
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 18
Flow applications

1

Previously in CSE 421…

2

Finding a pretty big augmenting path

• Fast (Scaling) Augment: Starting with ,

• Find an augmenting path of size :

• Run regular augmenting path search on except with capacities
.

• If a path exists of bottleneck , it still exists in adjusted graph.

• If yes, add this augmenting path and restart.

• If not, decrease , and repeat.

• Theorem: If the max bottleneck capacity of any augmenting path is , the fast
augment subroutine finds an augment of size in time

k ← ⌊log C⌋

2k

Gf
c′ = ⌊c/2k⌋

≥ 2k

k ← k − 1

v
≥ v/2 O(m log C) .

3

Scaling Ford-Fulkerson

• Algorithm: Start with flow and .

• While the fast augment subroutine can find an augmenting path

• Augment by along path and update  

• Theorem: The scaling version of Ford-Fulkerson runs in time .

f ← 0 Gf ← G

p

f faug Gf

O(m2 log C)

4

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Proof:

• While there exists a path in the flow,

• Remove flow along of the bottleneck capacity of .

• The resulting flow is 0 along some edge.

• This can be repeated times.

O(m2 log C)

f ≤ m

p : s ↝ t

p p

≤ m

5

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Corollary: There exists a path within the flow of bottleneck capacity .

• Proof:

• Run the lemma on the max flow.

• By pigeon-hole principle, one of the paths must have large flow.

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

6

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Corollary: There exists a path within the flow of bottleneck capacity
.

• Corollary: Fast-Augment will find an augmenting path in of bottleneck
capacity .

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

Gf
≥ maxflow(Gf)/(2m)

7

Scaling Ford-Fulkerson runtime

• Corollary: Fast-Augment will find an augmenting path in of bottleneck capacity
.

• Each iteration of Fast-Augment will decrease by a mult. factor of

• # of iterations .

• Total runtime is .

Gf
≥ maxflow(Gf)/(2m)

1 − 1/(2m)

≤ log(1−1/(2m))−1(C) =
log C

−log(1 − 1/(2m))
≤

log C
1/(2m)

= 2m log C

O(m) ⋅ 2m log C = O(m2 log C)

8

Flow independent of capacity

• So far, for integer capacities:

• Vanilla Ford-Fulkerson: Runtime

• Pick any augmenting path

• Scaling Ford-Fulkerson: Runtime

• Pick the largest augmenting paths

• Edmonds-Karp (next): Runtime

• Pick the shortest augmenting path (in terms of # of edges)

O(mC)

O(m2 log C)

O(m2n)

9

Today

10

Edmonds-Karp algorithm

• Initialize and

• While BFS starting from outputs a path in .

• Compute bottleneck capacity and update and
by augmenting along at capacity .

• Output resulting flow .

f ← 0 Gf ← G

s p : s ↝ t Gf

b f Gf
f p b

f

11

Edmonds-Karp

• We know the algorithm: it’s BFS based-augumentations.

• Each run of BFS will compute an augmentation in time .

• I’ve claimed the runtime is .

• Therefore, we need to be able to prove that only augmentations are
needed.

O(m)

O(m2n)

O(mn)

12

Edmonds-Karp

• Every time an augmenting path is chosen, the bottleneck edge becomes
saturated — i.e.

• Suffices to show that each edge can only be the bottleneck in at most
augmenting paths.

• Since there are edges, this yields a max of augmenting paths.

• Details are excluded but do use Edmonds-Karp as a subroutine on problem
sets and exams.

e
f(e) = c(e)

e n/2

m
mn
2

13

Maximum flow algs are minimum cut algs

• Given a maximum flow in a network , if is the set of vertices reachable from in the
residual network , then forms a minimum cut

• Edges from to are fully saturated

• Edges from to are completely devoid of flow

• The min cut may not be unique just as the max flow may not be unique

• Maximum flow and minimum cut are dual problems

• Two sides of the same coin

• We will see this come up again in a few lectures!

f G S s
Gf (S, T := V∖S)

S T

T S

14

Applications of max flow/min cut

15

Recall: bipartite matching

16

Recall: bipartite matching

17

Recall: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.

• Proof:

• Integer flow and bipartite matching equivalence:

• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge
leaving a can be selected. So a integer flow yields a matching of equal size.

• For every edge from to in the bipartite matching add the flow
. All flows will be compatible. So a bipartite matching yields a flow

of equal size.

• By equivalence, max flow will yield a max bipartite matching.

v ∈ L

u → v L R
s → u → v → t

18

Min cut perspective

• We could solve the same flow problem if we set the capacity to the edges out
of and into as 1 and set the middle edges to capacity .s t ∞

19

Min cut perspective

• Vertices of involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of that block all flow from to

G
G s t

20

Min cut perspective

• Vertices of involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of that block all flow from to

G
G s t

21

Minimum vertex cover problem

• Definition: A subset of vertices is a vertex cover of an undirected graph
iff every edge is touched by some vertex in .

• is a trivial vertex cover for .

• Input: An undirected graph

• Output: A minimal vertex cover for .

• Min Vertex Cover is a -complete problem

• However, min vertex cover on bipartite graphs is efficient!

C ⊆ V G = (V, E)
C

V G

G = (V, E)

C G

𝖭𝖯

22

Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a vertex cover.

23

Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a min vertex cover.

• Proof:

• Suppose it did not generate a vertex cover.

• Then there is an edge not covered. We can augment the flow along the
path , a contradiction.

• Suppose there is a smaller min vertex cover

• Then the edges connecting or to form the crossing edges of a smaller min
cut. A contradiction.

e = (u, v)
s → u → v → t

C′

s t C′

24

Perfect Matching

• Definition: A matching is perfect iff every vertex participates in some
edge of .

• The previous algorithms give us an algorithm for computing a maximal
matching for a bipartite graph.

• The matching is perfect if the size of the matching equals .

• The previous algs. also provide a criterion for whether a bipartite graph has
a perfect matching: Hall’s theorem.

M ⊆ E
M

|L | = |R |

25

Hall’s theorem

• Theorem: If for all subsets , then there is a
perfect matching.

• Contrapositive: If there is no perfect matching, then
for some subset .

• Proof: No perfect matching min cut is in flow network.

• Let be a s-t cut with

• Choose .

• Then since no edges across the middle are in the cut.

• So

• So .

|N(A) | ≥ |A | A ⊆ V

|N(A) | < |A |
A

⟹ < |L |

(S, T) c(S, T) < |L |

A = S ∩ L, B = S ∩ R

N(A) ⊆ B

|L | > c(S, T) = |L | − |A | + |B | ≥ |L | − |A | + |N(A) |

|N(A) | < |A |

26

Maximum matching in general graphs

• Bipartite maximum matching runtimes:

• Generic augmenting path:

• State of the art algorithm run in time time with high probability

• General matching algorithm:

• Solved — time algorithm exists by Micali-Vazirani

• Beyond the scope of this course

O(mn)

O(m1+o(1))

O(mn1/2)

27

Edge disjoint paths

• Input: A directed graph with identified vertices

• Output: A maximal collection of paths that share no edges

• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t

28

Edge disjoint paths

• Input: A directed graph with identified vertices

• Output: A maximal collection of paths that share no edges

• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t

29

Edge disjoint paths

• Idea: Use max flow to calculate edge disjoint paths

• Need to convert our graph to a flow network

• Remove any edge and

• Set capacity of all remaining edges to 1

• Correctness argument: Prove a bijection between integer flows and edge
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

⋅ → s t → ⋅

30

Edge disjoint paths

• Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.

• Proof:

• Since capacities are 1, since it is integer.

• Then for each edge , at most one flow along a path can use .

• We previously proved that every flow can be decomposed into paths.

• Therefore, the paths founds are edge disjoint.

f(e) ∈ {0,1}

e e

≤ m

31

Edge disjoint paths

• Theorem: There is a bijection between integer flows and edge disjoint paths.

• Proof:

• Previous lemma converts each integer flow into an edge disjoint path.

• Sending 1-flow along each edge disjoint path is a valid flow.

• Conservation of flow follows at every vertex from that of paths.

• Capacity constraints follow from being a 1-flow and edge disjoint.

• Together, this proves both directions of the bijection.

v ∈ V∖{s, t}

32

Network connectivity

• Definition: A set of edges disconnects the source and sink if every
path must use one edge from .

• Input: directed graph with source and sink

• Output: a minimal set of edges that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F

33

Network connectivity

• Definition: A set of edges disconnects the source and sink if every
path must use one edge from .

• Input: directed graph with source and sink

• Output: a minimal set of edges that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F

34

Network connectivity

• Idea: Use min cut to calculate minimal network disconnecting set

• Again, need to convert our graph to a flow network

• Remove any edge and

• Set capacity of all remaining edges to 1

• Correctness argument: Prove a bijection between cuts and network
disconnecting sets. Then minimality of cut yields minimal disconnecting set.

⋅ → s t → ⋅

35

Network connectivity

• Network connectivity and edge disjoint
paths use the same reduction

• Network connectivity is equivalent to
min cut

• Edge disjoint paths is equivalent to
max flow

• Menger’s theorem: the maximum
number of edge disjoint s-t paths is
equal to the minimum size of a
disconnecting set

36

Directed flow cycle

• Definition: A directed flow cycle is a flow of value 0 but on every edge

• Examples:

• Directed flow cycles can be removed by running graph traversal on , finding cycles
and removing bottleneck flow around the cycle

f ≢ 0

f

37

Undirected graphs

• Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed
graphs

• What about undirected graphs?

• Solution: Replace each edge with directed edges

• Run directed algorithm on new graph

• Remove any directed flow cycles

• Include edge if either edge is used after removing flow cycles

(u, v) (u → v), (v → u)

{u, v}

38

Circulation Demands

• Some countries produce more rice than the consume and
some countries consume more rice than the consume

• There are trade routes that describe which countries can trade
with which others and at what capacity

• How do we calculate rice routing?

• Input: directed graph with capacities
and demand such that .

• Output: A flow such that

G = (V, E) c : E → ℝ≥0
d : V → ℝ ∑

v∈V

d(v) = 0

f : E → ℝ f in(v) − f out(v) = d(v)

39

Circulation demands

• Add source and
to graph

• Add edge of
 if .

• Add edge of
 if .

• Compute max flow
on the graph.

s t

s → v
−d(v) d(v) < 0

v → t
d(v) d(v) ≥ 0

40

Capacity demands

• Theorem: Let .

• Then if, max flow = , there
is a circulation meeting all
capacities and demands.

• If max flow , then no
circulation exists meeting all
capacities and demands.

 is the “wasted”
production.

D = ∑
v:d(v)≥0

d(v)

D

< D

D − v(f)

41

Capacity demands

• When does a circulation
not exist? When max
flow = min cut .

• Min-cut between
``source’’ and ``sink’’
vertices is smaller than
demand.

• Look at India: The trade
network is too small to
satisfy the output.

< D

42

