Lecture 18 Flow applications

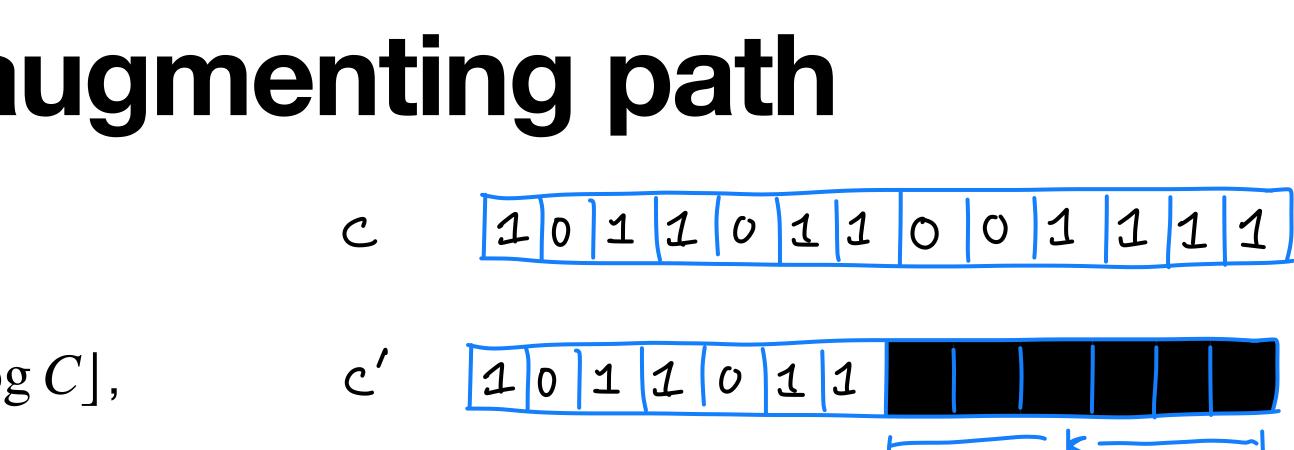
Chinmay Nirkhe | CSE 421 Spring 2025

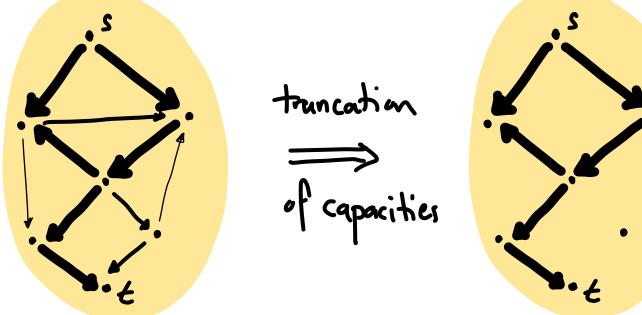
1

Previously in CSE 421...

Finding a pretty big augmenting path

- Fast (Scaling) Augment: Starting with $k \leftarrow \lfloor \log C \rfloor$,
 - Find an augmenting path of size 2^k :
 - Run regular augmenting path search on G_f except with capacities $c' = |c/2^k|.$
 - If a path exists of bottleneck $\geq 2^k$, it still exists in adjusted graph.
 - If yes, add this augmenting path and restart.
 - If not, decrease $k \leftarrow k 1$, and repeat.
- Theorem: If the max bottleneck capacity of any augmenting path is v, the fast augment subroutine finds an augment of size $\geq v/2$ in time $O(m \log C)$.



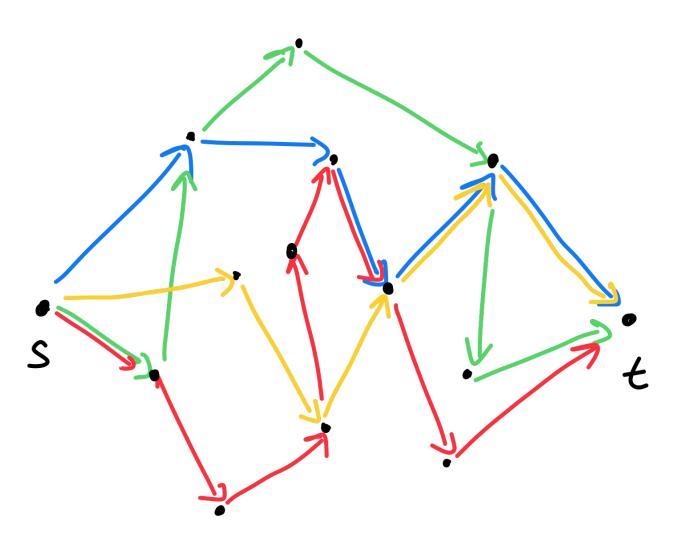


Scaling Ford-Fulkerson

- Algorithm: Start with flow $f \leftarrow 0$ and $G_f \leftarrow G$.
 - While the fast augment subroutine can find an augmenting path p
 - Augment f by f_{aug} along path and update G_{f}
- Theorem: The scaling version of Ford-Fulkerson runs in time $O(m^2 \log C)$.

• To prove the runtime of $O(m^2 \log C)$, we need to prove a few lemmas.

- Lemma: Every flow f can be expressed as the sum of $\leq m$ flows along paths.
- **Proof:** \bullet
 - While there exists a path $p : s \sim t$ in the flow,
 - Remove flow along p of the bottleneck capacity of p.
 - The resulting flow is 0 along some edge.
 - This can be repeated $\leq m$ times.



• To prove the runtime of $O(m^2 \log C)$, we need to prove a few lemmas.

- Lemma: Every flow f can be expressed as the sum of $\leq m$ flows along paths.
- **Corollary:** There exists a path within the flow of bottleneck capacity $\geq \max(G)/m$. \bullet
- **Proof:**
 - Run the lemma on the max flow.
 - By pigeon-hole principle, one of the paths must have large flow.

• To prove the runtime of $O(m^2 \log C)$, we need to prove a few lemmas.

- Lemma: Every flow f can be expressed as the sum of $\leq m$ flows along paths.
- Corollary: There exists a path within the flow of bottleneck capacity $\geq \max flow(G)/m$.
- Corollary: Fast-Augment will find an augmenting path in G_f of bottleneck capacity $\geq \max flow(G_f)/(2m)$.

• Corollary: Fast-Augment will find an augmenting path in G_f of bottleneck capacity $\geq \max flow(G_f)/(2m)$.

- Each iteration of Fast-Augment will decrease by a mult. factor of 1 1/(2m)
- # of iterations $\leq \log_{(1-1/(2m))^{-1}}(C) =$
- Total runtime is $O(m) \cdot 2m \log C = O(m)$

$$\frac{\log C}{-\log(1 - 1/(2m))} \le \frac{\log C}{1/(2m)} = 2m \log C.$$
$$0(m^2 \log C).$$

Flow independent of capacity

- So far, for integer capacities:
 - Vanilla Ford-Fulkerson: Runtime O(mC)
 - Pick any augmenting path
 - Scaling Ford-Fulkerson: Runtime $O(m^2 \log C)$
 - Pick the largest augmenting paths
 - Edmonds-Karp (next): Runtime $O(m^2n)$
 - Pick the shortest augmenting path (in terms of # of edges)

Edmonds-Karp algorithm

- Initialize $f \leftarrow 0$ and $G_f \leftarrow G$
- While BFS starting from *s* outputs a path $p: s \prec t$ in G_f .
 - Compute bottleneck capacity b and update f and G_f by augmenting f along p at capacity b.
- Output resulting flow f.

Edmonds-Karp

- We know the algorithm: it's BFS based-augumentations.
 - Each run of BFS will compute an augmentation in time O(m).
 - I've claimed the runtime is $O(m^2n)$.
 - Therefore, we need to be able to prove that only O(mn) augmentations are needed.

Edmonds-Karp

- Every time an augmenting path is c saturated — i.e. f(e) = c(e)
- Suffices to show that each edge e a augmenting paths.
- Since there are *m* edges, this yields
- Details are excluded but do use Educed but and exams.

• Every time an augmenting path is chosen, the bottleneck edge *e* becomes

• Suffices to show that each edge e can only be the bottleneck in at most n/2

s a max of
$$\frac{mn}{2}$$
 augmenting paths.

Details are excluded but do use Edmonds-Karp as a subroutine on problem

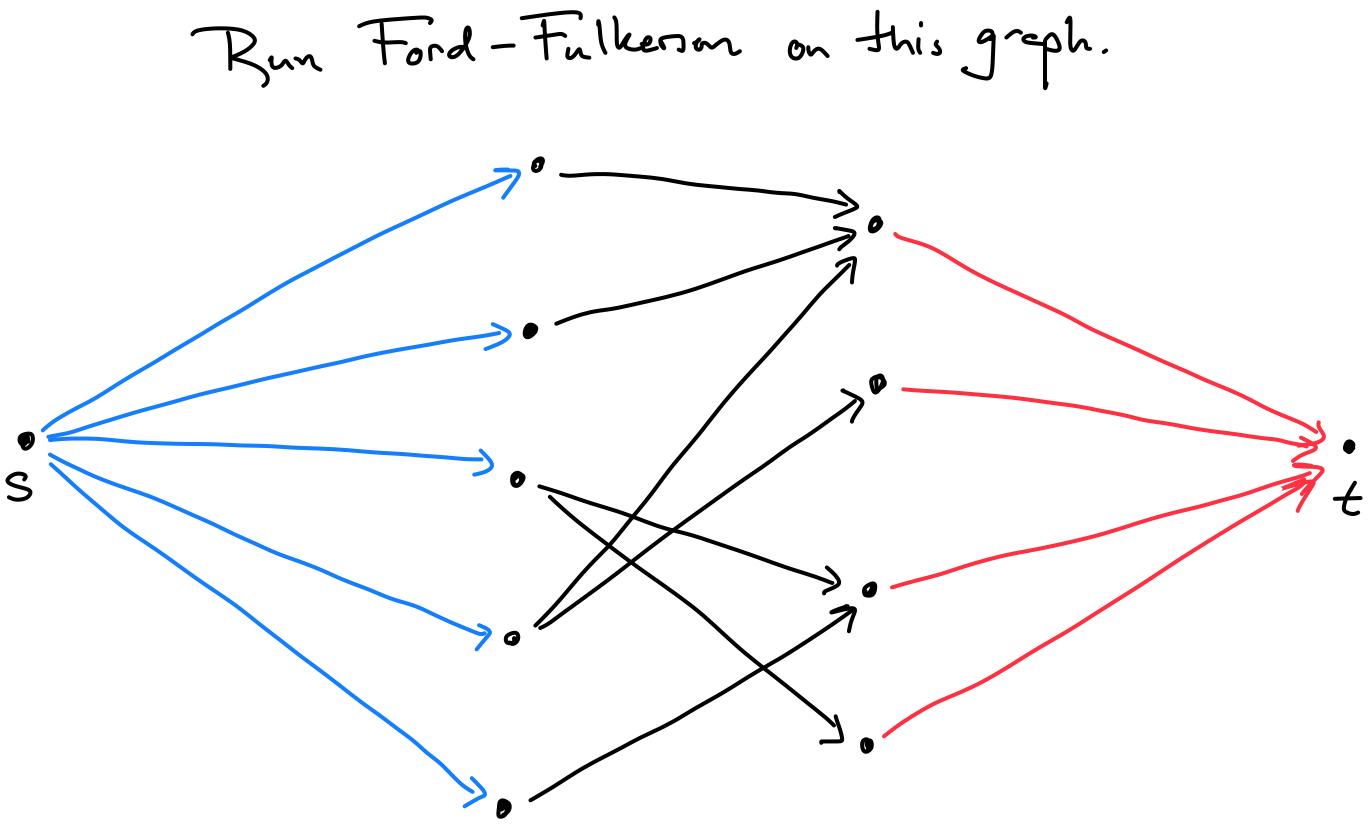
Maximum flow algs are minimum cut algs

- residual network G_f , then $(S, T := V \setminus S)$ forms a minimum cut
 - Edges from S to T are fully saturated
 - Edges from T to S are completely devoid of flow
 - The min cut may not be unique just as the max flow may not be unique
- Maximum flow and minimum cut are dual problems
 - Two sides of the same coin
 - We will see this come up again in a few lectures!

• Given a maximum flow f in a network G, if S is the set of vertices reachable from s in the

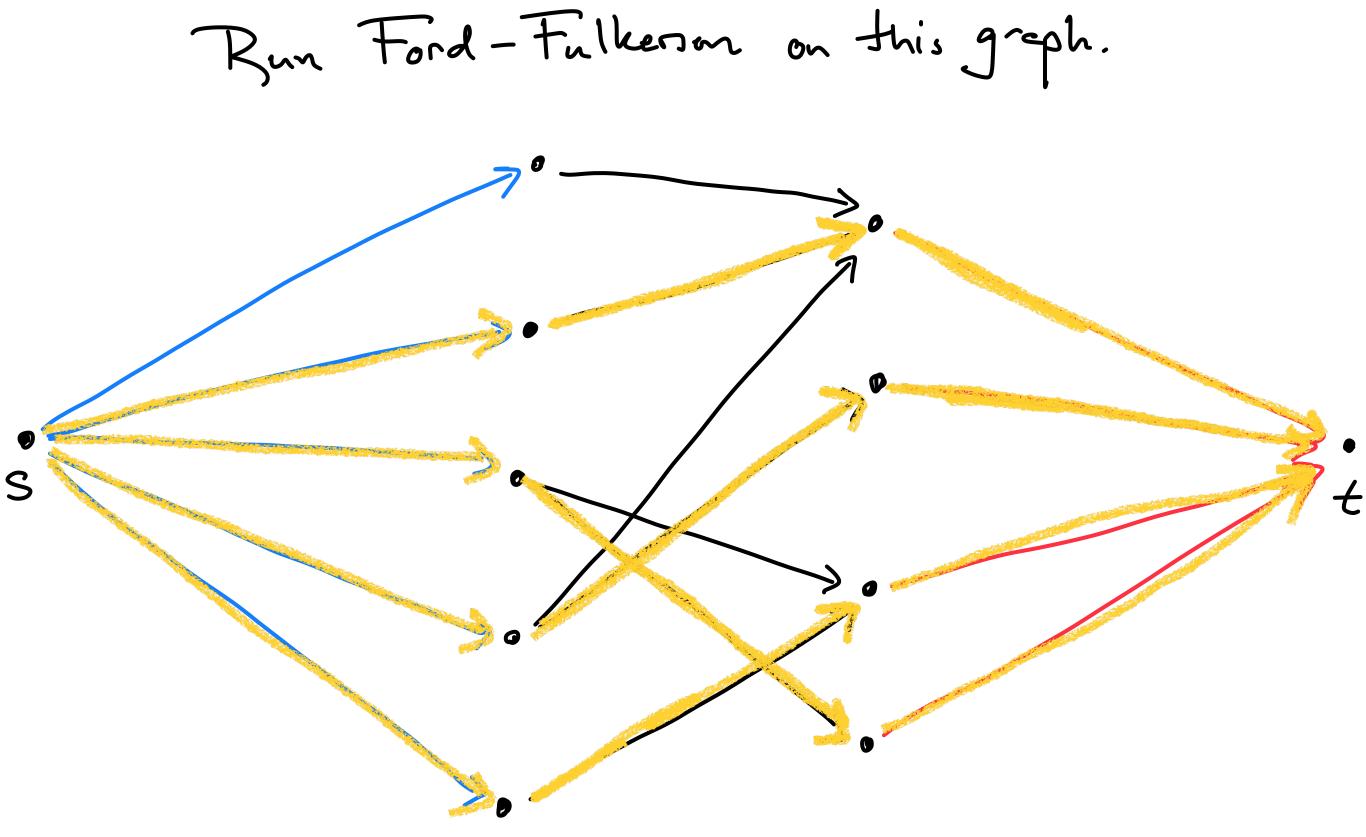
Applications of max flow/min cut

Recall: bipartite matching



all edges of capacity 1

Recall: bipartite matching



all edges of capacity 1

Recall: Bipartite matching

- Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.
- **Proof**:
 - Integer flow and bipartite matching equivalence:

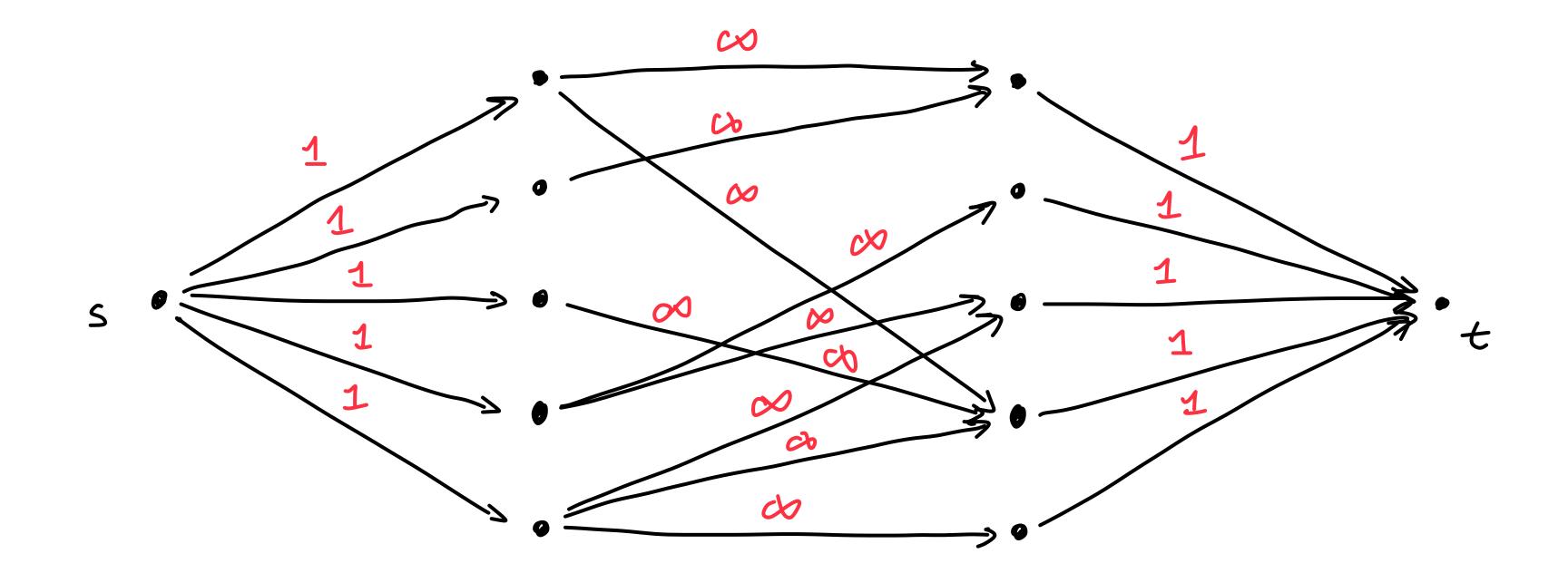
 - For every edge $u \to v$ from L to R in the bipartite matching add the flow of equal size.
 - By equivalence, max flow will yield a max bipartite matching.

• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge leaving a $v \in L$ can be selected. So a integer flow yields a matching of equal size.

 $s \rightarrow u \rightarrow v \rightarrow t$. All flows will be compatible. So a bipartite matching yields a flow

Min cut perspective

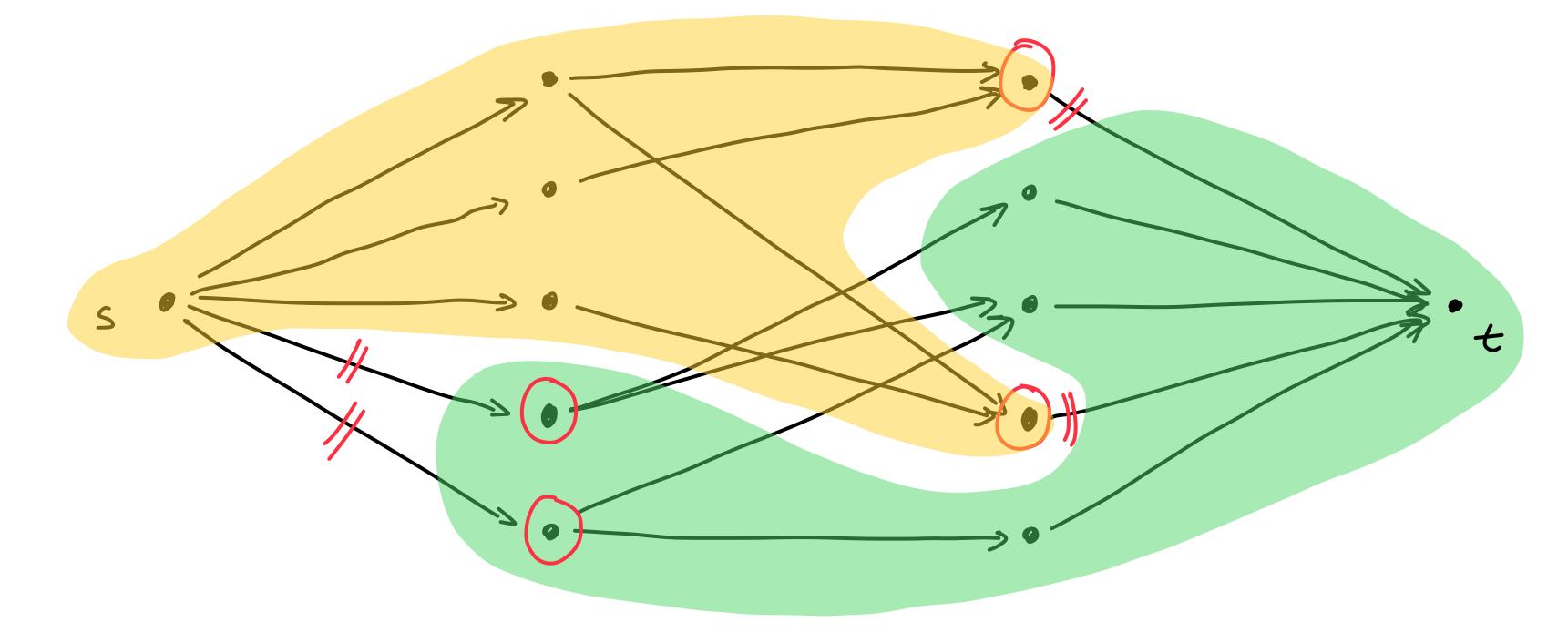
of s and into t as 1 and set the middle edges to capacity ∞ .



We could solve the same flow problem if we set the capacity to the edges out

Min cut perspective

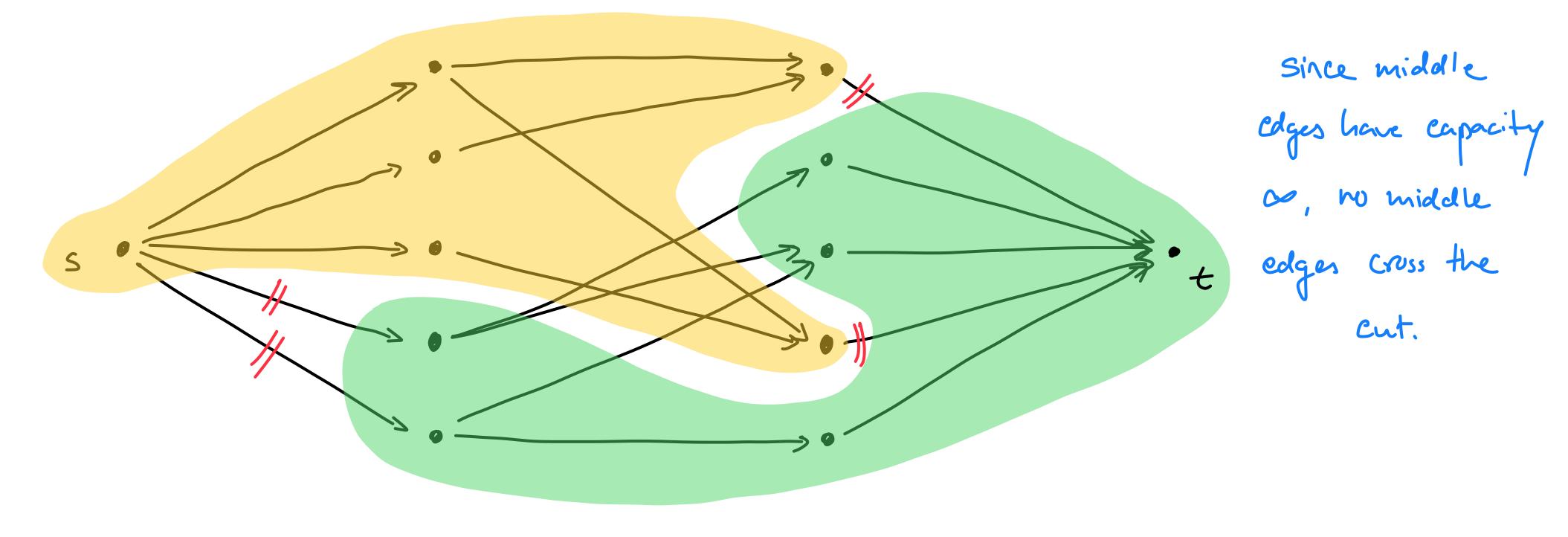
minimum size set of vertices of G that block all flow from s to t



• Vertices of G involved in the min cut (one per edge crossing the cut) forms a

Min cut perspective

minimum size set of vertices of G that block all flow from s to t



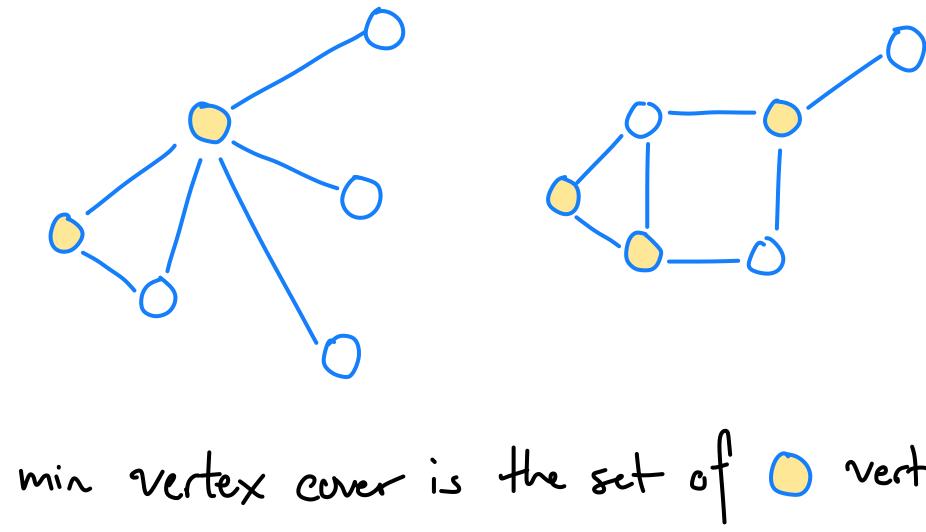
• Vertices of G involved in the min cut (one per edge crossing the cut) forms a

Minimum vertex cover problem

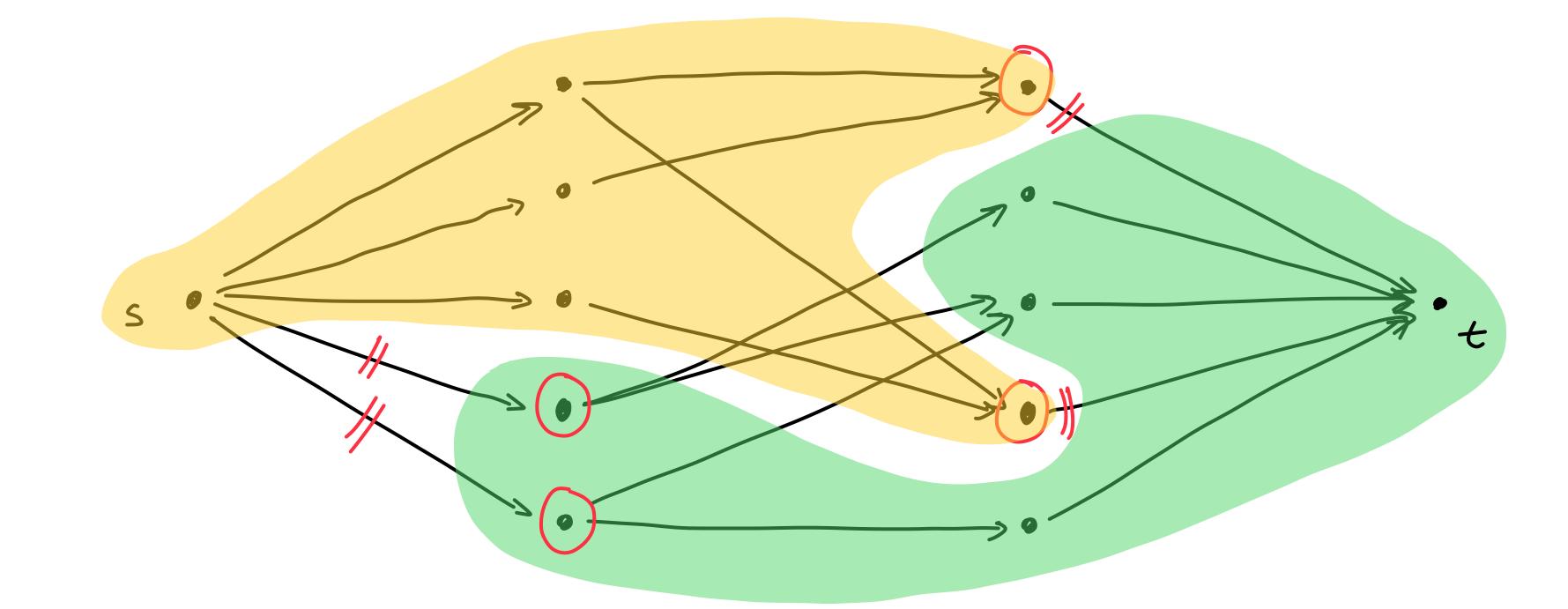
- iff every edge is touched by some vertex in C.
 - V is a trivial vertex cover for G.
- Input: An undirected graph G = (V, E)
- **Output:** A minimal vertex cover C for G.

- Min Vertex Cover is a NP-complete problem
- However, min vertex cover on bipartite graphs is efficient!

• **Definition:** A subset of vertices $C \subseteq V$ is a vertex cover of an undirected graph G = (V, E)



Minimum vertex cover problem **Bipartite graphs**



• Claim: The min cut we observed just a minute ago generates a vertex cover.

Minimum vertex cover problem **Bipartite graphs**

- Claim: The min cut we observed just a minute ago generates a min vertex cover.
- **Proof**:
- Suppose it did not generate a vertex cover.
 - Then there is an edge e = (u, v) not covered. We can augment the flow along the path $s \rightarrow u \rightarrow v \rightarrow t$, a contradiction.
- Suppose there is a smaller min vertex cover C'
 - Then the edges connecting s or t to C' form the crossing edges of a smaller min cut. A contradiction.

Perfect Matching

- edge of M.
- The previous algorithms give us an algorithm for computing a maximal matching for a bipartite graph.

 - a perfect matching: Hall's theorem.

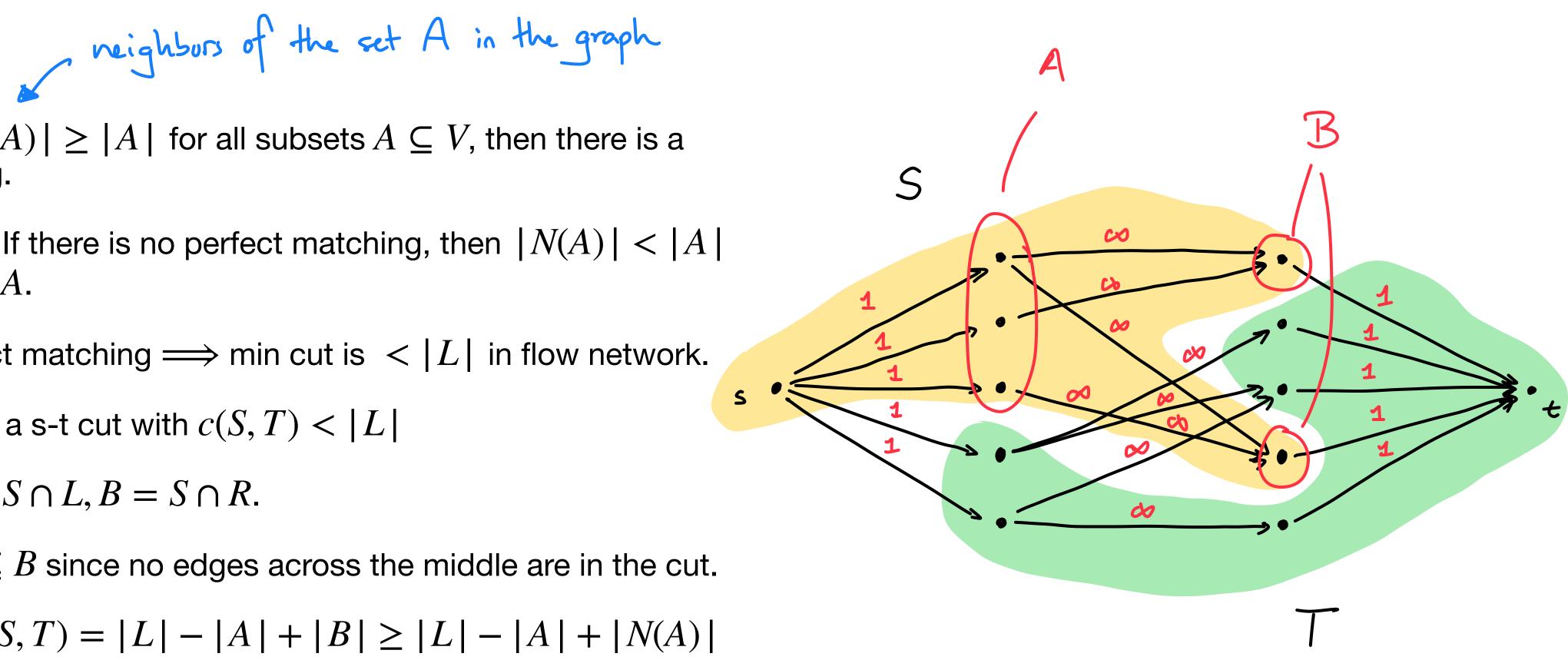
• **Definition:** A matching $M \subseteq E$ is perfect iff every vertex participates in some

• The matching is *perfect* if the size of the matching equals |L| = |R|.

• The previous algs. also provide a criterion for whether a bipartite graph has

Hall's theorem

- Theorem: If $|N(A)| \ge |A|$ for all subsets $A \subseteq V$, then there is a perfect matching.
- Contrapositive: If there is no perfect matching, then |N(A)| < |A|for some subset A.
- **Proof:** No perfect matching \implies min cut is < |L| in flow network.
 - Let (S, T) be a s-t cut with c(S, T) < |L|
 - Choose $A = S \cap L, B = S \cap R$.
 - Then $N(A) \subseteq B$ since no edges across the middle are in the cut.
 - So $|L| > c(S, T) = |L| |A| + |B| \ge |L| |A| + |N(A)|$
 - So |N(A)| < |A|.

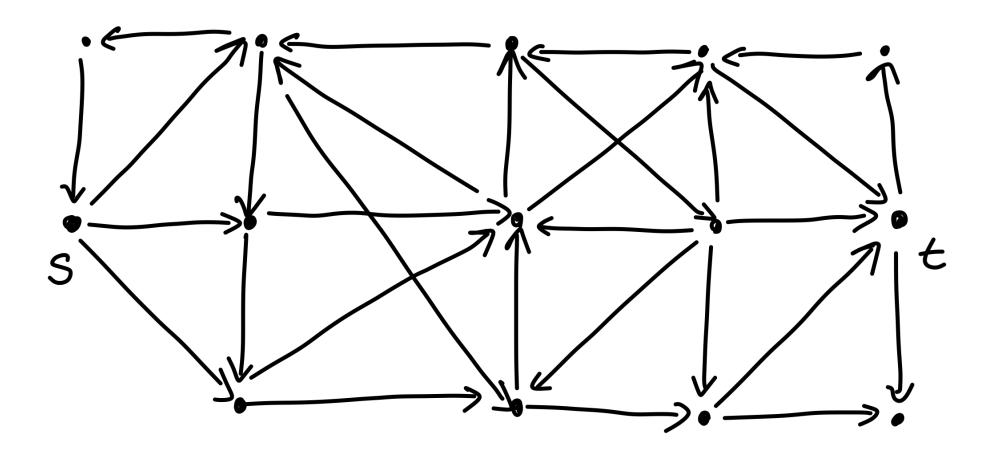


Maximum matching in general graphs

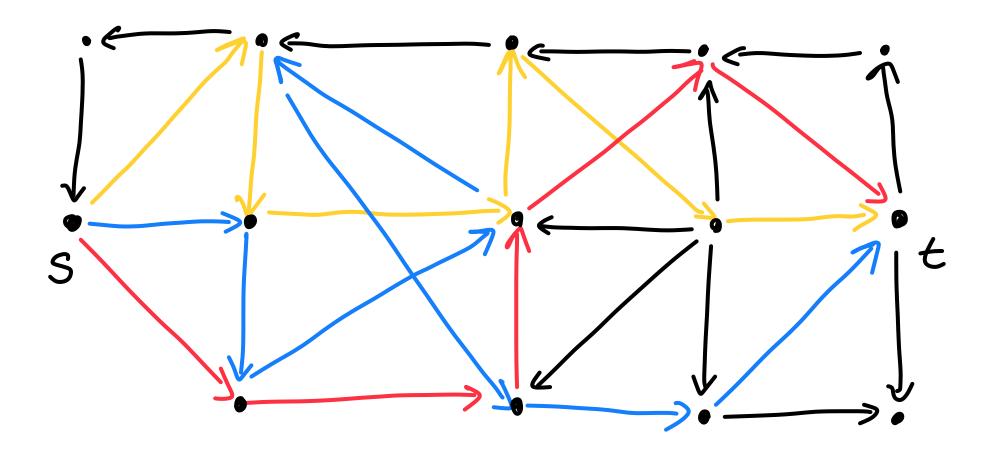
- Bipartite maximum matching runtimes:
 - Generic augmenting path: O(mn)
- General matching algorithm:
 - Solved $O(mn^{1/2})$ time algorithm exists by Micali-Vazirani
 - Beyond the scope of this course

• State of the art algorithm run in time $O(m^{1+o(1)})$ time with high probability

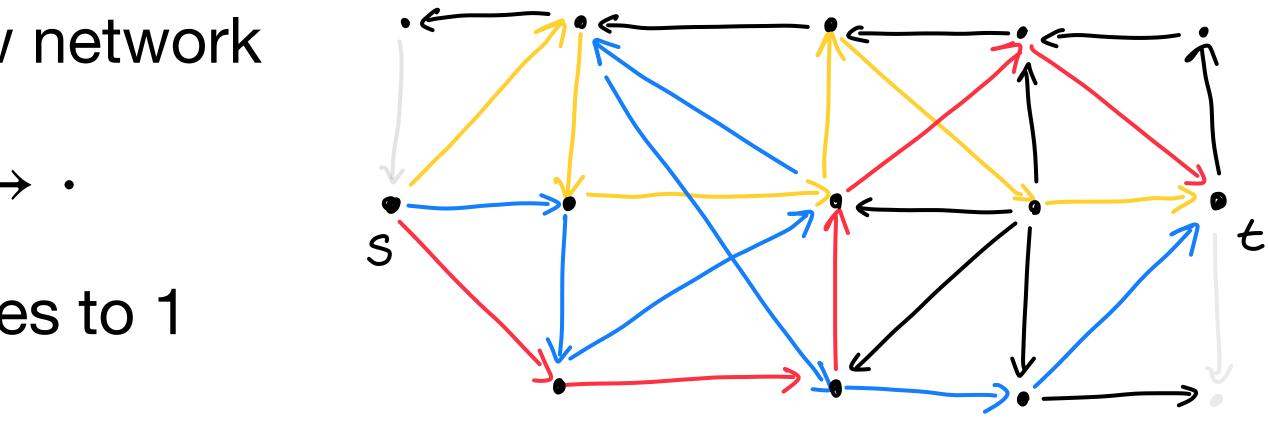
- Input: A directed graph G = (V, E) with identified vertices s, t
- Output: A maximal collection of paths $s \sim t$ that share no edges
- Application: routing transmissions in communication networks



- Input: A directed graph G = (V, E) with identified vertices s, t
- Output: A maximal collection of paths $s \sim t$ that share no edges
- Application: routing transmissions in communication networks



- Idea: Use max flow to calculate edge disjoint paths
- Need to convert our graph to a flow network
 - Remove any edge $\cdot \rightarrow s$ and $t \rightarrow \cdot$
 - Set capacity of all remaining edges to 1



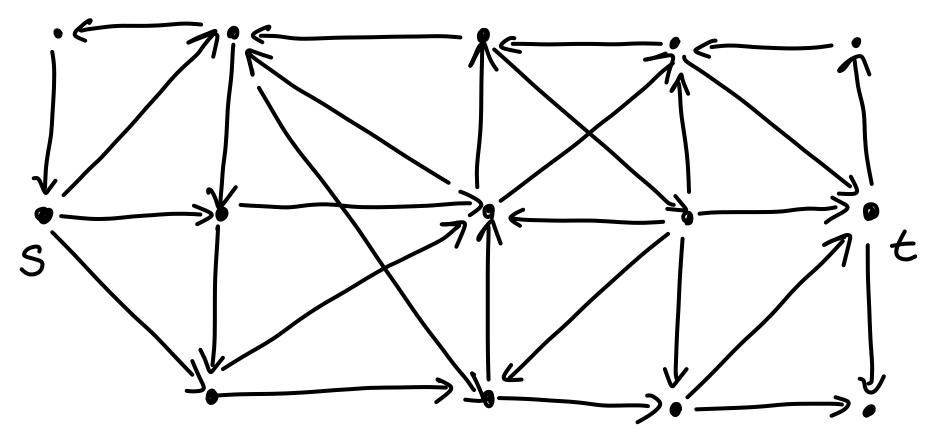
 Correctness argument: Prove a bijection between integer flows and edge disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

- **Proof:**
 - Since capacities are 1, $f(e) \in \{0,1\}$ since it is integer.
 - Then for each edge e, at most one flow along a path can use e.
 - We previously proved that every flow can be decomposed into $\leq m$ paths.
 - Therefore, the paths founds are edge disjoint.

• Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.

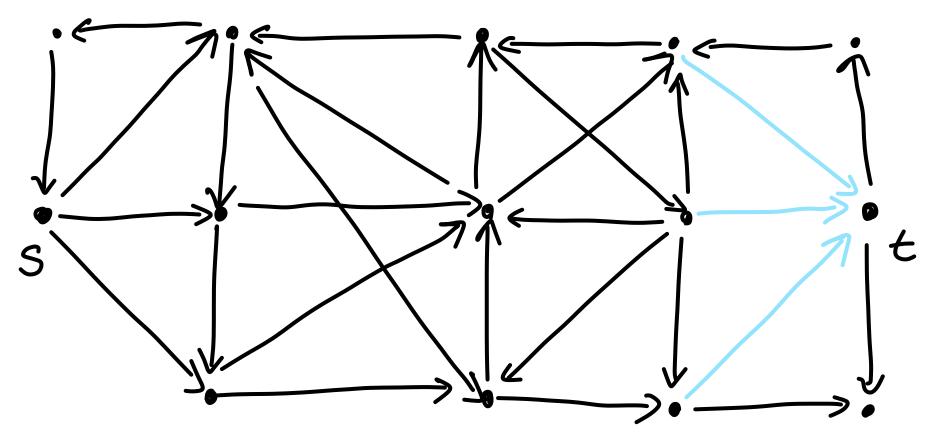
- Theorem: There is a bijection between integer flows and edge disjoint paths.
- Proof:
 - Previous lemma converts each integer flow into an edge disjoint path.
 - Sending 1-flow along each edge disjoint path is a valid flow.
 - Conservation of flow follows at every vertex $v \in V \setminus \{s, t\}$ from that of paths.
 - Capacity constraints follow from being a 1-flow and edge disjoint.
 - Together, this proves both directions of the bijection.

- path $s \sim t$ must use one edge from F.
- Input: directed graph G = (V, E) with source s and sink t
- Output: a minimal set of edges F that disconnect the source and sink



• **Definition:** A set of edges $F \subseteq E$ disconnects the source and sink if every

- path $s \sim t$ must use one edge from F.
- Input: directed graph G = (V, E) with source s and sink t
- Output: a minimal set of edges F that disconnect the source and sink



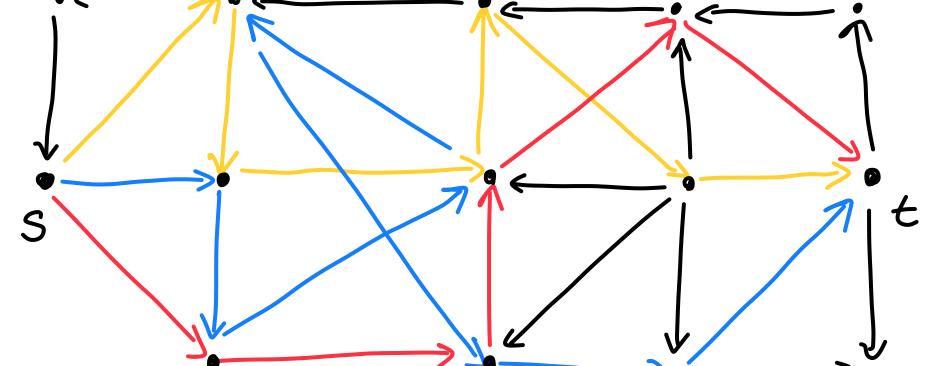
• **Definition:** A set of edges $F \subseteq E$ disconnects the source and sink if every

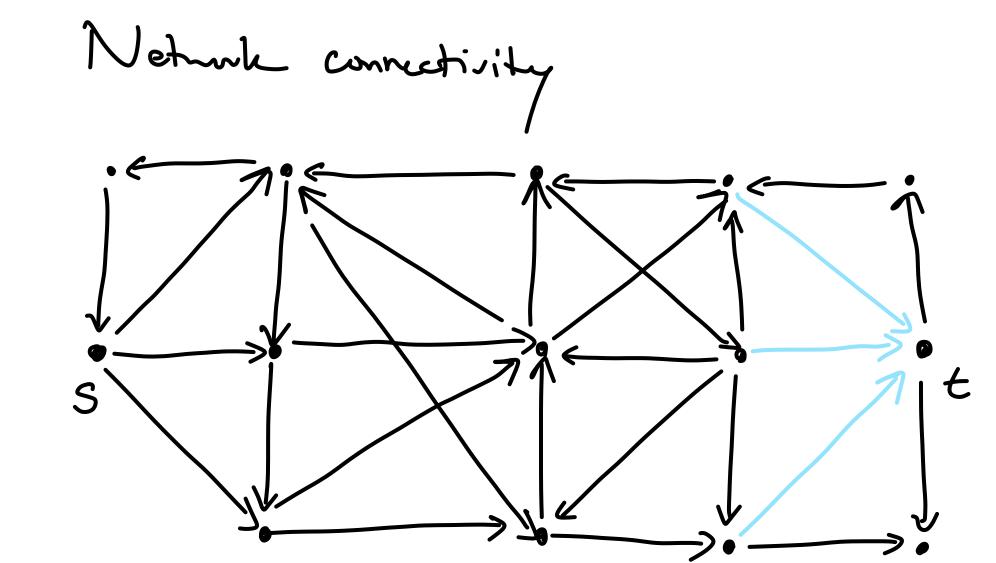
- Idea: Use min cut to calculate minimal network disconnecting set
- Again, need to convert our graph to a flow network
 - Remove any edge $\cdot \rightarrow s$ and $t \rightarrow \cdot$
 - Set capacity of all remaining edges to 1

Correctness argument: Prove a bijection between cuts and network

disconnecting sets. Then minimality of cut yields minimal disconnecting set.

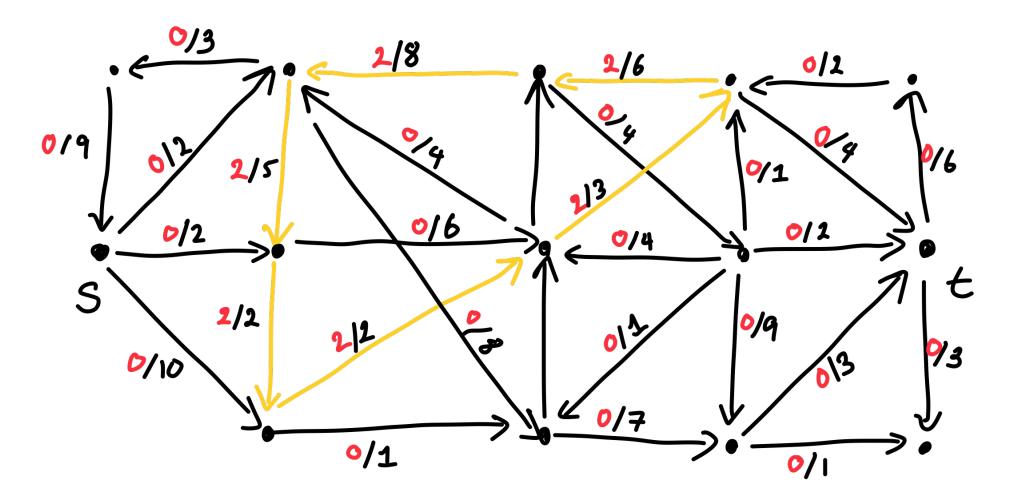
- Network connectivity and edge disjoint paths use the same reduction
 - Network connectivity is equivalent to min cut
 - Edge disjoint paths is equivalent to max flow
- Menger's theorem: the maximum number of edge disjoint s-t paths is equal to the minimum size of a disconnecting set





Directed flow cycle

- **Definition:** A directed flow cycle is a flow of value 0 but $f \neq 0$ on every edge
- **Examples:**



and removing bottleneck flow around the cycle

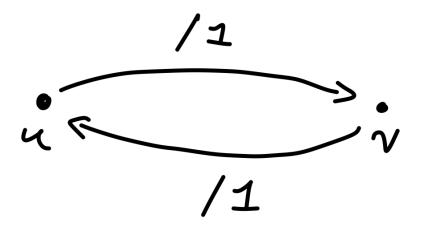
Directed flow cycles can be removed by running graph traversal on f, finding cycles

Undirected graphs

- graphs
- What about undirected graphs?
- Solution: Replace each edge (u, v) with directed edges $(u \rightarrow v), (v \rightarrow u)$

- Run directed algorithm on new graph
- Remove any directed flow cycles
- Include edge $\{u, v\}$ if either edge is used after removing flow cycles

• Edge disjoint path and disconnecting set problems can be solved with flow algorithms for *directed*



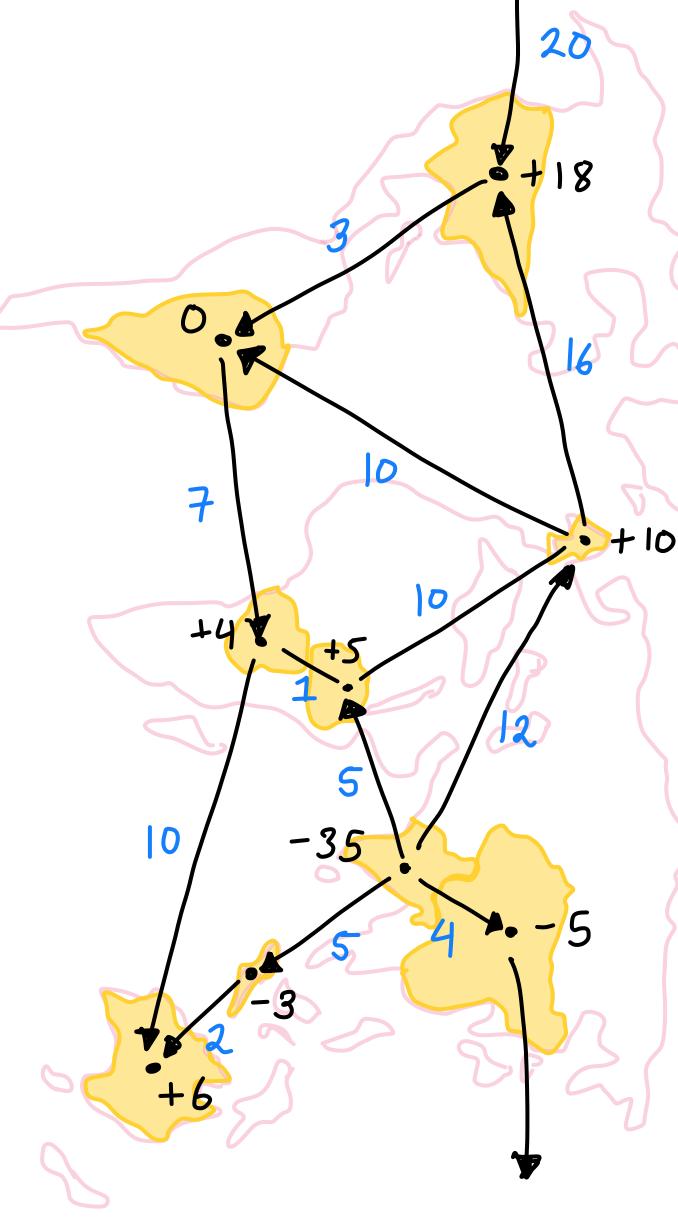
Circulation Demands

- Some countries produce more rice than the consume and some countries consume more rice than the consume
- There are trade routes that describe which countries can trade with which others and at what capacity
- How do we calculate rice routing?
- Input: directed graph G = (V, E) with capa and demand $d: V \to \mathbb{R}$ such that $\sum d(v)$ $v \in V$
- Output: A flow $f: E \to \mathbb{R}$ such that $f^{n}(v)$

pacities
$$c: E \to \mathbb{R}_{\geq 0}$$

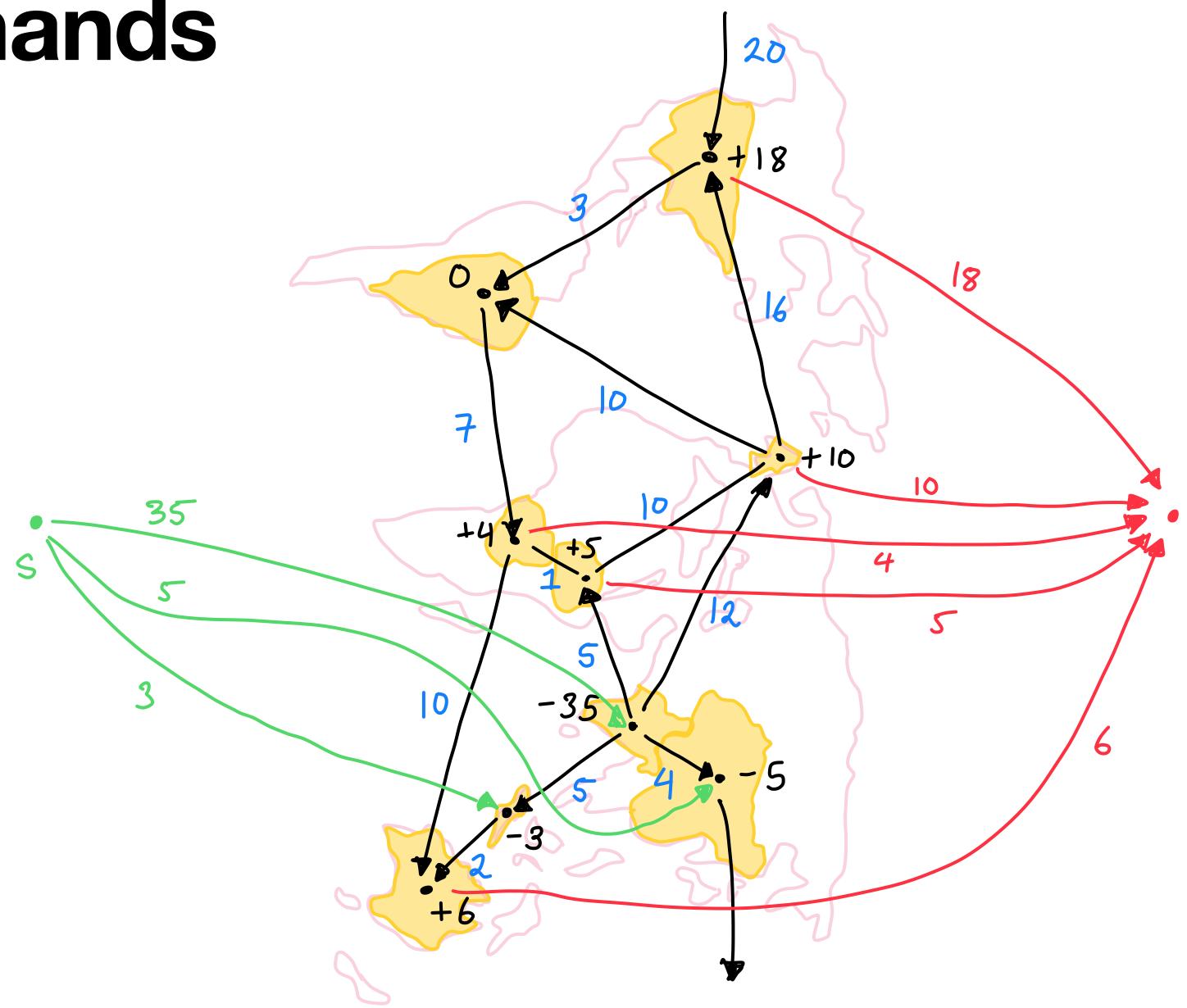
 $F(r) = 0.$

$$-f^{\rm out}(v) = d(v)$$



Circulation demands

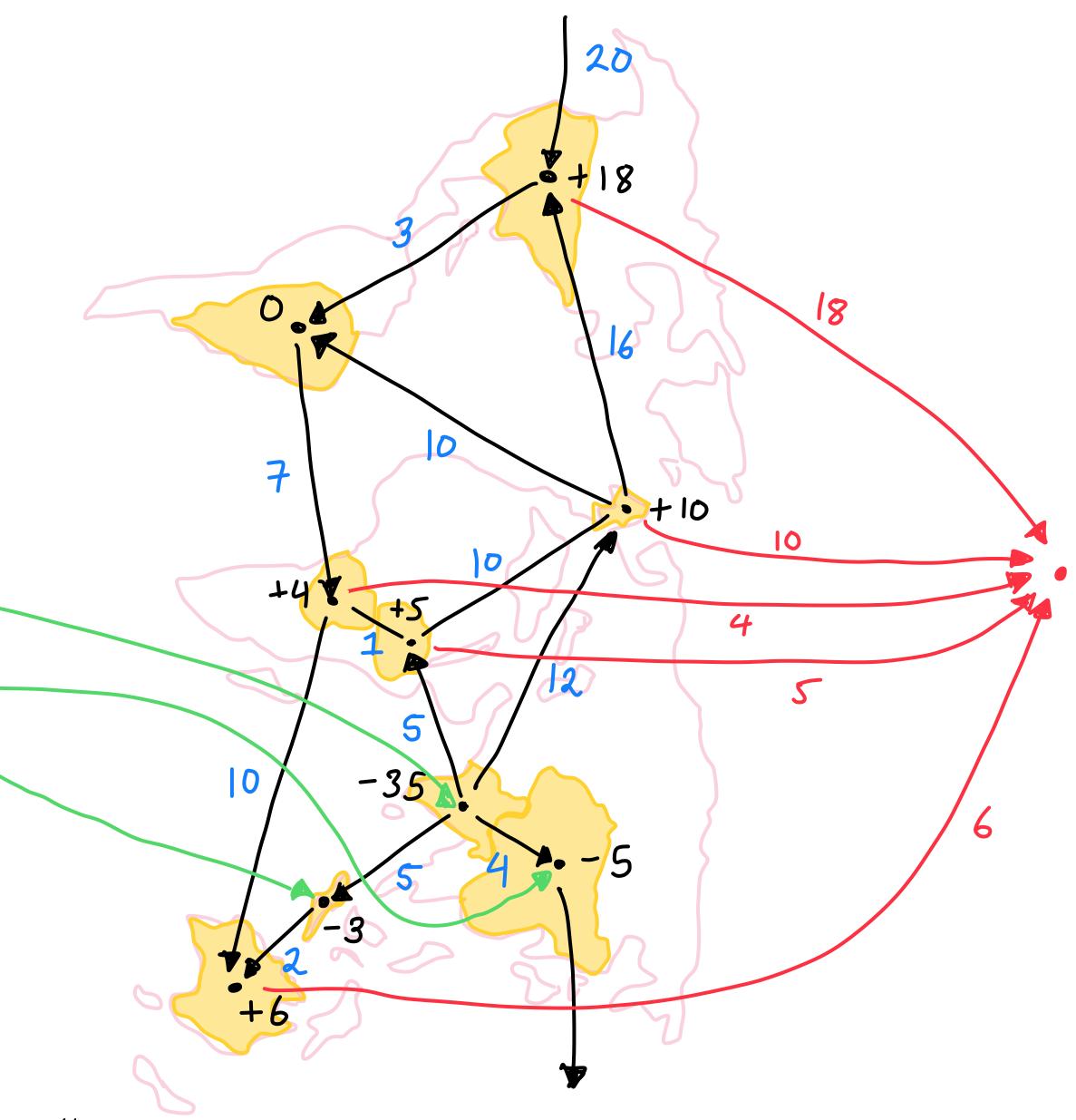
- Add source s and t to graph
- Add edge $s \rightarrow v$ of -d(v) if d(v) < 0.
- Add edge $v \to t$ of d(v) if $d(v) \ge 0$.
- Compute max flow on the graph.



Capacity demands

• Theorem: Let $D = \sum_{v:d(v)\geq 0} d(v)$.

- Then if, max flow = D, there is a *circulation* meeting all capacities and demands.
- If max flow < D, then no circulation exists meeting all capacities and demands.
 D v(f) is the "wasted" production.



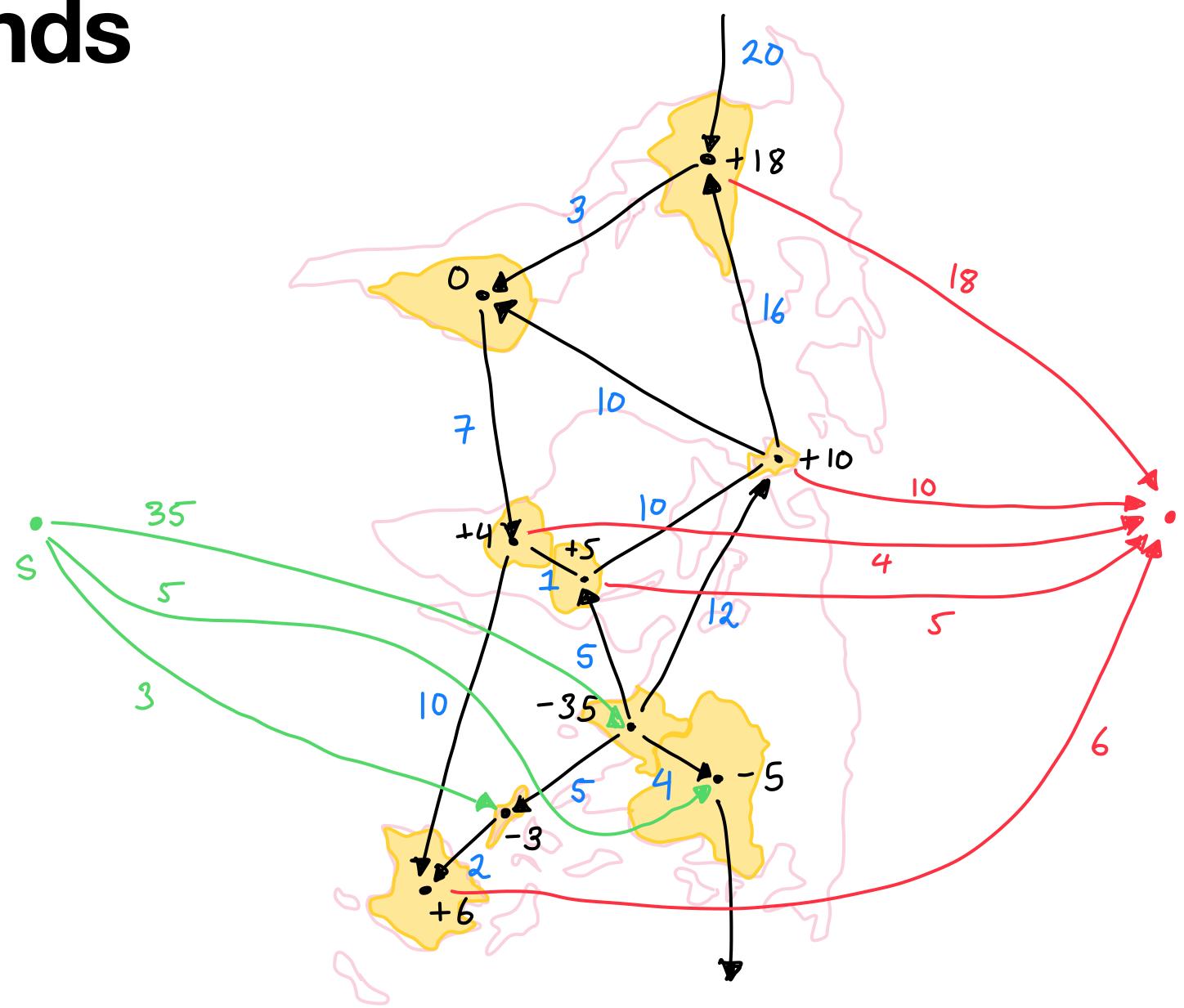
35

5

3

Capacity demands

- When does a circulation not exist? When max flow = min cut < D.
- Min-cut between "source" and "sink" vertices is smaller than demand.



 Look at India: The trade network is too small to satisfy the output.

