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Linear programming I
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Optimization problems

• Optimization problems are the most of the problems we have seen


• An optimization problem is described by some function  and a subset .


• Goal is to find  such that for all ,  — i.e.  is the argmax of  with respect to .


• Ex.: Knapsack. , , 


• Ex. Shortest path . 


• Ex. Greedy. , , 

f : Σ → ℝ Γ ⊆ Σ

x ∈ Γ y ∈ Γ f(x) ≥ f(y) x f Γ

Σ = {S : S ⊆ [n]} Γ = {S : weight(S) ≤ W} f(S) = value(S)

s → t Σ = {seq . of edges}, Γ = {paths}, f(p) = ∑e∈p w(e)

Σ = {job assignments} Γ = {non − overlapping} f(x) = value(x)
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Linear programming

• An optimization problem paradigm


• Both the optimization function  and feasible region  are linear.f Γ
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Linear algebra/geometry review
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Linear algebra/geometry review
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Convex polytope

• Definition: The following are equivalent.


• For  and , the set of  such that 
 is a convex polytope.


• Given a matrix  and a vector , the set of  such that 
 is a convex polytope.


• Given a set of points , the convex hull  is a 
convex polytope. A convex hull  is the intersection of all 
convex sets containing the points .

a1, …, am ∈ ℝn b1, …, bm ∈ ℝm x ∈ ℝn

a⊤
i x ≤ bi

A ∈ ℝm×n b ∈ ℝm x ∈ ℝn

Ax ≤ b

y1, …, yk ∈ ℝn conv(y1, …, yk)
conv(y1, …, yk)

y1, …, yk
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Meaning of convexity

• Definition:  is a convex region if for all , the line segment  
is contained in  — i.e. for .


• Definition: A function  is convex if  is 
a convex region.

F ⊆ ℝn x, y ∈ F xy
F λ ∈ [0,1], λx + (1 − λ)y ∈ F

f : ℝn → ℝ {(x, y) ∈ ℝn+1 : y ≥ f(x)}
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Optimizing a linear function
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Linear programming example
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Linear programming standard form
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Linear programming examples

• Some we have seen


• Max flow / min cut


• Shortest paths


• Some we have not


• Zero-sum games


• Linear regression


• Approximation algorithms for some -complete problems𝖭𝖯
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Max flow as a linear program
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Max flow as a linear program
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Max flow as a linear program

• Let  be a flow network. Then 
the max flow  is the vector 
optimizing the following LP:


• Let 


• For each vertex , let  
.

(G, c, s, t)
f ∈ ℝE

g = 1{e out of s}

v ∈ V∖{s, t}
hv = + 1{e out of v} − 1{e into v}
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Max flow as a linear program

• Max flow on a graph with  is equivalent to a linear program 
over  variables and  constraints


• If we had a very fast algorithm for solving linear programs then it would imply 
a very fast algorithm for max flow.


• Second, since max flow is a special case of linear programs, the algorithms 
we discovered for max flow may inspire algorithms for LPs.


• We will see an algorithm for LPs in next lecture.

|V | = n, |E | = m
m m + 2(n − 2) = O(m + n)
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The value of expressing problems as LPs

• Due to the prevalence of LPs, many optimizations are known


• We know LPs can be solved in polynomial time


• Makes writing down a problem as an LP a good first step


• Writing a problem as a linear program, can make a solution apparent


• Arguing correctness of an LP can be easier


• Applying duality (next!) can give a different perspective on the problem
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Minimization linear programs
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Shortest paths as an LP

• Input: Directed graph  and vertices 


• Output: (Length) of shortest path 


• Claim: The length of the shortest path is the solution 
to the following “flow-like” LP.


• Proof (sketch): 

•  A path of length  corresponds to a valid flow.


•  A flow is the sum of  flows along paths. 
Since total flow is 1, the flow can be thought of as a 
probability distribution over paths. So, the LP’s 
feasible solution is an expectation over paths. 

G = (V, E) s, t

s ↝ t

( ⇒ ) : ℓ

( ⇐ ) : ≤ m
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Linear programming feasibility

• Recall, the feasible region of a standard LP is .


• Definition: The LP is infeasible if .


• Definition: The LP is unbounded if  can be arbitrarily large for some 
.


• Even just deciding if a LP is feasible or not, seems like a challenging problem. 

Γ = {x : Ax ≤ b, x ≥ 0}

Γ = ∅

c⊤x
x ∈ Γ
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Where are the optimums of LPs

• Theorem: If an optimum exists for an LP, it is a global optimum.


• Proof: Recall we are maximizing  subject to  and  is 
convex.


• If  for , then  is not a global optimum.


• Consider the line . Then  for 
small  and


• .


• So  is not a local optimum.


• This proves the contrapositive.

c⊤x x ∈ Γ Γ

c⊤x < c⊤z x, z ∈ Γ x

xz ∈ Γ x′ := x + ϵ(z − x) ∈ Γ
ϵ > 0

c⊤x′ = c⊤x + ϵc⊤(z − x) > c⊤x

x
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Convex polytope

• Definition: A vertex  of a convex polytope  is any point such that  is not 
the midpoint of any line segment  for .


• Remark: If  are all the vertices of a convex polytope , then 
, the convex hull of the vertices.


• Theorem: If the optimum of a standard linear program is finite, then the 
optimum must be achieved at some vertex.

z Γ z
xy ∈ Γ x ≠ y

v1, …, vk Γ
Γ = conv(v1, …, vk)
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Convex polytope

• Theorem: If the optimum of a standard linear program is finite, then the optimum 
must be achieved at some vertex.


• Proof: Let  be the vertices of the feasible region .


• Then every point  equals  for  and .


• By linearity of objective function,


• 


• So one of the vertices must do better than the vertex .

v1, …, vk Γ

x ∈ Γ ∑k
i=1 λivi λ ≥ 0 ∑k

i=1 λi = 1

c⊤x = ∑k
i=1 λic⊤vi ≤ maxk

i=1 c⊤vi

x
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The string example
Minimization as maximization

• Recall the shortest path problem from  to 


• It is easiest seen as a minimization problem


• Now, imagine each edge is a piece of yarn of 
length  with knots tied at the vertices


• Pull the yarn apart at  and  till it is taut


• The strings that are taut form the shortest 
path from  to 


• And yet pulling the yarn sounds like a 
maximization problem

s t

w(e)

s t

s t
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Linear program duality

• Consider a salesman who 
sells either pens or markers.


• He sells pens for  and 
markers for .


• There are material restrictions 
due to labor, ink, and plastic.

S1
S2
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Linear programming duality

• Now let’s imagine there are market prices for the 3 materials: .


• It is only economical to sell a pen if 


• The left hand side is the cost to make a pen


• And the right hand side is the profit


• Similarly, sell markers only if .


• Therefore, it is in the market’s interest to minimize the total available 
materials while the salesman can still sell his goods. This is the dual problem.

yL, yI, yP

yLL1 + yII1 + yPIP ≥ S1

yLL2 + yII2 + yPP2 ≥ S2
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Linear programming duality
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Linear programming duality
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Linear programming duality
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Linear programming duality
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Linear programming duality
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Linear programming duality
(Weak duality)

• Theorem:  

• If  is feasible for  and  is feasible for , then 
.


• If  is unbounded, then  is infeasible.


• If  is unbounded, then  is infeasible.


• If  for  is feasible for  and  is feasible for , 
then  is an optimal solution for  and  is an optimal solution for .  

x ∈ ℝn (𝒫) y ∈ ℝm (𝒟)
c⊤x ≤ y⊤Ax ≤ b⊤y

(𝒫) (𝒟)

(𝒟) (𝒫)

c⊤x = b⊤y x ∈ ℝn (𝒫) y ∈ ℝm (𝒟)
x (𝒫) y (𝒟)
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Proving weak duality

• Let’s prove when both LPs are feasible, that .c⊤x ≤ y⊤Ax ≤ b⊤y
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Proving weak duality

• If  is unbounded


• Then for all , there exists  such that 


• If  is feasible, 


• then for any feasible , .


• Together, this proves that  is not finite, a contradiction.


• Therefore, if  is unbounded, then  is infeasible.


• Similarly, if  is unbounded, then  is infeasible.

(𝒫)

N ∈ ℕ x ∈ Γ N < c⊤x

(𝒟)

y c⊤x ≤ y⊤Ax ≤ b⊤y

b⊤y

(𝒫) (𝒟)

(𝒟) (𝒫)
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Proving weak duality

• Lastly, since  for some feasible  and feasible ,


• Assume for contradiction, there exists  s.t. .


• Then,  by first argument in weak quality.


• This is a contradiction, proving no  exists. So  is optimal.


• Similar argument proves that  is also optimal.

c⊤x = b⊤y x y

x′ c⊤x′ > c⊤x = b⊤y

c⊤x′ ≤ y⊤Ax′ ≤ y⊤b

x′ x

y
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Max flow/min cut is an example of duality

• We have actually seen this duality before!


• We saw that for any flow  and any s-t cut , that .


• Max flow is an example of an LP.


• And min cut is its dual LP.


• We will formalize this on the next slide.


• Recall, our algorithm for min cut was to first solve max flow and then look at 
which edges are saturated with flow.

f (S, T) v( f ) ≤ c(S, T)
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Max flow as a linear program

• Let  be a flow network. Then 
the max flow  is the vector 
optimizing the following LP:


• Let 


• For each vertex , let  
.

(G, c, s, t)
f ∈ ℝE

g = 1{e out of s}

v ∈ V∖{s, t}
hv = + 1{e out of v} − 1{e into v}
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An observation about duality

• If the primal  is an optimization with  variables and  equations, 


• then the dual  is an optimization with  variables and  equations


• Lesson: If we are interested in computing the dual of an LP, its often easier to first 
find an equivalent LP that has few equations (even at the cost of many variables)


• Lesson: The  equations of the primal  correspond to the  equations of the 
dual . We should see this resemblance.


•

(𝒫) n m

(𝒟) m n

m (𝒫) m
(𝒟)
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Min cut LP

• The trouble is that our max flow LP has  variables and  
equations


• This will yield an “unnatural” LP for min cut with  equations


• It will be hard to see that this LP is equivalent to the min cut problem

m m + 2n − 2

m + 2n − 2
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A different LP for max flow

• Let’s come up with a different LP for 
max flow


• Let  be the set of paths 


•  could exponential in the 
number of vertices


• The new LP  will have  
variables and  equations


• Therefore, its dual  will have  
variables and  equations


• We will see that max flow 
min cut

P s ↝ t

|P |

(𝒫′ ) |P |
m

(𝒟′ ) m
|P |

= (𝒫) = (𝒫′ ) = (𝒟′ ) =
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A different LP for max flow

• Let’s come up with a different LP for 
max flow


• Let  be the set of paths 


•  could exponential in the 
number of vertices


• The new LP  will have  
variables and  equations


• Therefore, its dual  will have  
variables and  equations


• We will see that max flow 
min cut

P s ↝ t

|P |

(𝒫′ ) |P |
m

(𝒟′ ) m
|P |

= (𝒫) = (𝒫′ ) = (𝒟′ ) =
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A different LP for max flow

• We need to show that min cut = . 


• (Proof Sketch):


• If we have an s-t cut , 
consider letting  be the indicator 
vector for the edges crossing the 
cut


• Therefore, min cut


• Conversely, a  minimizing , 
can be seen as an expectation over 
min cuts. 


• Therefore, min cut.

(𝒟′ )

(S, T)
y

(𝒟′ ) ≤

y (𝒟′ )

(𝒟′ ) ≥
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Lessons from duality

• We reproved the max flow/min cut duality from the flow unit of this course


• Observation: Min cut does not have an intuitive poly-sized LP


• However, it does have a  variable and  equations sized LP


• Therefore, its has a dual (max flow) with variables and  equations


• Max flow also has a simple poly-sized LP and an efficient algorithm


• Intuitively, this is why we solve min cut by solving max flow and looking at 
saturated edges. It’s sometimes algorithmically easier to solve a problem over 
its dual.

m |P |

|P | m
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Theorems worth knowing

• Weak duality theorem 

• Theorem: The dual of a dual is the original primal.


• Proof is an exercise.


• Theorem: LPs of  variables and  equations can be solved in  
time.


• We will not prove this in this course. Algorithm is quite complex. We will, 
however, discuss algorithms for LPs.

n m poly(n, m)
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What’s a problem LPs can’t solve?
Vertex cover

• Input: an undirected graph 



• Output: a minimal set  
such that every edge contains 
at least one endpoint from .


• There seems to be a pretty 
obvious LP for this problem. 
What goes wrong?

G = (V, E)

S ⊆ V

S
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LP relaxation
Vertex cover

• The LP we tried to write for vertex 
cover yields a fractional solution


• It is a “relaxation” of the vertex cover 
problem from integer to fractional 
solutions


• In the relaxation we increase the 
feasible space from integer 
coordinates to include all solutions


• Can be used to generate 
randomized approximation 
algorithms for vertex cover.
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Max flow versus vertex cover

• Why can max flow natively guarantee integer solutions while vertex cover 
cannot?


• Recall, the optimum of an LP occurs at a vertex


• The vertices of an LP correspond to points where linear equations are exactly 
satisfied


• Turns out flow equations when exactly satisfied always have integer solutions


• Quite a beautiful piece of mathematics


• Too technical to warrant more time in this course
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The simplex method

• Finally, we are going to cover an algorithm for solving LPs


• The algorithm is called the simplex method and it will be unique amongst the 
algorithms we study in this course


• The simplex method runs incredibly fast in practice and is super useful


• However, it can run in exponential time in the worst case even when there 
exist other polynomial time algorithms for the problem


• Later on, we will take a high-level glance at algorithms for solving LPs that are 
known to run in polynomial time
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The simplex method

• Simplex is a greedy algorithm


• High-level algorithm:


• Start from a vertex of the polytope


• In each step, move to the neighboring 
vertex that optimizes 


• Equivalently, move along the edge 
pointing the most in the  direction

c⊤x

c
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The simplex method

• We are effectively consider a graph  
whose interior is the feasible region .


• If we consider a feasible region defined by 
 for 


• Then, each vertex can be described by which  of 
the  equations are exactly satisfied


• Describe vertices by points in  of Hamming 
weight 


• Two vertices are neighbors if they share all but 1 
equation or equiv. the descriptions differ in two bits  

G = (V, E)
Γ

Γ = {Ax ≤ b} A ∈ ℝm×n, b ∈ ℝm

n
m

{0,1}m

n
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The simplex method
Digging deeper into the algorithm

• Algorithm has two major steps:


• Finding the first vertex (if one even exists as  could be infeasible)


• Moving along an edge


• Moving along an edge:


• Currently at a vertex described by  out of  equations


• Can consider all possible vertices that share all but one equation


• At most  neighbors


• Gives a polynomial time algorithm for moving along an edge

Γ

n m

n ⋅ (m − n)
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The simplex method
Digging deeper into the algorithm

• Finding the first vertex
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The simplex method

• We have not given runtimes for the simplex method 
on purpose


• The runtime can be exponential because the 
algorithm goes on the outside of the polytope 
which could have lots of vertices, edges, and 
facets


• However, simplex runs remarkably well in practice


• Is there a reconciliation? An algorithm that may do 
okay in practice but has guaranteed worst case 
runtime that is polynomial?
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Interior point and ellipsoid methods

• Interior point: 

• Keep track of a point inside the polytope


• Follow a trajectory through the interior to optimal 
solution


• Solve a sequence of easier problems to approximate 
original LP, gradually becoming more accurate


• Runs about as fast as simplex in practice and has 
guarantees on runtime


• The “state-of-the-art” algorithm and a key step in 
optimal algorithms for problems like max flow
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Interior point and ellipsoid methods

• Ellipsoid method:


• Using LP duality, convert problem from optimizing a 
linear polytope to finding a feasible point in a different 
polytope 


• Generate a sequence of ellipsoids that always contain 


• Each time find a smaller ellipsoid (by guaranteed ratio) 
until the center of the ellipsoid must be in 


• Very slow in practice but first guaranteed algorithm for 
solving LPs 

Γ

Γ

Γ
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Γ

Γ

Γ
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Zero-sum games
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