Lecture 18

Flow applications

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Finding a pretty big augmenting path

C 4

0 |21

:L(o

\

14

olola|al]e]4

» Fast (Scaling) Augment: Starting with k < |log C/|, d 1

JESFACS

. Find an augmenting path of size 2

« Run regular augmenting path search on Gf except with capacities
¢’ = |c/2].

» |If a path exists of bottleneck > 2" it still exists in adjusted graph. u/ X

>

* |If yes, add this augmenting path and restart.

* If not, decrease k < k — 1, and repeat.

 Theorem: If the max bottleneck capacity of any augmenting path is v, the fast

augment subroutine finds an augment of size > v/2 in time O(mlog C).

N4 \,

Scaling Ford-Fulkerson

+ Algorithm: Start with flow f < 0 and G, < G.

« While the fast augment subroutine can find an augmenting path p

. Augment f by f,,, along path and update G,

. Theorem: The scaling version of Ford-Fulkerson runs in time O(m? log C).

Scaling Ford-Fulkerson runtime

. To prove the runtime of O(m? log C), we need to prove a few lemmas.

« Lemma: Every flow f can be expressed as the sum of < m flows along paths.

e Proof:

e While there exists a path p : s ~ ¢ in the flow,

 Remove flow along p of the bottleneck capacity of p. / \A/ \

* The resulting flow is O along some edge. S\ \/

e This can be repeated < m times.

Scaling Ford-Fulkerson runtime

- To prove the runtime of O(m?log C), we need to prove a few lemmas.

» Lemma: Every flow f can be expressed as the sum of < m flows along paths.

 Corollary: There exists a path within the flow of bottleneck capacity > maxflow(G)/m.
* Proof:
 Run the lemma on the max flow.

* By pigeon-hole principle, one of the paths must have large flow.

Scaling Ford-Fulkerson runtime

. To prove the runtime of O(m?*log C), we need to prove a few lemmas.

» Lemma: Every flow f can be expressed as the sum of < m flows along paths.

o Corollary: There exists a path within the flow of bottleneck capacity
> maxtlow(G)/m.

« Corollary: Fast-Augment will find an augmenting path in Gf of bottleneck
capacity > maXﬂOW(Gf)/ (2m).

Scaling Ford-Fulkerson runtime

« Corollary: Fast-Augment will find an augmenting path in Gf of bottleneck capacity
> maxtlow(Gy)/(2m).

 Each iteration of Fast-Augment will decrease by a mult. factor of 1 — 1/(2m)

| | log C log C
of iterations < 1og_y/pp)-1(C) = —————— <
—log(1 — 1/(2m)) 1/(2m)

. Total runtime is O(m) - 2mlog C = O(m*log C).

I—

= 2mlog C.

-I

Flow Independent of capacity

» So far, for integer capacities:

 Vanilla Ford-Fulkerson: Runtime O(mC)

* Pick any augmenting path

. Scaling Ford-Fulkerson: Runtime O(m?*log C)

* Pick the largest augmenting paths

« Edmonds-Karp (next): Runtime O(mzn)

I—

* Pick the shortest augmenting path (in terms of ;

9

.

- of edges)

Today

Edmonds-Karp algorithm

+ Initialize f <~ O and G, < G
« While BFS starting from s outputs a pathp : s ~ tin Gf.

. Compute bottleneck capacity b and update f and Gf
by augmenting f along p at capacity b.

 Output resulting flow f.

11

Edmonds-Karp

 We know the algorithm: it’'s BFS based-augumentations.
» Each run of BFS will compute an augmentation in time O(m).
. I've claimed the runtime is O(m?’n).

» Therefore, we need to be able to prove that only O(mn) augmentations are
needed.

12

Edmonds-Karp

o Every time an augmenting path is chosen, the bottleneck edge ¢ becomes
saturated — i.e. f(e) = c(e)

 Suffices to show that each edge e can only be the bottleneck in at most n/2

augmenting paths.

mn
. Slince there are m edges, this yields a max of — augmenting paths.

2

* Detalls are excluded but do use Edmonds-Karp as a subroutine on problem
sets and exams.

13

Maximum flow algs are minimum cut algs

 Given a maximum flow fin a network G, if § is the set of vertices reachable from s in the
residual network Gf, then (S, T := V\S) forms a minimum cut

» Edges from S to T are fully saturated

« Edges from 71 to S are completely devoid of flow

 The min cut may not be unigue just as the max flow may not be unique
 Maximum flow and minimum cut are dual problems

* Two sides of the same coin

* We will see this come up again in a few lectures!

14

Applications of max flow/min cut

Recall: bipartite matching

’Ru\w "\:;r\o(—T‘;\]LLQM O 1"‘f\ls j"=]31/\

/

T~
\ 7

all 30[303 o cas‘Dac.'\\

Recall: bipartite matching

Recall: Bipartite matching

o Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.

* Proof:
e Integer flow and bipartite matching equivalence:

e Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge
leaving a v € L can be selected. So a integer flow yields a matching of equal size.

» For every edge u — v from L to R in the bipartite matching add the flow

s = u — v — t. All flows will be compatible. So a bipartite matching yields a flow
of equal size.

* By equivalence, max flow will yield a max bipartite matching.

18

Min cut perspective

* We could solve the same flow problem if we set the capacity to the edges out
of s and into 7 as 1 and set the middle edges to capacity 0.

Min cut perspective

 Vertices of G involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of G that block all flow from s to ¢

> 0)

- |

> 0

Min cut perspective

 Vertices of G involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of G that block all flow from s to ¢

Minimum vertex cover problem

 Definition: A subset of vertices C C V'is a vertex cover of an undirected graph G = (V, E)
iff every edge is touched by some vertex in C.

« Vs a trivial vertex cover for G. /O /O
O O—~O
 Input: An undirected graph G = (V, E) // \O O/ , I
G NO—0
e Output: A minimal vertex cover C for G. \O
O

min Verey eover i te sed- Of O vechces
» Min Vertex Cover is a NP-complete problem

 However, min vertex cover on bipartite graphs is efficient!

22

Minimum vertex cover problem
Bipartite graphs

e Claim: The min cut we observed just a minute ago generates a vertex cover.

g o/> € 0 > o

V\ e :
> (07 &

> 0

>4

Minimum vertex cover problem
Bipartite graphs

 Claim: The min cut we observed just a minute ago generates a min vertex cover.
* Proof:

e Suppose it did not generate a vertex cover.

» Then there is an edge e¢ = (u, v) not covered. We can augment the flow along the
path s = u — v — f, a contradiction.

« Suppose there is a smaller min vertex cover C’

» Then the edges connecting s or to C’ form the crossing edges of a smaller min
cut. A contradiction.

24

Perfect Matching

» Definition: A matching M C E is perfect iff every vertex participates in some
edge of M.

e The previous algorithms give us an algorithm for computing a maximal
matching for a bipartite graph.

« The matching is perfect if the size of the matching equals |L| = | R]|.

* The previous algs. also provide a criterion for whether a bipartite graph has
a perfect matching: Hall’s theorem.

25

Hall’'s theorem

mlj\abum o{\ e sk A ia e _jmf\'\

e Theorem: If |[N(A)| > |A| for all subsets A C V, then there is a
perfect matching.

« Contrapositive: If there is no perfect matching, then | N(A)| < [A |
for some subset A.

 Proof: No perfect matching = min cutis < |L| in flow network.
e Let(S,7T)beas-tcutwithe(S,7T) < |L]|
e ChooseA=SNL,B=SNR.
« Then N(A) C B since no edges across the middle are in the cut.
* So |L|>c(S,T)=|L|-|A]+|B|=[L|-|A|+[NA)]
« So |[NA)| < |A].

26

Maximum matching in general graphs

* Bipartite maximum matching runtimes:
« Generic augmenting path: O(mn)

o State of the art algorithm run in time O(m1+0(1)) time with high probabillity

* (General matching algorithm:;

. Solved — O(mn'#) time algorithm exists by Micali-Vazirani

 Beyond the scope of this course

27

Edge disjoint paths

 Input: A directed graph G = (V, E) with identified vertices s, ¢

o Output: A maximal collection of paths s ~ 7 that share no edges

* Application: routing transmissions in communication networks

A1)

Edge disjoint paths

 Input: A directed graph G = (V, E) with identified vertices s, ¢

o Output: A maximal collection of paths s ~ 7 that share no edges

* Application: routing transmissions in communication networks

Edge disjoint paths

e ldea: Use max flow to calculate edge disjoint paths

» Need to convert our graph to a flow network < "\ 4/;\,&
« Removeanyedge - —» sandf — - ol X s \ o
a ¢
e Set capacity of all remaining edges to 1 \ J / /
lof 2 Y)\:, S

 Correctness argument: Prove a bijection between integer flows and edge
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

30

Edge disjoint paths

 Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.

* Proof:
» Since capacities are 1, f(e) € {0,1} since it is integer.
 Then for each edge ¢, at most one flow along a path can use e.

 We previously proved that every flow can be decomposed into < m paths.

* Therefore, the paths founds are edge disjoint.

31

Edge disjoint paths

 Theorem: There is a bijection between integer flows and edge disjoint paths.
* Proof:
* Previous lemma converts each integer flow into an edge disjoint path.

 Sending 1-flow along each edge disjoint path is a valid flow.

» Conservation of flow follows at every vertex v € V\{s, t} from that of paths.

» Capacity constraints follow from being a 1-flow and edge disjoint.

* Jogether, this proves both directions of the bijection.

32

Network connectivity

« Definition: A set of edges [C E disconnects the source and sink if every
path § ~ f must use one edge from F.

e Input: directed graph G = (V, E) with source s and sink ¢

« Output: a minimal set of edges [that disconnect the source and sink

RSN

°— ¥ 3,%« =

Network connectivity

« Definition: A set of edges [C E disconnects the source and sink if every
path § ~ f must use one edge from F.

e Input: directed graph G = (V, E) with source s and sink ¢

« Output: a minimal set of edges [that disconnect the source and sink

R

Network connectivity

e ldea: Use min cut to calculate minimal network disconnecting set

* Again, need to convert our graph to a flow network

« Remove anyedge - — sandf — -

o Set capacity of all remaining edges to

 Correctness argument: Prove a bijection between cuts and network
disconnecting sets. Then minimality of cut yields minimal disconnecting set.

35

Network connectivity

* Network connectivity and edge disjoint
paths use the same reduction

 Network connectivity Is equivalent to
min cut

 Edge disjoint paths is equivalent to
max flow

e Menger’s theorem: the maximum
number of edge disjoint s-t paths is
equal to the minimum size of a
disconnecting set

36

Directed flow cycle

 Definition: A directed flow cycle is a flow of value 0 but f 0 on every edge

« Examples:

» Directed flow cycles can be removed by running graph traversal on f, finding cycles
and removing bottleneck flow around the cycle

37

Undirected graphs

 Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed
graphs

 What about undirected graphs?

« Solution: Replace each edge (u, v) with directed edges (1 — v), (v — u)
/1

6 - 0 :-——-> o >,

n v WS~ _—V

/1

* Run directed algorithm on new graph

 Remove any directed flow cycles

» Include edge {u, v} if either edge is used after removing flow cycles

38

Circulation Demands

 Some countries produce more rice than the consume and
some countries consume more rice than the consume

e There are trade routes that describe which countries can trade

with which others and at what capacity

 How do we calculate rice routing?

e Input: directed graph G = (V, E) with capacities ¢ : £ — R
and demand d : V — R such that Z d(v) = 0.

veV

« Output: Aflow f: E = R such that f™(v) — fo"v) = d(v)

39

Circulation demands

 Add source s and ¢
to graph

e Add edge s — Vv of
—d(v)ifd(v) < 0.

e Add edge v — 1 of
dwv)ifd(v) > 0.

« Compute max flow
on the grapnh.

40

Capacity demands

Theorem: Let D = Z d(v).
v:d(v)>0

e Then if, max flow = D, there
IS a circulation meeting all
capacities and demands.

e If max flow < D, then no
circulation exists meeting all
capacities and demands.

D — v(f) is the “wasted”
production.

41

Capacity demands

e When does a circulation
not exist? When max

flow = min cut < D.

. Mln cut between
“source” and sink”
vertices I1s smaller than

demand.

e ook at India: The trade
network I1s too small to
satisfy the output.

42

