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Lecture 18
Flow applications
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Previously in CSE 421…
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Finding a pretty big augmenting path

• Fast (Scaling) Augment: Starting with , 


• Find an augmenting path of size :


• Run regular augmenting path search on  except with capacities 
.


• If a path exists of bottleneck , it still exists in adjusted graph.


• If yes, add this augmenting path and restart.


• If not, decrease , and repeat.


• Theorem: If the max bottleneck capacity of any augmenting path is , the fast 
augment subroutine finds an augment of size  in time  

k ← ⌊log C⌋

2k

Gf
c′ = ⌊c/2k⌋

≥ 2k

k ← k − 1

v
≥ v/2 O(m log C) .
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Scaling Ford-Fulkerson

• Algorithm: Start with flow  and .


• While the fast augment subroutine can find an augmenting path 


• Augment  by  along path and update  

• Theorem: The scaling version of Ford-Fulkerson runs in time .

f ← 0 Gf ← G

p

f faug Gf

O(m2 log C)
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Proof:


• While there exists a path  in the flow, 


• Remove flow along  of the bottleneck capacity of .


• The resulting flow is 0 along some edge. 


• This can be repeated  times.

O(m2 log C)

f ≤ m

p : s ↝ t

p p

≤ m
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Corollary: There exists a path within the flow of bottleneck capacity .


• Proof:


• Run the lemma on the max flow. 


• By pigeon-hole principle, one of the paths must have large flow.

O(m2 log C)

f ≤ m

≥ maxflow(G)/m
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Corollary: There exists a path within the flow of bottleneck capacity 
.


• Corollary: Fast-Augment will find an augmenting path in  of bottleneck 
capacity .

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

Gf
≥ maxflow(Gf)/(2m)
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Scaling Ford-Fulkerson runtime

• Corollary: Fast-Augment will find an augmenting path in  of bottleneck capacity 
.


• Each iteration of Fast-Augment will decrease by a mult. factor of 


• # of iterations .


• Total runtime is .

Gf
≥ maxflow(Gf)/(2m)

1 − 1/(2m)

≤ log(1−1/(2m))−1(C) =
log C

−log(1 − 1/(2m))
≤

log C
1/(2m)

= 2m log C

O(m) ⋅ 2m log C = O(m2 log C)
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Flow independent of capacity

• So far, for integer capacities:


• Vanilla Ford-Fulkerson: Runtime 


• Pick any augmenting path


• Scaling Ford-Fulkerson: Runtime 


• Pick the largest augmenting paths 


• Edmonds-Karp (next): Runtime 


• Pick the shortest augmenting path (in terms of # of edges) 

O(mC)

O(m2 log C)

O(m2n)
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Today
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Edmonds-Karp algorithm

• Initialize  and 


• While BFS starting from  outputs a path  in . 


• Compute bottleneck capacity  and update  and  
by augmenting  along  at capacity . 


• Output resulting flow .

f ← 0 Gf ← G

s p : s ↝ t Gf

b f Gf
f p b

f
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Edmonds-Karp

• We know the algorithm: it’s BFS based-augumentations.


• Each run of BFS will compute an augmentation in time .


• I’ve claimed the runtime is .


• Therefore, we need to be able to prove that only  augmentations are 
needed.

O(m)

O(m2n)

O(mn)
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Edmonds-Karp

• Every time an augmenting path is chosen, the bottleneck edge  becomes 
saturated — i.e. 


• Suffices to show that each edge  can only be the bottleneck in at most  
augmenting paths.


• Since there are  edges, this yields a max of  augmenting paths. 


• Details are excluded but do use Edmonds-Karp as a subroutine on problem 
sets and exams.

e
f(e) = c(e)

e n/2

m
mn
2
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Maximum flow algs are minimum cut algs

• Given a maximum flow  in a network , if  is the set of vertices reachable from  in the 
residual network , then  forms a minimum cut


• Edges from  to  are fully saturated


• Edges from  to  are completely devoid of flow


• The min cut may not be unique just as the max flow may not be unique


• Maximum flow and minimum cut are dual problems 


• Two sides of the same coin


• We will see this come up again in a few lectures!

f G S s
Gf (S, T := V∖S)

S T

T S
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Applications of max flow/min cut
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Recall: bipartite matching
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Recall: bipartite matching
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Recall: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.


• Proof:


• Integer flow and bipartite matching equivalence: 


• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge 
leaving a  can be selected. So a integer flow yields a matching of equal size.


• For every edge  from  to  in the bipartite matching add the flow 
. All flows will be compatible. So a bipartite matching yields a flow 

of equal size.


• By equivalence, max flow will yield a max bipartite matching. 

v ∈ L

u → v L R
s → u → v → t
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Min cut perspective

• We could solve the same flow problem if we set the capacity to the edges out 
of  and into  as 1 and set the middle edges to capacity .s t ∞
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Min cut perspective

• Vertices of  involved in the min cut (one per edge crossing the cut) forms a 
minimum size set of vertices of  that block all flow from  to 

G
G s t
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Min cut perspective

• Vertices of  involved in the min cut (one per edge crossing the cut) forms a 
minimum size set of vertices of  that block all flow from  to 

G
G s t
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Minimum vertex cover problem

• Definition: A subset of vertices  is a vertex cover of an undirected graph  
iff every edge is touched by some vertex in .


•  is a trivial vertex cover for .


• Input: An undirected graph 


• Output: A minimal vertex cover  for .


• Min Vertex Cover is a -complete problem


• However, min vertex cover on bipartite graphs is efficient!

C ⊆ V G = (V, E)
C

V G

G = (V, E)

C G

𝖭𝖯
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Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a vertex cover.

23



Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a min vertex cover.


• Proof: 


• Suppose it did not generate a vertex cover.


• Then there is an edge  not covered. We can augment the flow along the 
path , a contradiction.


• Suppose there is a smaller min vertex cover 


• Then the edges connecting  or  to  form the crossing edges of a smaller min 
cut. A contradiction.

e = (u, v)
s → u → v → t

C′ 

s t C′ 
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Perfect Matching

• Definition: A matching  is perfect iff every vertex participates in some 
edge of .


• The previous algorithms give us an algorithm for computing a maximal 
matching for a bipartite graph.


• The matching is perfect if the size of the matching equals .


• The previous algs. also provide a criterion for whether a bipartite graph has 
a perfect matching: Hall’s theorem.

M ⊆ E
M

|L | = |R |
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Hall’s theorem

• Theorem: If  for all subsets , then there is a 
perfect matching.


• Contrapositive: If there is no perfect matching, then  
for some subset .


• Proof: No perfect matching  min cut is  in flow network.


• Let  be a s-t cut with 


• Choose .


• Then  since no edges across the middle are in the cut.


• So 


• So .

|N(A) | ≥ |A | A ⊆ V

|N(A) | < |A |
A

⟹ < |L |

(S, T ) c(S, T ) < |L |

A = S ∩ L, B = S ∩ R

N(A) ⊆ B

|L | > c(S, T ) = |L | − |A | + |B | ≥ |L | − |A | + |N(A) |

|N(A) | < |A |
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Maximum matching in general graphs

• Bipartite maximum matching runtimes:


• Generic augmenting path: 


• State of the art algorithm run in time  time with high probability


• General matching algorithm:


• Solved —  time algorithm exists by Micali-Vazirani


• Beyond the scope of this course

O(mn)

O(m1+o(1))

O(mn1/2)
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Edge disjoint paths

• Input: A directed graph  with identified vertices 


• Output: A maximal collection of paths  that share no edges


• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t
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Edge disjoint paths

• Input: A directed graph  with identified vertices 


• Output: A maximal collection of paths  that share no edges


• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t
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Edge disjoint paths

• Idea: Use max flow to calculate edge disjoint paths


• Need to convert our graph to a flow network


• Remove any edge  and 


• Set capacity of all remaining edges to 1


• Correctness argument: Prove a bijection between integer flows and edge 
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

⋅ → s t → ⋅
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Edge disjoint paths

• Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.


• Proof:


• Since capacities are 1,  since it is integer.


• Then for each edge , at most one flow along a path can use .


• We previously proved that every flow can be decomposed into  paths.


• Therefore, the paths founds are edge disjoint.

f(e) ∈ {0,1}

e e

≤ m
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Edge disjoint paths

• Theorem: There is a bijection between integer flows and edge disjoint paths.


• Proof:


• Previous lemma converts each integer flow into an edge disjoint path.


• Sending 1-flow along each edge disjoint path is a valid flow.


• Conservation of flow follows at every vertex  from that of paths.


• Capacity constraints follow from being a 1-flow and edge disjoint.


• Together, this proves both directions of the bijection.

v ∈ V∖{s, t}

32



Network connectivity

• Definition: A set of edges  disconnects the source and sink if every 
path  must use one edge from .


• Input: directed graph  with source  and sink 


• Output: a minimal set of edges  that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F
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Network connectivity

• Definition: A set of edges  disconnects the source and sink if every 
path  must use one edge from .


• Input: directed graph  with source  and sink 


• Output: a minimal set of edges  that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F
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Network connectivity

• Idea: Use min cut to calculate minimal network disconnecting set


• Again, need to convert our graph to a flow network


• Remove any edge  and 


• Set capacity of all remaining edges to 1


• Correctness argument: Prove a bijection between cuts and network 
disconnecting sets. Then minimality of cut yields minimal disconnecting set.

⋅ → s t → ⋅
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Network connectivity

• Network connectivity and edge disjoint 
paths use the same reduction


• Network connectivity is equivalent to 
min cut


• Edge disjoint paths is equivalent to 
max flow


• Menger’s theorem: the maximum 
number of edge disjoint s-t paths is 
equal to the minimum size of a 
disconnecting set
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Directed flow cycle

• Definition: A directed flow cycle is a flow of value 0 but  on every edge


• Examples: 

• Directed flow cycles can be removed by running graph traversal on , finding cycles 
and removing bottleneck flow around the cycle

f ≢ 0

f
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Undirected graphs

• Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed 
graphs


• What about undirected graphs?


• Solution: Replace each edge  with directed edges 


• Run directed algorithm on new graph


• Remove any directed flow cycles


• Include edge  if either edge is used after removing flow cycles

(u, v) (u → v), (v → u)

{u, v}
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Circulation Demands

• Some countries produce more rice than the consume and 
some countries consume more rice than the consume


• There are trade routes that describe which countries can trade 
with which others and at what capacity


• How do we calculate rice routing?


• Input: directed graph  with capacities  
and demand  such that .


• Output: A flow  such that 

G = (V, E) c : E → ℝ≥0
d : V → ℝ ∑

v∈V

d(v) = 0

f : E → ℝ f in(v) − f out(v) = d(v)
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Circulation demands

• Add source  and  
to graph


• Add edge  of 
 if .


• Add edge  of 
 if .


• Compute max flow 
on the graph.

s t

s → v
−d(v) d(v) < 0

v → t
d(v) d(v) ≥ 0
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Capacity demands

• Theorem: Let .


• Then if, max flow = , there 
is a circulation meeting all 
capacities and demands.


• If max flow , then no 
circulation exists meeting all 
capacities and demands. 

 is the “wasted” 
production.

D = ∑
v:d(v)≥0

d(v)

D

< D

D − v( f )
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Capacity demands

• When does a circulation 
not exist? When max 
flow = min cut .


• Min-cut between 
``source’’ and ``sink’’ 
vertices is smaller than 
demand.


• Look at India: The trade 
network is too small to 
satisfy the output.

< D
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