1, ..., v_k)$, the convex hull of the vertices.
- **Theorem:** If the optimum of a standard linear program is finite, then the optimum must be achieved at some vertex.

Convex polytope

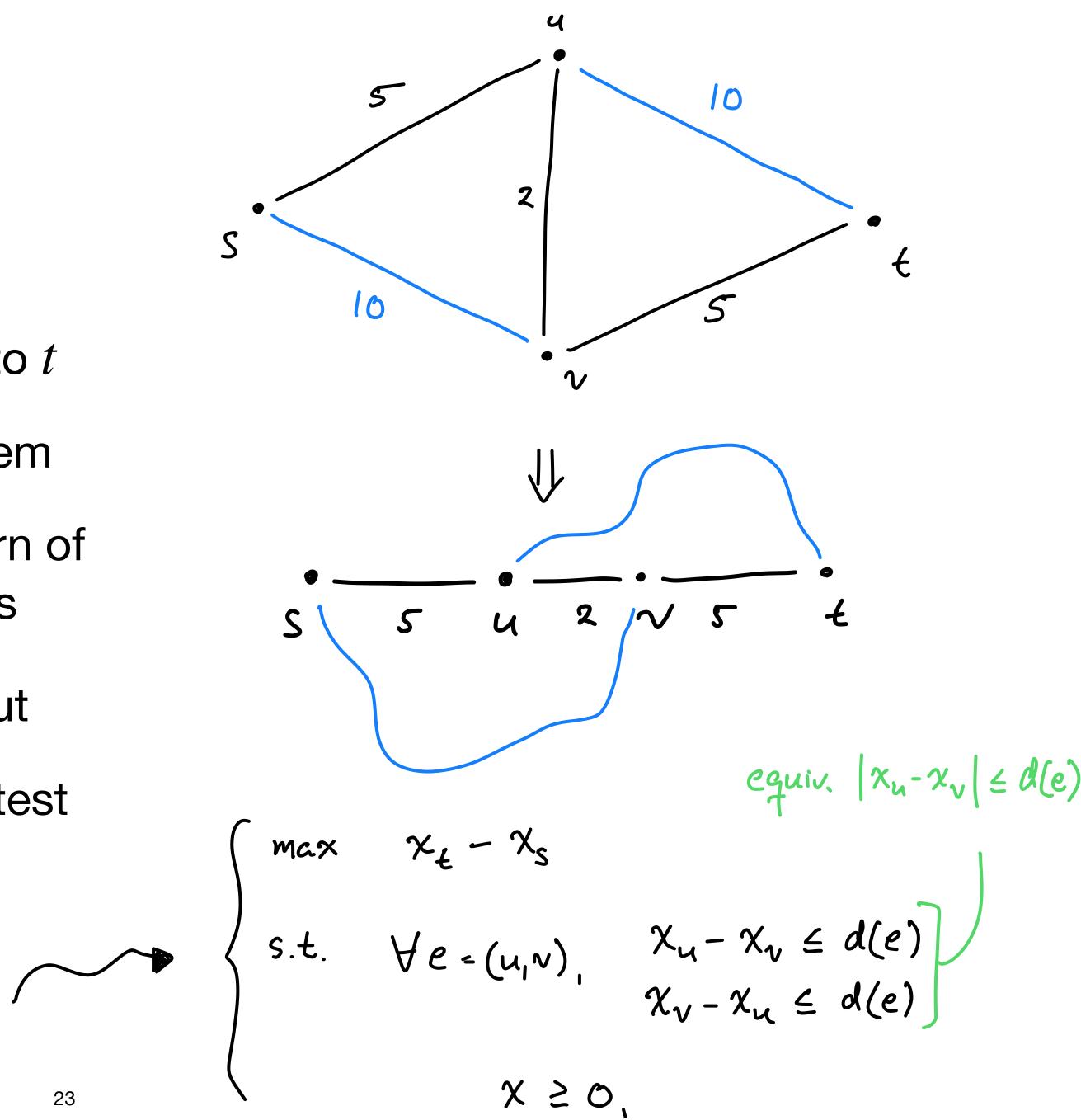
- must be achieved at some vertex.
- **Proof:** Let v_1, \ldots, v_k be the vertices of the feasible region I.
 - Then every point $x \in \Gamma$ equals $\sum_{i=1}^{k}$
 - By linearity of objective function,
 - $c^{\mathsf{T}}x = \sum_{i=1}^{k} \lambda_i c^{\mathsf{T}}v_i \leq \max_{i=1}^{k} c^{\mathsf{T}}v_i$
 - So one of the vertices must do better than the vertex x.

• Theorem: If the optimum of a standard linear program is finite, then the optimum

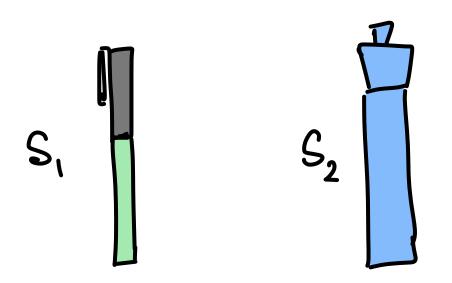
$$\sum_{i=1}^{k} \lambda_i v_i \text{ for } \lambda \ge 0 \text{ and } \sum_{i=1}^{k} \lambda_i = 1.$$

The string example Minimization as maximization

- Recall the shortest path problem from s to t
- It is easiest seen as a minimization problem
- Now, imagine each edge is a piece of yarn of length w(e) with knots tied at the vertices
 - Pull the yarn apart at s and t till it is taut
 - The strings that are taut form the shortest path from *s* to *t*
 - And yet pulling the yarn sounds like a maximization problem



- Consider a salesman who sells either pens or markers.
- He sells pens for S_1 and markers for S_2 .
- There are material restrictions due to labor, ink, and plastic.

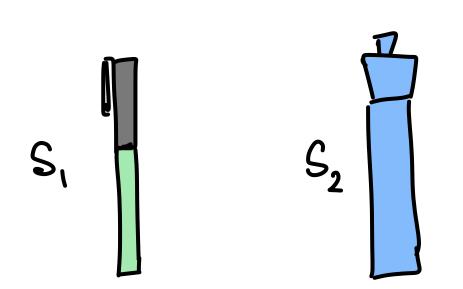


 $S_1 \chi_1 + S_2 \chi_2$ Max $L_1 x_1 + L_2 x_2 \leq L$ S.t. $I_1 x_1 + I_2 x_2 \leq I$ $P_1 \alpha_1 + P_2 \alpha_2 \leq P$ $\chi_1,\chi_2 \geq 0.$

- Now let's imagine there are market prices for the 3 materials: y_I , y_I , y_P .
- It is only economical to sell a pen if
 - The left hand side is the cost to make a pen
 - And the right hand side is the profit
 - Similarly, sell markers only if $y_L L_2 + y_I L_2 + y_P P_2 \ge S_2$.
- Therefore, it is in the market's interest to minimize the total available materials while the salesman can still sell his goods. This is the dual problem.

$$y_L L_1 + y_I I_1 + y_P I_P \ge S_1$$

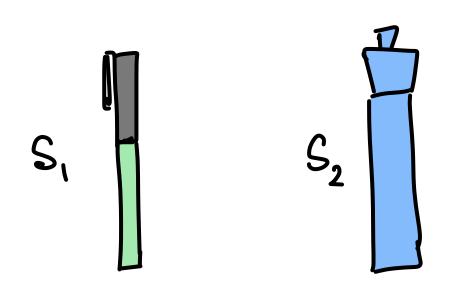
 $S_1 \chi_1 + S_2 \chi_2$ Max $L_1 x_1 + L_2 x_2 \leq L$ s.t. $I_1 x_1 + I_2 x_2 \leq I$ $P_1 \alpha_1 + P_2 \alpha_2 \leq P$ $\chi_1,\chi_2 \geq 0.$



min $\gamma_L L + \gamma_I I + \gamma_P P$ s.t. $\gamma_L L_1 + \gamma_I T_1 + \gamma_P P_1 \ge S_1$ $\gamma_L L_2 + \gamma_T I_2 + \gamma_P P_2 \geq S_2$ $\gamma_{c}, \gamma_{I}, \gamma_{P} \geq O$. γ_{P} YI \sim plastic ink labor

 $S_1 \chi_1 + S_2 \chi_2$ Max $L_1 x_1 + L_2 x_2 \leq L$ s.t. $I_1 x_1 + I_2 x_2 \leq I$ $P_1 \alpha_1 + P_2 \alpha_2 \leq P$

 $\chi_1,\chi_2 \geq 0.$



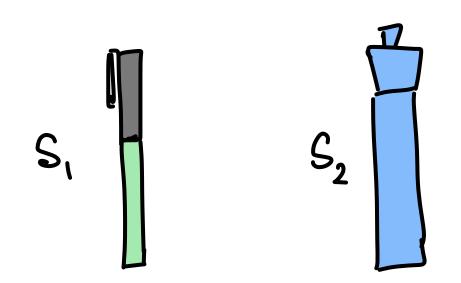
min $\gamma_L L + \gamma_I I + \gamma_P P$ s.t. $\gamma_L L_1 + \gamma_I T_1 + \gamma_P P_1 \ge S_1$ $\gamma_L L_2 + \gamma_T I_2 + \gamma_P P_2 \geq S_2$ $\gamma_{c}, \gamma_{I}, \gamma_{P} \geq O$. Yz Sz Sz plastic ink labor

 $S_1 \chi_1 + S_2 \chi_2$ Max $L_1 x_1 + L_2 x_2 \leq L$ s.t. $I_1 \chi_1 + I_2 \chi_2 \leq I$ $P_1 \alpha_1 + P_2 \alpha_2 \leq P$ $\chi_1,\chi_2 \geq 0.$ M S2 S,

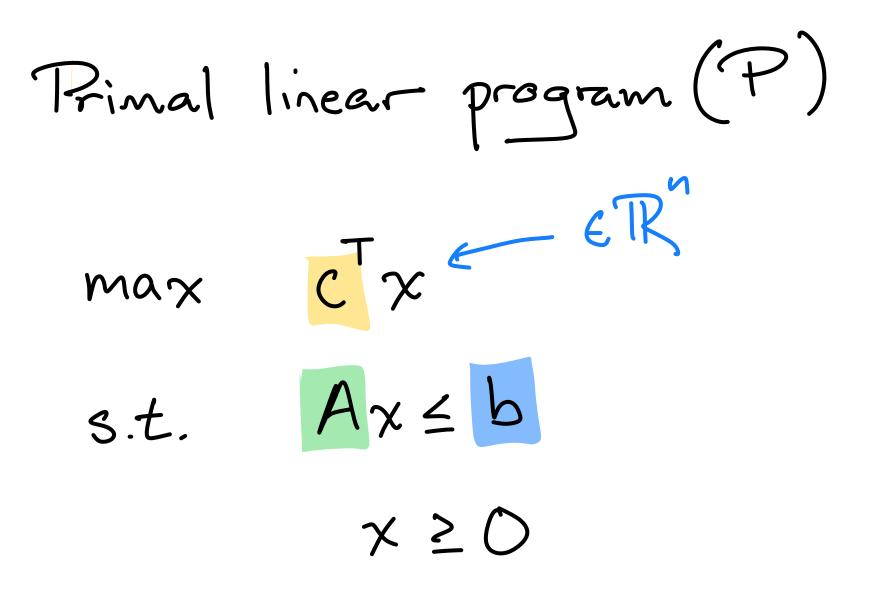
min $\gamma_L L + \gamma_I I + \gamma_P P$ s.t. $\gamma_L L_1 + \gamma_I T_1 + \gamma_P P_1 \ge S_1$ $\gamma_L L_2 + \gamma_T I_2 + \gamma_P P_2 \geq S_2$ $\gamma_{L}, \gamma_{I}, \gamma_{P} \geq O$ γ_{P} YI \sim plastic ink labor

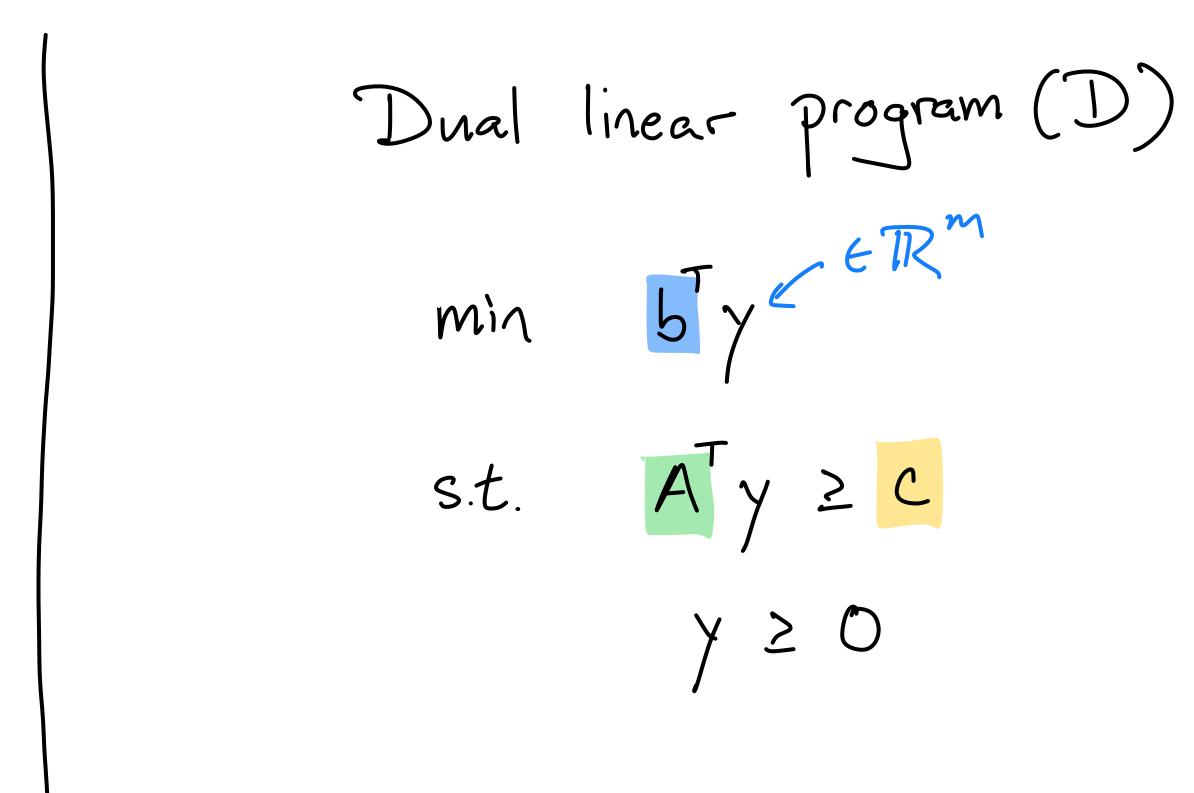
 $S_1 \chi_1 + S_2 \chi_2$ Max $L_1 x_1 + L_2 x_2 \leq L$ s.t. $I_1 x_1 + I_2 x_2 \leq I$ $P_1 \alpha_1 + P_2 \alpha_2 \leq P$

 $\chi_1,\chi_2 \geq 0.$



min $\gamma_L L + \gamma_T I + \gamma_P P$ s.t. $\gamma_L L_I + \gamma_I T_I + \gamma_P P_I \geq S_I$ $\gamma_L L_2 + \gamma_T I_2 + \gamma_P P_2 \geq S_2$ $\gamma_{L}, \gamma_{I}, \gamma_{P} \geq O$ YI YP plastic ink Clour





Linear programming duality (Weak duality)

- Theorem:
 - If $x \in \mathbb{R}^n$ is feasible for (\mathscr{P}) and $y \in \mathbb{R}^m$ is feasible for (\mathscr{D}) , then $c^{\mathsf{T}}x \leq y^{\mathsf{T}}Ax \leq b^{\mathsf{T}}y.$
 - If (\mathcal{P}) is unbounded, then (\mathcal{D}) is infeasible.
 - If (\mathcal{D}) is unbounded, then (\mathcal{P}) is infeasible.

• If $c^{\top}x = b^{\top}y$ for $x \in \mathbb{R}^n$ is feasible for (\mathscr{P}) and $y \in \mathbb{R}^m$ is feasible for (\mathscr{D}) , then x is an optimal solution for (\mathscr{P}) and y is an optimal solution for (\mathscr{D}) .

Proving weak duality

• Let's prove when both LPs are feasible, that $c^{+}x \leq y^{+}Ax \leq b^{+}y$. Since x is feasible for (P), $A_{x \leq b}, x \geq 0.$ (1) Since y is feasible for (D), $A^{T}y \ge C$, $\gamma \ge O$. (2)

Then, $\gamma^{T}(A_{x}) \leq \gamma^{T} \leq b_{\gamma} \langle \gamma \rangle$ $= b^{T} \gamma$ And, $C^{T}\chi \leq (A^{T}\gamma)\chi$ $= (\gamma^{T} A) x$ $= \gamma^T A x$.

Proving weak duality

- If (\mathcal{P}) is unbounded
 - Then for all $N \in \mathbb{N}$, there exists $x \in \Gamma$ such that $N < c^{\top}x$
- If (\mathcal{D}) is feasible,
 - then for any feasible y, $c^{\top}x \leq y^{\top}Ax$
- Together, this proves that $b^{\top}y$ is not finite, a contradiction.
- Therefore, if (\mathscr{P}) is unbounded, then (\mathscr{D}) is infeasible.
- Similarly, if (\mathcal{D}) is unbounded, then (\mathcal{P}) is infeasible.

$$\leq b^{\mathsf{T}} y.$$

Proving weak duality

- Lastly, since $c^{\top}x = b^{\top}y$ for some feasible *x* and feasible *y*,
- Assume for contradiction, there exists x' s.t. $c^{\top}x' > c^{\top}x = b^{\top}y$.
 - Then, $c^{\top}x' \leq y^{\top}Ax' \leq y^{\top}b$ by first argument in weak quality.
 - This is a contradiction, proving no x' exists. So x is optimal.
- Similar argument proves that y is also optimal.

Max flow/min cut is an example of duality

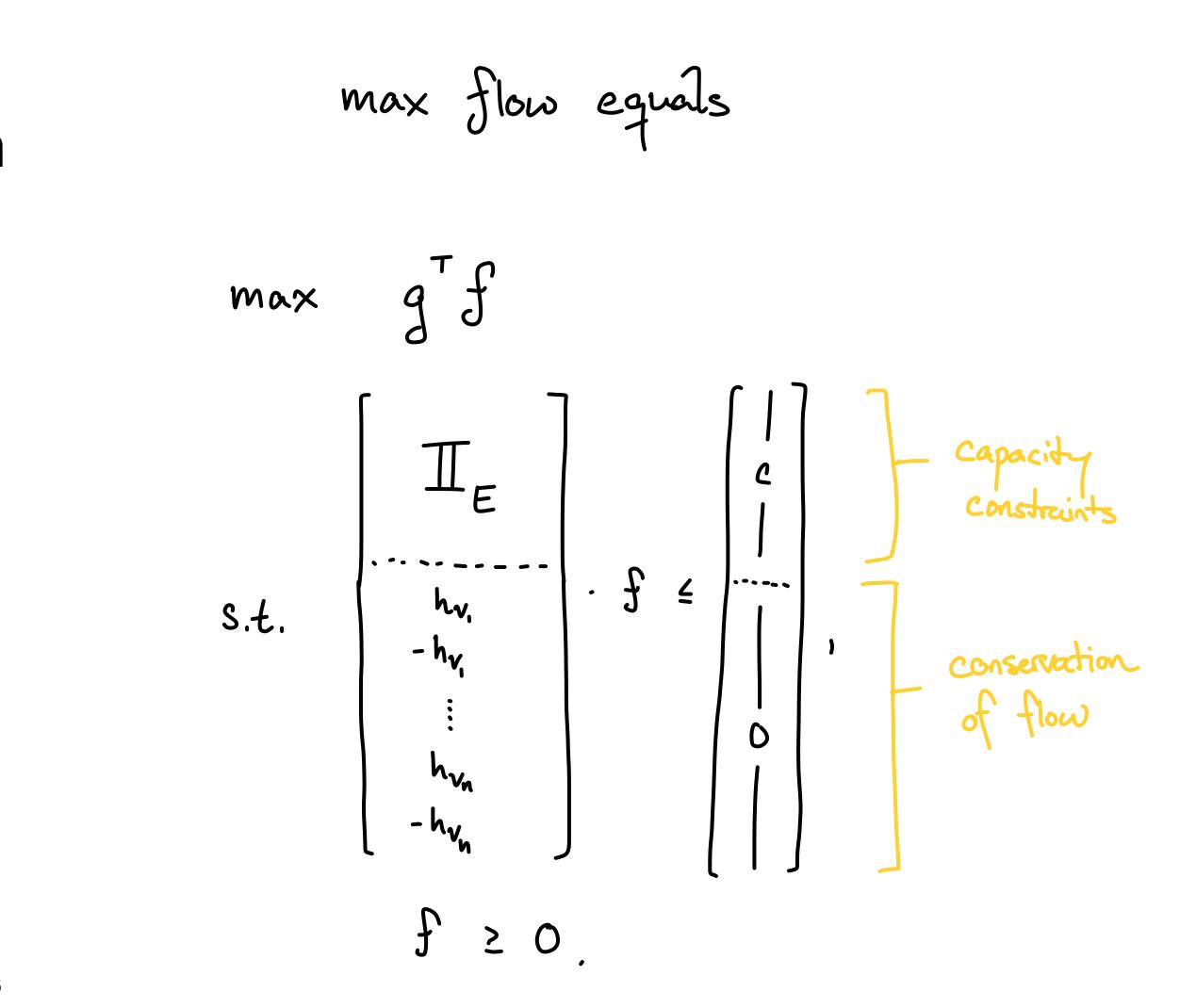
- We have actually seen this duality before!
- We saw that for any flow f and any s-t cut (S, T), that $v(f) \leq c(S, T)$.
- Max flow is an example of an LP.
 - And min cut is its dual LP.
 - We will formalize this on the next slide.
- which edges are saturated with flow.

Recall, our algorithm for min cut was to first solve max flow and then look at

• Let (G, c, s, t) be a flow network. Then the max flow $f \in \mathbb{R}^E$ is the vector optimizing the following LP:

• Let
$$g = \mathbf{1}_{\{e \text{ out of } s\}}$$

• For each vertex $v \in V \setminus \{s, t\}$, let $h_v = + \mathbf{1}_{\{e \text{ out of } v\}} - \mathbf{1}_{\{e \text{ into } v\}}$

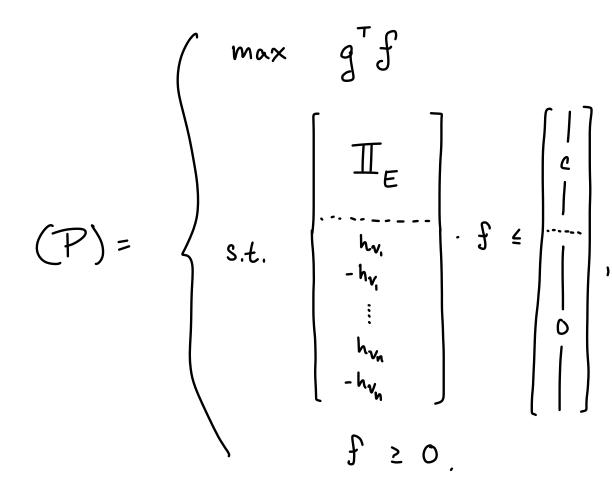


An observation about duality

- If the primal (\mathcal{P}) is an optimization with n variables and m equations,
 - then the dual (\mathcal{D}) is an optimization with *m* variables and *n* equations
- Lesson: If we are interested in computing the dual of an LP, its often easier to first find an equivalent LP that has few equations (even at the cost of many variables)
- Lesson: The *m* equations of the primal (\mathscr{P}) correspond to the *m* equations of the dual (\mathscr{D}). We should see this resemblance.

Min cut LP

- The trouble is that our max flow LP has m variables and m + 2n 2equations
 - This will yield an "unnatural" LP for min cut with m + 2n 2 equations
 - It will be hard to see that this LP is equivalent to the min cut problem



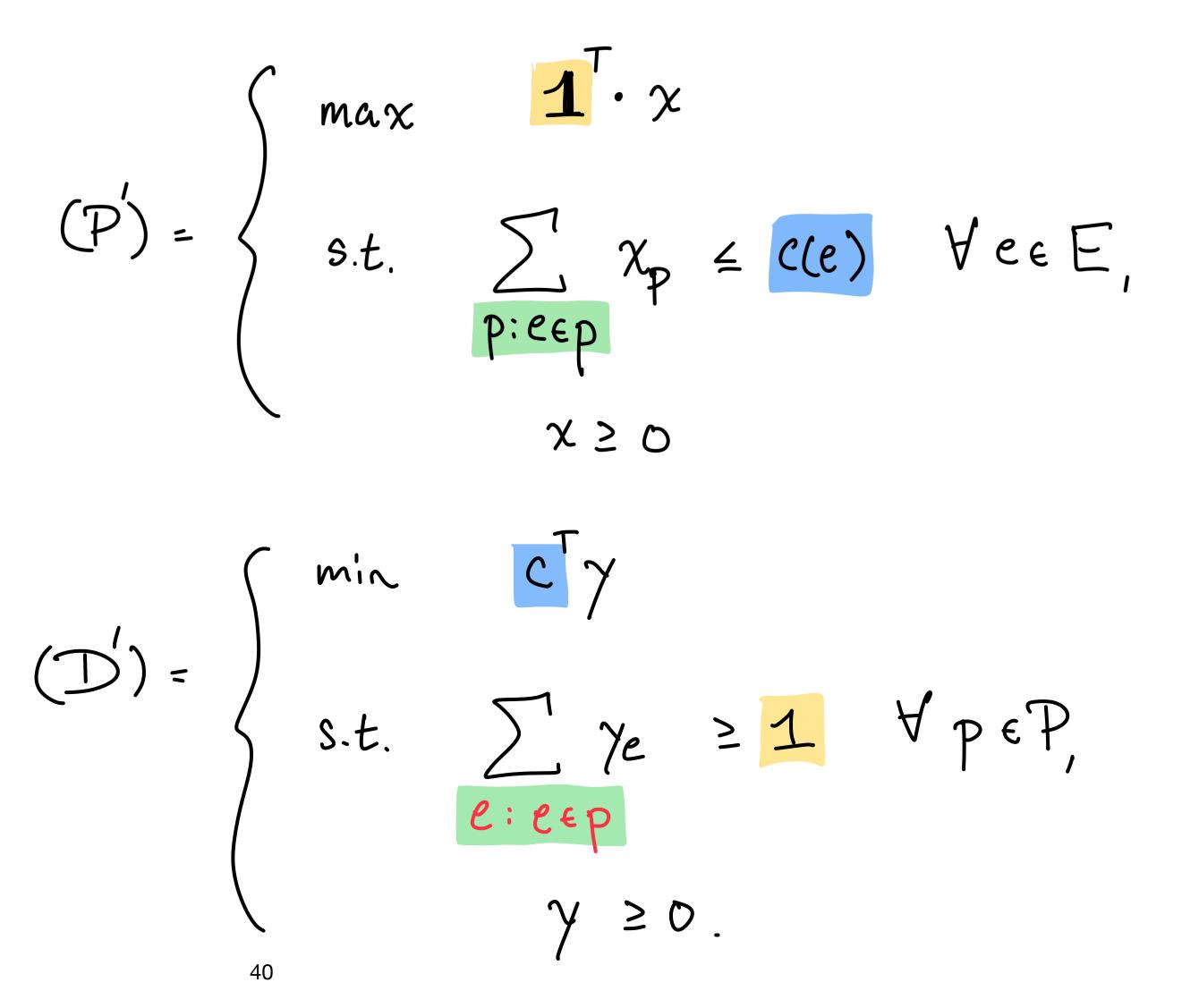
A different LP for max flow

- Let's come up with a different LP for max flow
- Let P be the set of paths $s \sim t$
 - | P | could exponential in the number of vertices
- The new LP (\mathscr{P}') will have |P|variables and *m* equations
- Therefore, its dual (\mathcal{D}') will have mvariables and |P| equations
- We will see that max flow $=(\mathscr{P})=(\mathscr{P}')=(\mathscr{D}')=\min \operatorname{cut}$

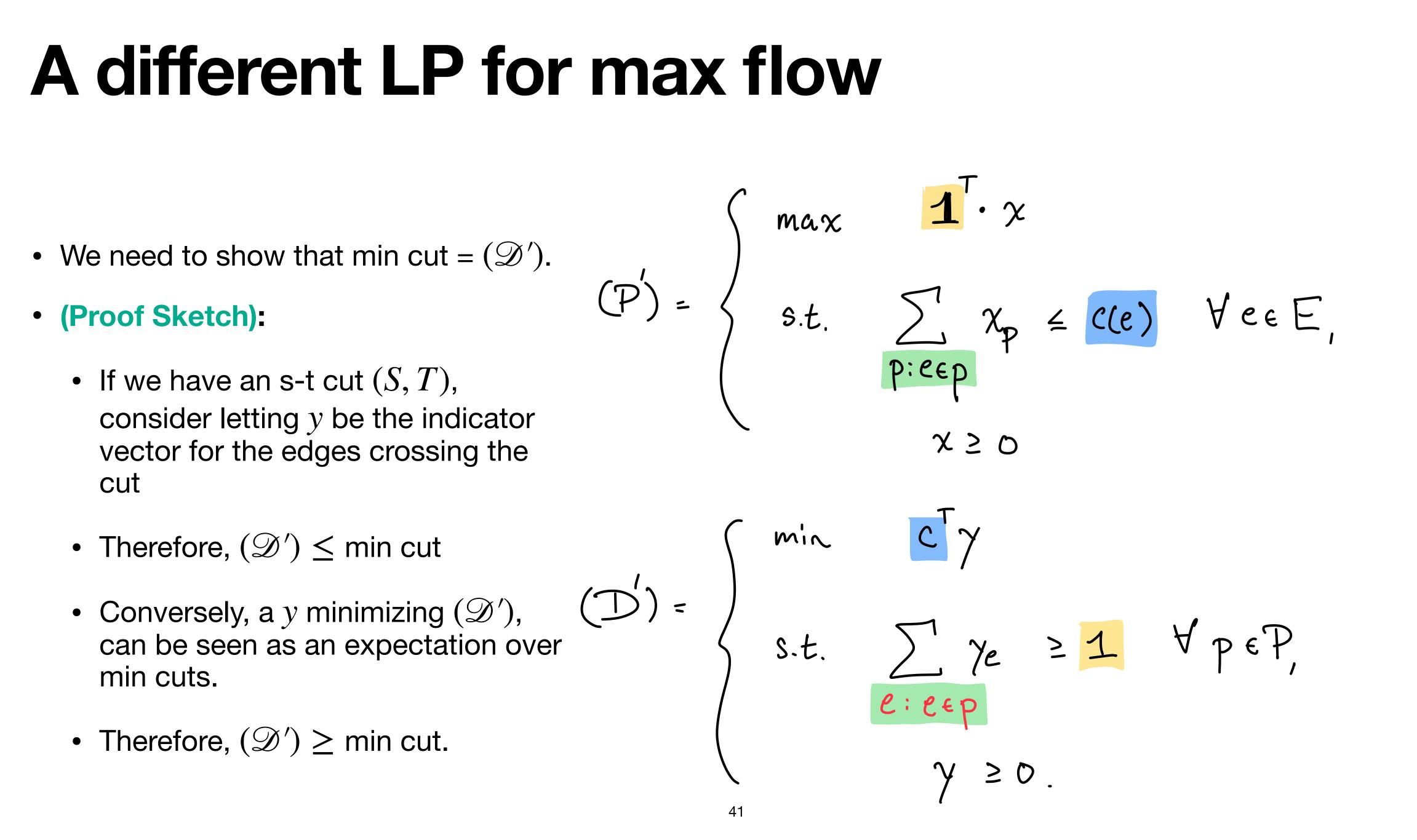
- For each path p: s not, let xp be the variable representing how much flow is to be sent along p.
- For any cage e, capacity constraints give $\sum \chi_e \leq c(e)$. p:eep Since eveny path already respects conservation of flow, we don't
 - need constraints corresponding to them.

A different LP for max flow

- Let's come up with a different LP for max flow
- Let P be the set of paths $s \sim t$
 - |*P*| could exponential in the number of vertices
- The new LP (\mathscr{P}') will have |P|variables and *m* equations
- Therefore, its dual (\mathcal{D}') will have mvariables and |P| equations
- We will see that max flow $=(\mathscr{P})=(\mathscr{P}')=(\mathscr{D}')=\min \operatorname{cut}$



- - Therefore, $(\mathcal{D}') \geq \min \text{cut.}$



Lessons from duality

- We reproved the max flow/min cut duality from the flow unit of this course
- Observation: Min cut does not have an intuitive poly-sized LP
 - However, it does have a m variable and |P| equations sized LP
 - Therefore, its has a dual (max flow) with |P| variables and m equations
 - Max flow also has a simple poly-sized LP and an efficient algorithm
- Intuitively, this is why we solve min cut by solving max flow and looking at saturated edges. It's sometimes algorithmically easier to solve a problem over its dual.

Theorems worth knowing

- Weak duality theorem
- **Theorem:** The dual of a dual is the original primal.
 - Proof is an exercise.
- time.
 - however, discuss algorithms for LPs.

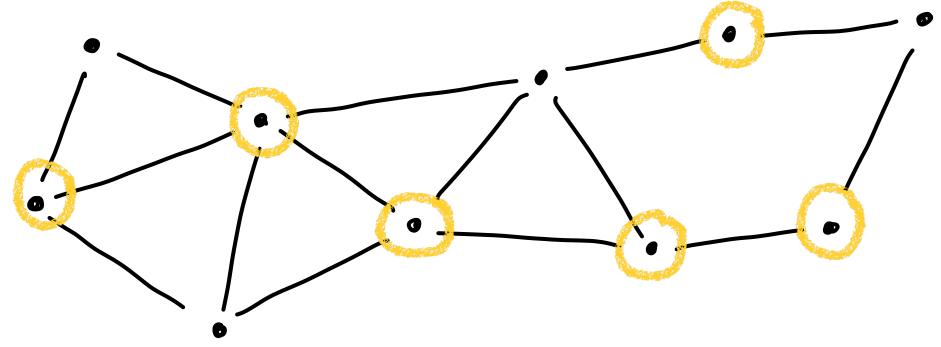
• Theorem: LPs of n variables and m equations can be solved in poly(n, m)

• We will not prove this in this course. Algorithm is quite complex. We will,

What's a problem LPs can't solve? Vertex cover

- Input: an undirected graph G = (V, E)
- Output: a *minimal* set S ⊆ V such that every edge contains at least one endpoint from S.
- There seems to be a pretty obvious LP for this problem.
 What goes wrong?

There is nothing ensuring that the optimal solution χ will be integer.

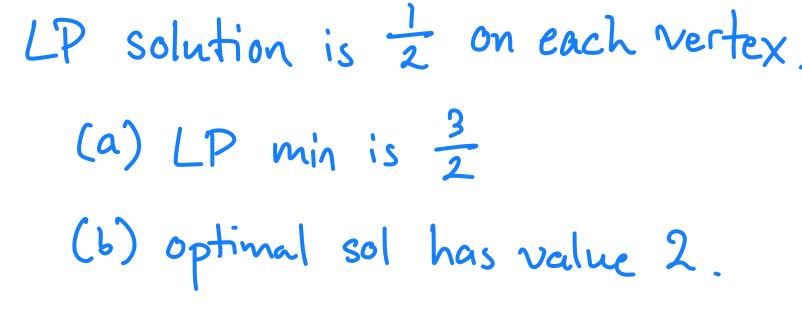


 $min \sum_{v \in V} \chi_v$ $X_{v} \in 1 \quad \forall v \in V$ s.t. $\chi_{u} + \chi_{v} \ge 1 \quad \forall e = (u, v) \in E$ $\chi \geq O$

What's a problem LPs can't solve?Vertex cover \mathcal{E}_{X} </

- Input: an undirected graph G = (V, E)
- Output: a *minimal* set S ⊆ V such that every edge contains at least one endpoint from S.
- There seems to be a pretty obvious LP for this problem.
 What goes wrong?

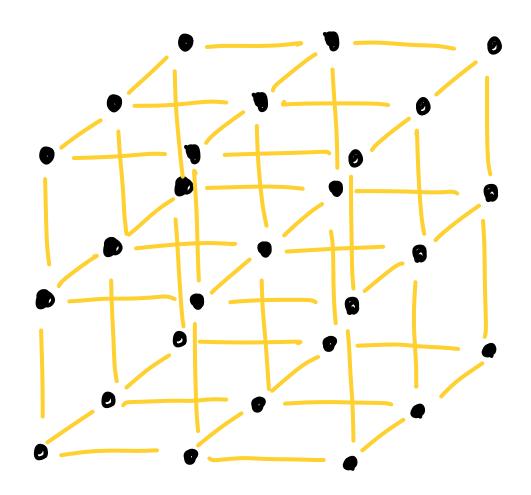
There is nothing ensuring that the optimal solution χ will be integer.



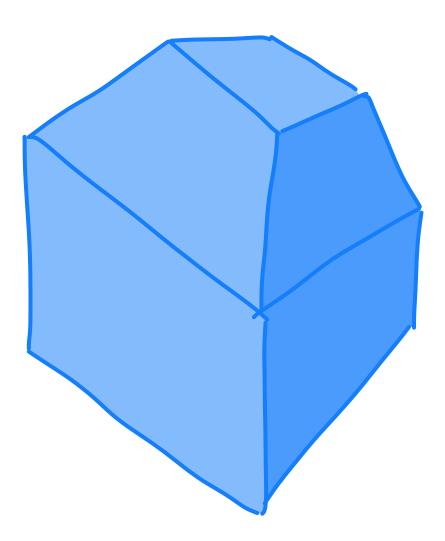
 $\begin{cases} \min \sum_{v \in V} \chi_v \\ \text{s.t.} \quad \chi_v \in 1 \quad \forall v \in V \\ \chi_u + \chi_v \ge 1 \quad \forall e = (u, v) \in E \\ \chi \ge 0 \end{cases}$

LP relaxation Vertex cover

- The LP we tried to write for vertex cover yields a fractional solution
- It is a "relaxation" of the vertex cover problem from integer to fractional solutions
 - In the relaxation we increase the feasible space from integer coordinates to include all solutions
 - Can be used to generate randomized approximation algorithms for vertex cover.



integer Coordinates



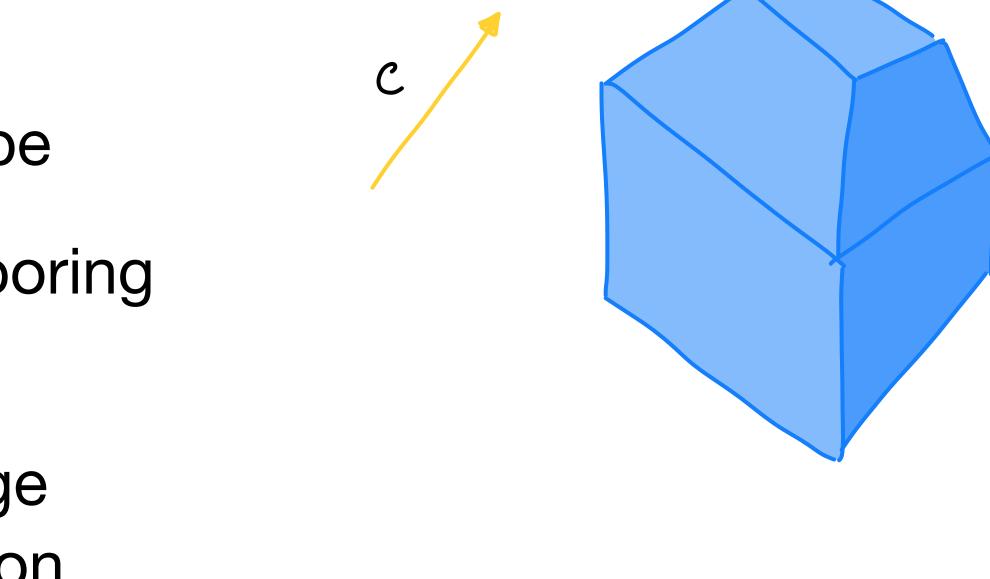
linear equations defining the Vertex cover

Max flow versus vertex cover

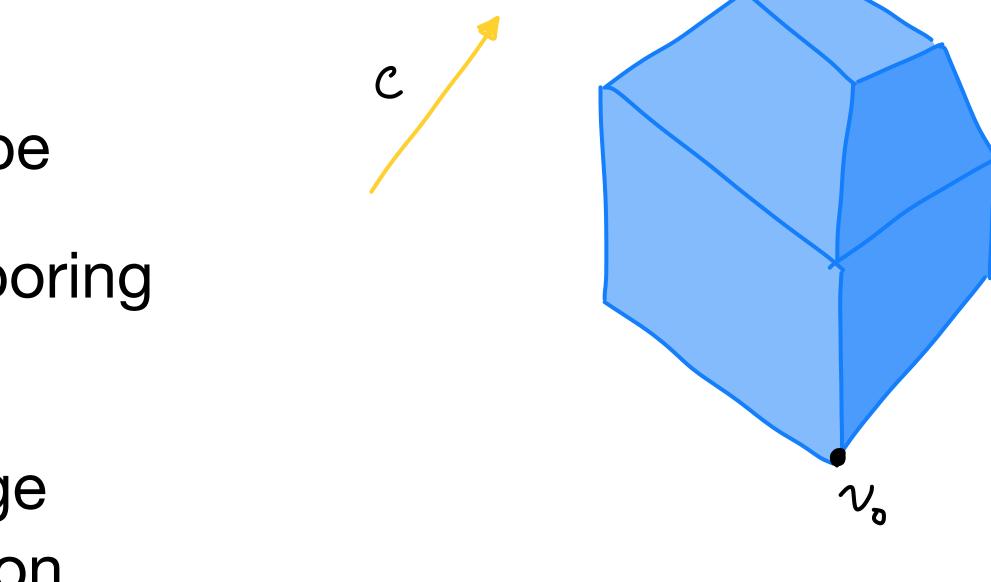
- Why can max flow natively guarantee integer solutions while vertex cover cannot?
- Recall, the optimum of an LP occurs at a vertex
 - The vertices of an LP correspond to points where linear equations are exactly satisfied
 - Turns out flow equations when exactly satisfied always have integer solutions
 - Quite a beautiful piece of mathematics
 - Too technical to warrant more time in this course

- Finally, we are going to cover an algorithm for solving LPs
- The algorithm is called the simplex method and it will be unique amongst the algorithms we study in this course
 - The simplex method runs incredibly fast in practice and is super useful
 - However, it can run in exponential time in the worst case even when there
 exist other polynomial time algorithms for the problem
- Later on, we will take a high-level glance at algorithms for solving LPs that are known to run in polynomial time

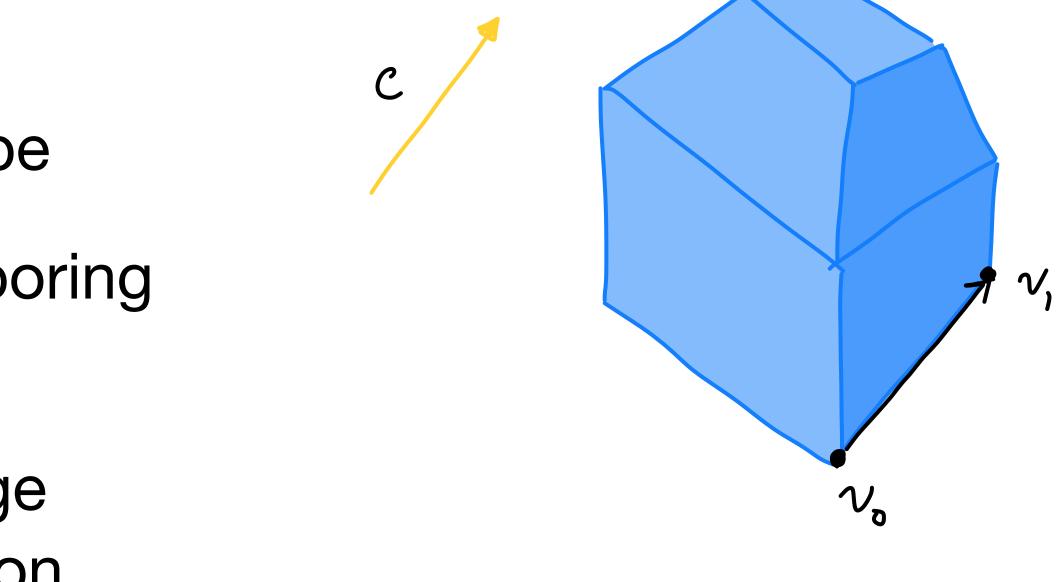
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



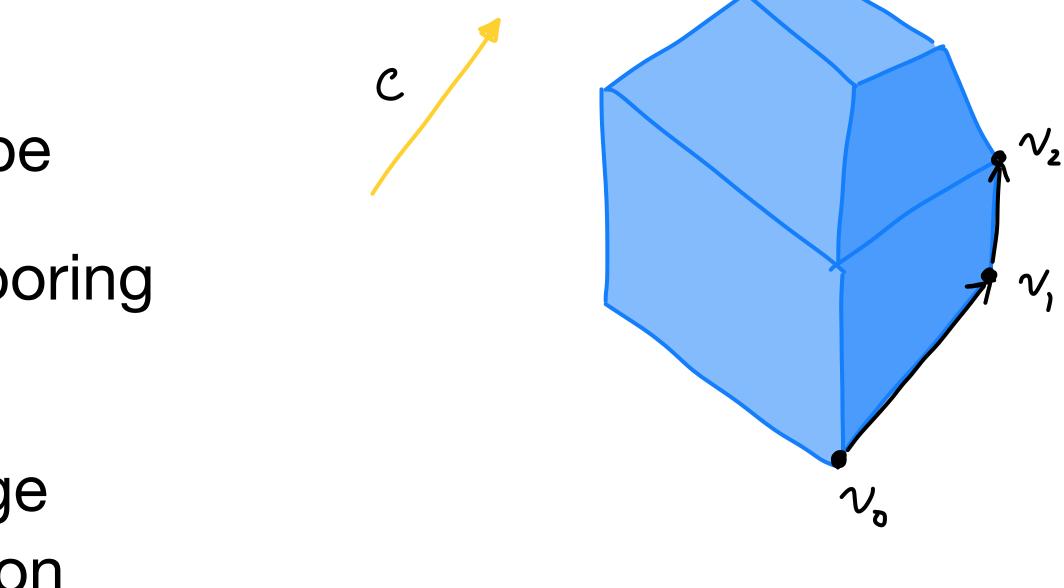
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



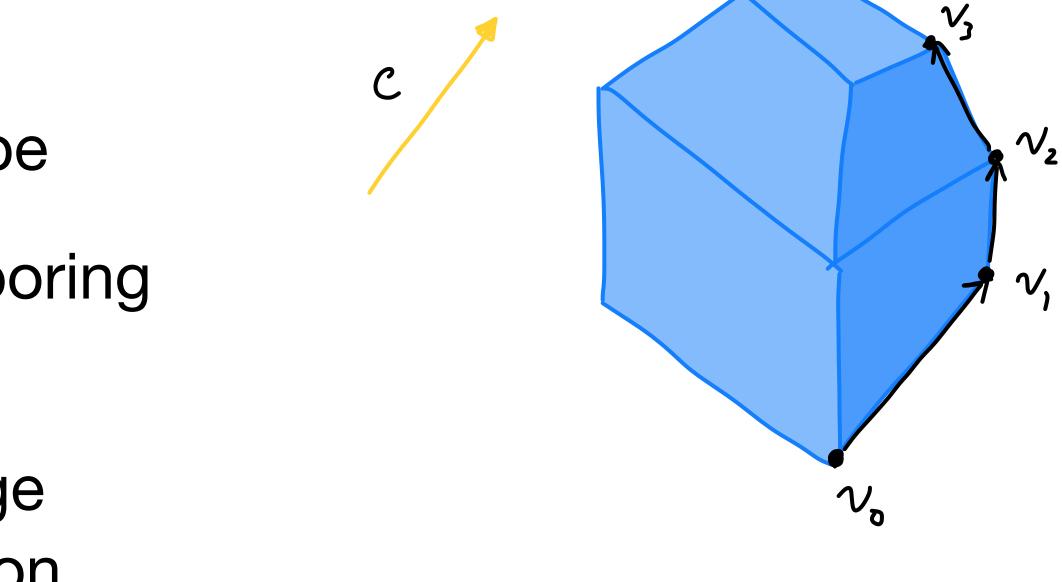
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



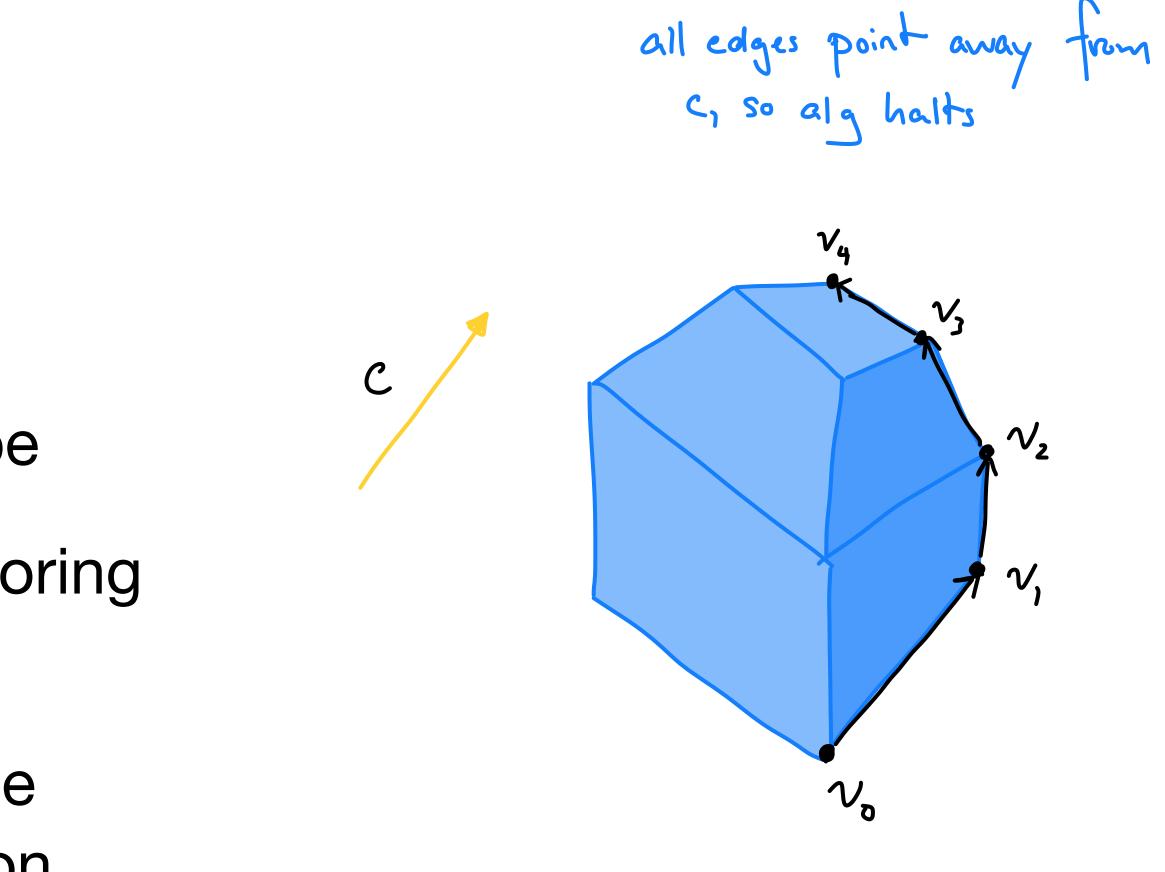
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



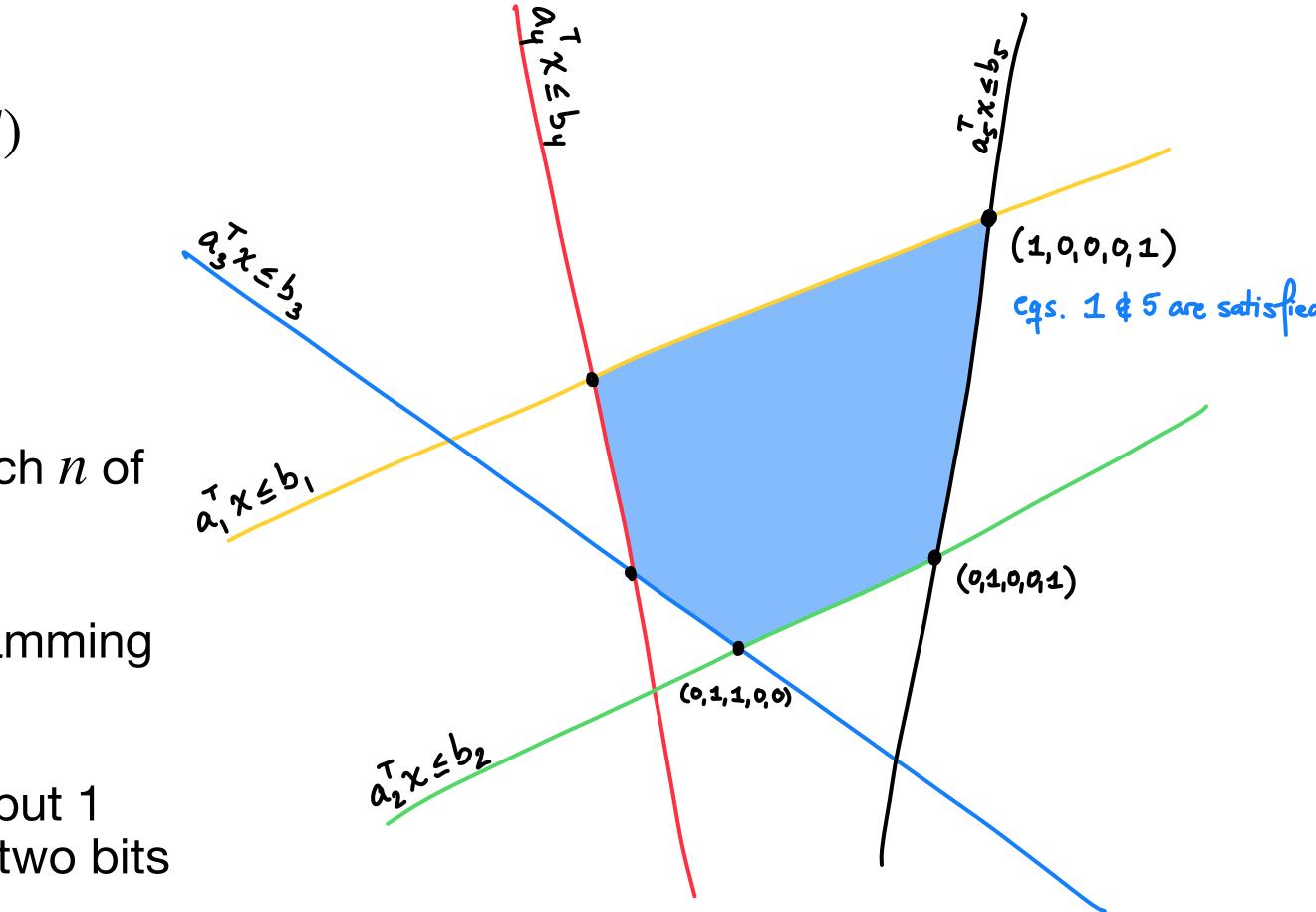
- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



- Simplex is a greedy algorithm
- High-level algorithm:
 - Start from a vertex of the polytope
 - In each step, move to the neighboring vertex that optimizes $c^{\mathsf{T}}x$
 - Equivalently, move along the edge pointing the most in the *c* direction



- We are effectively consider a graph G = (V, E)whose interior is the feasible region Γ .
- If we consider a feasible region defined by $\Gamma = \{Ax \le b\} \text{ for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^m$
 - Then, each vertex can be described by which *n* of the *m* equations are exactly satisfied
 - Describe vertices by points in $\{0,1\}^m$ of Hamming weight *n*
 - Two vertices are neighbors if they share all but 1 equation or equiv. the descriptions differ in two bits

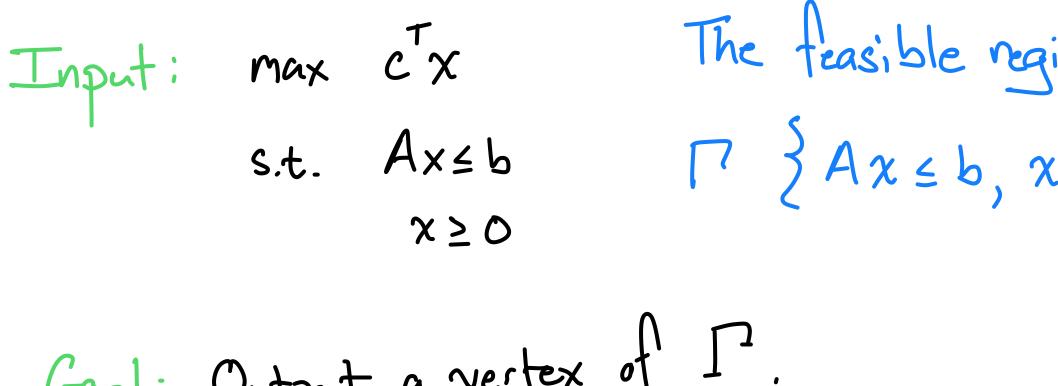


The simplex method **Digging deeper into the algorithm**

- Algorithm has two major steps:
 - Finding the first vertex (if one even exists as Γ could be infeasible)
 - Moving along an edge
- Moving along an edge:
 - Currently at a vertex described by n out of m equations
 - Can consider all possible vertices that share all but one equation
 - At most $n \cdot (m n)$ neighbors
 - Gives a polynomial time algorithm for moving along an edge

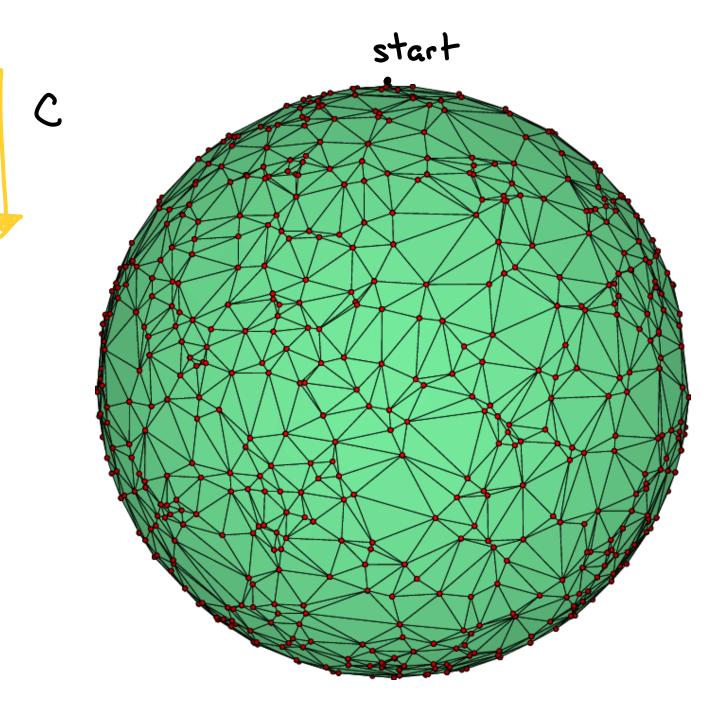
The simplex method **Digging deeper into the algorithm**

• Finding the first vertex

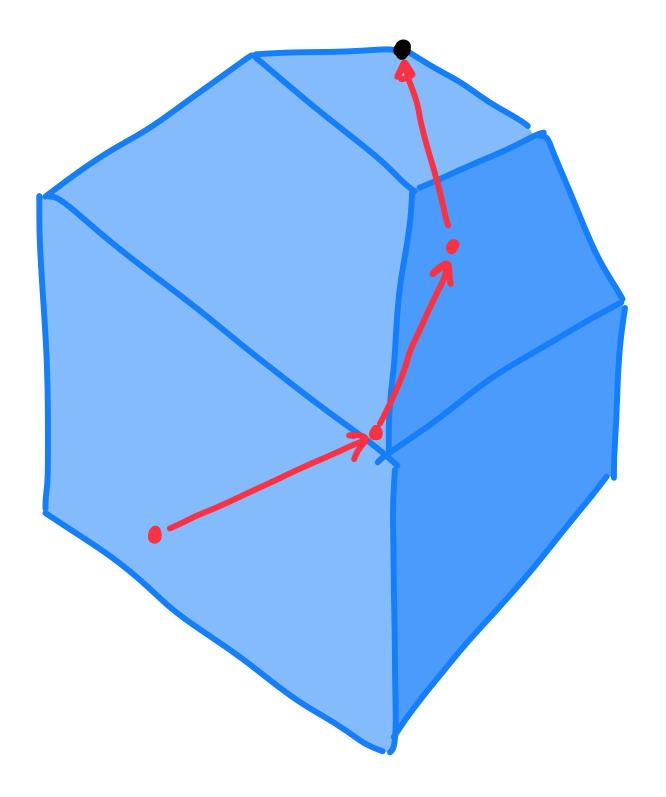


Input: max
$$cTx$$
 The feasible region is
s.t. $Ax \le b$ $P \ \{Ax \le b, x \ge 0\}$
 $x \ge 0$ $X \ge 0$
Goal: Output a vertex of P .
Notice that $(x=0, Z=b^{(n)})$ Since we know a vertex of $Z^{nd} LP$, we can find it's OPT of $Z^{nd} LP$.
Notice that $(x=0, Z=b^{(n)})$ $Z^{nd} LP$, we can find it's OPT of $Z^{nd} LP$.
 $x \ge 0$ Z^{n

- We have not given runtimes for the simplex method on purpose
 - The runtime can be exponential because the algorithm goes on the *outside* of the polytope which could have lots of vertices, edges, and facets
 - However, simplex runs remarkably well in practice
 - Is there a reconciliation? An algorithm that may do okay in practice but has guaranteed worst case runtime that is polynomial?



- Interior point:
 - Keep track of a point *inside* the polytope
 - Follow a trajectory through the interior to optimal solution
 - Solve a sequence of easier problems to approximate original LP, gradually becoming more accurate
 - Runs about as fast as simplex in practice and has guarantees on runtime
 - The "state-of-the-art" algorithm and a key step in optimal algorithms for problems like max flow

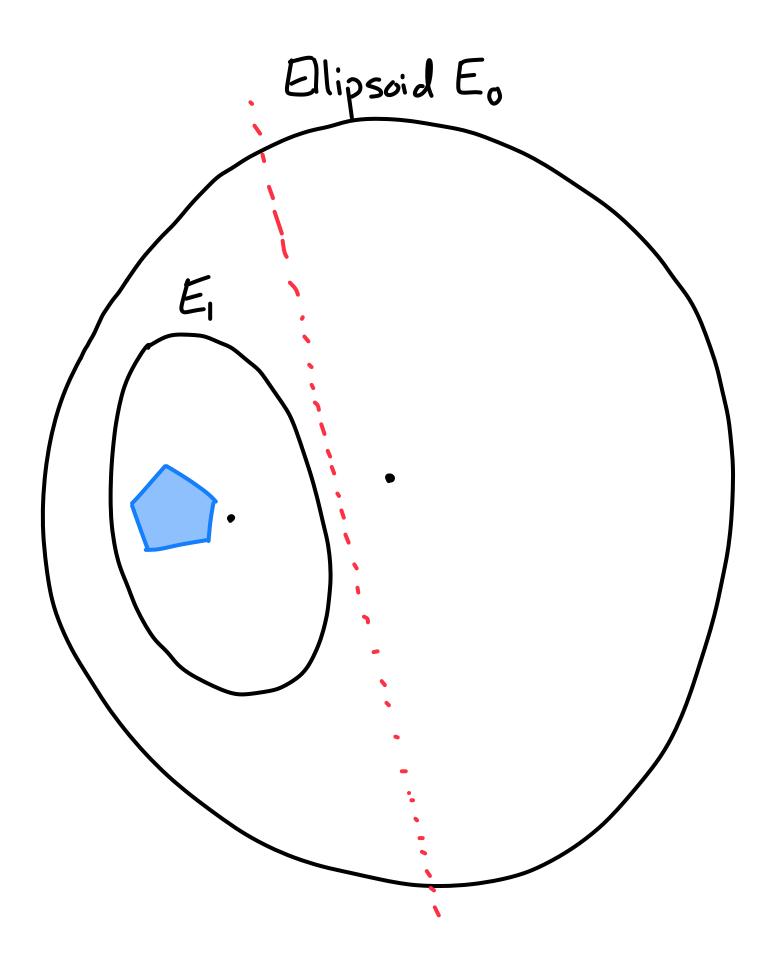


• Ellipsoid method:

- Ellipsoid Eo linear polytope to finding a feasible point in a different polytope Γ until the center of the ellipsoid must be in Γ Very slow in practice but first guaranteed algorithm for
- Using LP duality, convert problem from optimizing a • Generate a sequence of ellipsoids that always contain Γ • Each time find a smaller ellipsoid (by guaranteed ratio)
- solving LPs

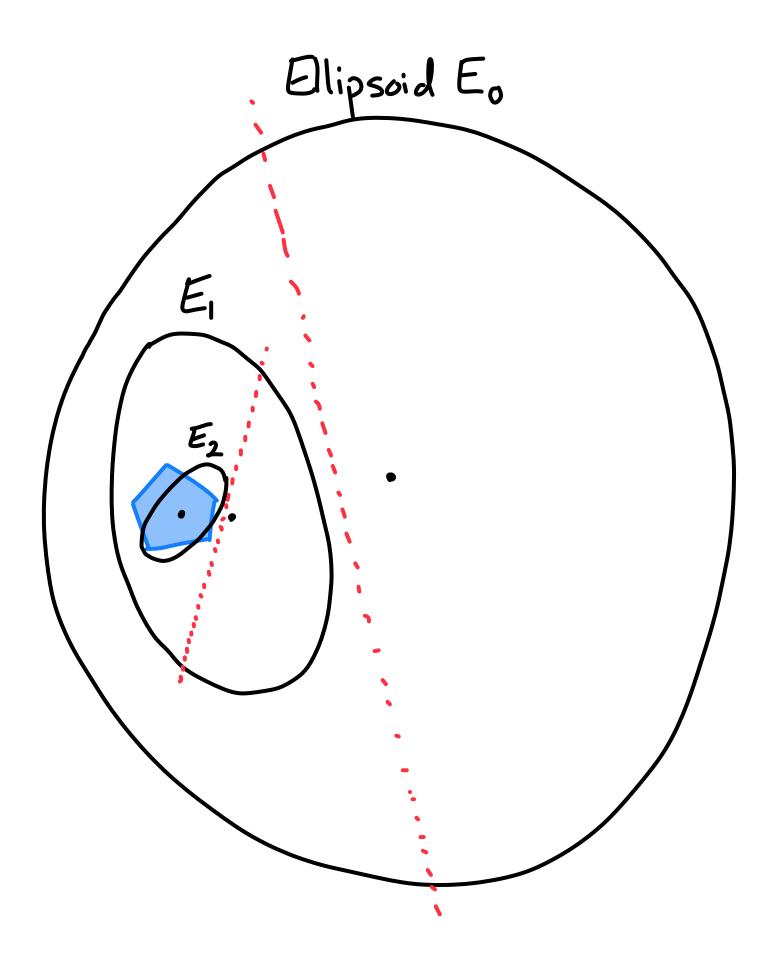
Ellipsoid method:

- Using LP duality, convert problem from optimizing a linear polytope to finding a feasible point in a different polytope Γ
- Generate a sequence of ellipsoids that always contain Γ
- Each time find a smaller ellipsoid (by guaranteed ratio) until the center of the ellipsoid must be in Γ
- Very slow in practice but first guaranteed algorithm for solving LPs



Ellipsoid method:

- Using LP duality, convert problem from optimizing a linear polytope to finding a feasible point in a different polytope Γ
- Generate a sequence of ellipsoids that always contain Γ
- Each time find a smaller ellipsoid (by guaranteed ratio) until the center of the ellipsoid must be in Γ
- Very slow in practice but first guaranteed algorithm for solving LPs



Zero-sum games