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Flow applications
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Previously in CSE 421...



Finding a pretty big augmenting path
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» Fast (Scaling) Augment: Starting with k < |log C/|, d 1
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. Find an augmenting path of size 2

« Run regular augmenting path search on Gf except with capacities
¢’ = |c/2].

» |If a path exists of bottleneck > 2" it still exists in adjusted graph. u/ X

>

* |If yes, add this augmenting path and restart.

* If not, decrease k < k — 1, and repeat.

 Theorem: If the max bottleneck capacity of any augmenting path is v, the fast

augment subroutine finds an augment of size > v/2 in time O(mlog C).
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Scaling Ford-Fulkerson

+ Algorithm: Start with flow f < 0 and G, < G.

« While the fast augment subroutine can find an augmenting path p

. Augment f by f,,, along path and update G,

. Theorem: The scaling version of Ford-Fulkerson runs in time O(m? log C).



Scaling Ford-Fulkerson runtime

. To prove the runtime of O(m? log C), we need to prove a few lemmas.

« Lemma: Every flow f can be expressed as the sum of < m flows along paths.

e Proof:

e While there exists a path p : s ~ ¢ in the flow,

 Remove flow along p of the bottleneck capacity of p. / \A/ \

* The resulting flow is O along some edge. S\ \/

e This can be repeated < m times.



Scaling Ford-Fulkerson runtime

- To prove the runtime of O(m?log C), we need to prove a few lemmas.

» Lemma: Every flow f can be expressed as the sum of < m flows along paths.

 Corollary: There exists a path within the flow of bottleneck capacity > maxflow(G)/m.
* Proof:
 Run the lemma on the max flow.

* By pigeon-hole principle, one of the paths must have large flow.



Scaling Ford-Fulkerson runtime

. To prove the runtime of O(m?*log C), we need to prove a few lemmas.

» Lemma: Every flow f can be expressed as the sum of < m flows along paths.

o Corollary: There exists a path within the flow of bottleneck capacity
> maxtlow(G)/m.

« Corollary: Fast-Augment will find an augmenting path in Gf of bottleneck
capacity > maXﬂOW(Gf)/ (2m).



Scaling Ford-Fulkerson runtime

« Corollary: Fast-Augment will find an augmenting path in Gf of bottleneck capacity
> maxtlow(Gy)/(2m).

 Each iteration of Fast-Augment will decrease by a mult. factor of 1 — 1/(2m)

| | log C log C
# of iterations < 1og_y/pp)-1(C) = —————— <
—log(1 — 1/(2m))  1/(2m)

. Total runtime is O(m) - 2mlog C = O(m*log C).
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= 2mlog C.
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Flow Independent of capacity

» So far, for integer capacities:

 Vanilla Ford-Fulkerson: Runtime O(mC)

* Pick any augmenting path

. Scaling Ford-Fulkerson: Runtime O(m?*log C)

* Pick the largest augmenting paths

« Edmonds-Karp (next): Runtime O(mzn)
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* Pick the shortest augmenting path (in terms of ;
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Today



Edmonds-Karp algorithm

+ Initialize f <~ O and G, < G
« While BFS starting from s outputs a pathp : s ~ tin Gf.

. Compute bottleneck capacity b and update f and Gf
by augmenting f along p at capacity b.

 Output resulting flow f.
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Edmonds-Karp

 We know the algorithm: it’'s BFS based-augumentations.
» Each run of BFS will compute an augmentation in time O(m).
. I've claimed the runtime is O(m?’n).

» Therefore, we need to be able to prove that only O(mn) augmentations are
needed.
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Edmonds-Karp

o Every time an augmenting path is chosen, the bottleneck edge ¢ becomes
saturated — i.e. f(e) = c(e)

 Suffices to show that each edge e can only be the bottleneck in at most n/2

augmenting paths.

mn
. Slince there are m edges, this yields a max of — augmenting paths.

2

* Detalls are excluded but do use Edmonds-Karp as a subroutine on problem
sets and exams.
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Maximum flow algs are minimum cut algs

 Given a maximum flow fin a network G, if § is the set of vertices reachable from s in the
residual network Gf, then (S, T := V\S) forms a minimum cut

» Edges from S to T are fully saturated

« Edges from 71 to S are completely devoid of flow

 The min cut may not be unigue just as the max flow may not be unique
 Maximum flow and minimum cut are dual problems

* Two sides of the same coin

* We will see this come up again in a few lectures!
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Applications of max flow/min cut



Recall: bipartite matching
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Recall: bipartite matching




Recall: Bipartite matching

o Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.

* Proof:
e Integer flow and bipartite matching equivalence:

e Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge
leaving a v € L can be selected. So a integer flow yields a matching of equal size.

» For every edge u — v from L to R in the bipartite matching add the flow

s = u — v — t. All flows will be compatible. So a bipartite matching yields a flow
of equal size.

* By equivalence, max flow will yield a max bipartite matching.

18



Min cut perspective

* We could solve the same flow problem if we set the capacity to the edges out
of s and into 7 as 1 and set the middle edges to capacity 0.




Min cut perspective

 Vertices of G involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of G that block all flow from s to ¢
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Min cut perspective

 Vertices of G involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of G that block all flow from s to ¢




Minimum vertex cover problem

 Definition: A subset of vertices C C V'is a vertex cover of an undirected graph G = (V, E)
iff every edge is touched by some vertex in C.

« Vs a trivial vertex cover for G. /O /O
O O—~O
 Input: An undirected graph G = (V, E) // \O O/ , I
G NO—0
e Output: A minimal vertex cover C for G. \O
O

min  Verey eover i te sed- Of O vechces
» Min Vertex Cover is a NP-complete problem

 However, min vertex cover on bipartite graphs is efficient!
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Minimum vertex cover problem
Bipartite graphs

e Claim: The min cut we observed just a minute ago generates a vertex cover.

g o/> € 0 > o

V\ e :
> (07 &

> 0

>4




Minimum vertex cover problem
Bipartite graphs

 Claim: The min cut we observed just a minute ago generates a min vertex cover.
* Proof:

e Suppose it did not generate a vertex cover.

» Then there is an edge e¢ = (u, v) not covered. We can augment the flow along the
path s = u — v — f, a contradiction.

« Suppose there is a smaller min vertex cover C’

» Then the edges connecting s or  to C’ form the crossing edges of a smaller min
cut. A contradiction.
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Perfect Matching

» Definition: A matching M C E is perfect iff every vertex participates in some
edge of M.

e The previous algorithms give us an algorithm for computing a maximal
matching for a bipartite graph.

« The matching is perfect if the size of the matching equals |L| = | R]|.

* The previous algs. also provide a criterion for whether a bipartite graph has
a perfect matching: Hall’s theorem.
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Hall’'s theorem
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e Theorem: If |[N(A)| > |A| for all subsets A C V, then there is a
perfect matching.

« Contrapositive: If there is no perfect matching, then | N(A)| < [A |
for some subset A.

 Proof: No perfect matching = min cutis < |L| in flow network.
e Let(S,7T)beas-tcutwithe(S,7T) < |L]|
e ChooseA=SNL,B=SNR.
« Then N(A) C B since no edges across the middle are in the cut.
* So |L|>c(S,T)=|L|-|A]+|B|=[L|-|A|+[NA)]
« So |[NA)| < |A].
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Maximum matching in general graphs

* Bipartite maximum matching runtimes:
« Generic augmenting path: O(mn)

o State of the art algorithm run in time O(m1+0(1)) time with high probabillity

* (General matching algorithm:;

. Solved — O(mn'#) time algorithm exists by Micali-Vazirani

 Beyond the scope of this course
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Edge disjoint paths

 Input: A directed graph G = (V, E) with identified vertices s, ¢

o Output: A maximal collection of paths s ~ 7 that share no edges

* Application: routing transmissions in communication networks

A1)




Edge disjoint paths

 Input: A directed graph G = (V, E) with identified vertices s, ¢

o Output: A maximal collection of paths s ~ 7 that share no edges

* Application: routing transmissions in communication networks




Edge disjoint paths

e ldea: Use max flow to calculate edge disjoint paths

» Need to convert our graph to a flow network < "\ 4/;\,&
« Removeanyedge - —» sandf — - ol X s \ o
a ¢
e Set capacity of all remaining edges to 1 \ J / /
lof 2 Y )\:, S

 Correctness argument: Prove a bijection between integer flows and edge
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.
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Edge disjoint paths

 Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.

* Proof:
» Since capacities are 1, f(e) € {0,1} since it is integer.
 Then for each edge ¢, at most one flow along a path can use e.

 We previously proved that every flow can be decomposed into < m paths.

* Therefore, the paths founds are edge disjoint.
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Edge disjoint paths

 Theorem: There is a bijection between integer flows and edge disjoint paths.
* Proof:
* Previous lemma converts each integer flow into an edge disjoint path.

 Sending 1-flow along each edge disjoint path is a valid flow.

» Conservation of flow follows at every vertex v € V\{s, t} from that of paths.

» Capacity constraints follow from being a 1-flow and edge disjoint.

* Jogether, this proves both directions of the bijection.
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Network connectivity

« Definition: A set of edges [ C E disconnects the source and sink if every
path § ~ f must use one edge from F.

e Input: directed graph G = (V, E) with source s and sink ¢

« Output: a minimal set of edges [ that disconnect the source and sink

RSN
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Network connectivity

« Definition: A set of edges [ C E disconnects the source and sink if every
path § ~ f must use one edge from F.

e Input: directed graph G = (V, E) with source s and sink ¢

« Output: a minimal set of edges [ that disconnect the source and sink

R




Network connectivity

e ldea: Use min cut to calculate minimal network disconnecting set

* Again, need to convert our graph to a flow network

« Remove anyedge - — sandf — -

o Set capacity of all remaining edges to

 Correctness argument: Prove a bijection between cuts and network
disconnecting sets. Then minimality of cut yields minimal disconnecting set.
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Network connectivity

* Network connectivity and edge disjoint
paths use the same reduction

 Network connectivity Is equivalent to
min cut

 Edge disjoint paths is equivalent to
max flow

e Menger’s theorem: the maximum
number of edge disjoint s-t paths is
equal to the minimum size of a
disconnecting set
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Directed flow cycle

 Definition: A directed flow cycle is a flow of value 0 but f 0 on every edge

« Examples:

» Directed flow cycles can be removed by running graph traversal on f, finding cycles
and removing bottleneck flow around the cycle
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Undirected graphs

 Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed
graphs

 What about undirected graphs?

« Solution: Replace each edge (u, v) with directed edges (1 — v), (v — u)
/1

6 - 0 :-——-> o >,

n v WS~ _—V

/1

* Run directed algorithm on new graph

 Remove any directed flow cycles

» Include edge {u, v} if either edge is used after removing flow cycles
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Circulation Demands

 Some countries produce more rice than the consume and
some countries consume more rice than the consume

e There are trade routes that describe which countries can trade

with which others and at what capacity

 How do we calculate rice routing?

e Input: directed graph G = (V, E) with capacities ¢ : £ — R
and demand d : V — R such that Z d(v) = 0.

veV

« Output: Aflow f: E = R such that f™(v) — fo"v) = d(v)
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Circulation demands

 Add source s and ¢
to graph

e Add edge s — Vv of
—d(v)ifd(v) < 0.

e Add edge v — 1 of
dwv)ifd(v) > 0.

« Compute max flow
on the grapnh.
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Capacity demands

Theorem: Let D = Z d(v).
v:d(v)>0

e Then if, max flow = D, there
IS a circulation meeting all
capacities and demands.

e If max flow < D, then no
circulation exists meeting all
capacities and demands.

D — v(f) is the “wasted”
production.
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Capacity demands

e When does a circulation
not exist? When max

flow = min cut < D.

. Mln cut between
“source” and sink”
vertices I1s smaller than

demand.

e ook at India: The trade
network I1s too small to
satisfy the output.
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