
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 17
Efficient Maximum Flow and applications

￼1

Previously in CSE 421…

2

The maximum flow problem

• Input: a flow network

• Output: a s-t flow of maximum value

(G, c, s, t)

3

Today

4

Ford-Fulkerson always finds a max flow

• Theorem: When capacities are positive integers, Ford-Fulkerson always
terminates and outputs a max-flow.

• Observation: Ford-Fulkerson only terminates if there is no path in the
residual graph .

• Therefore, it suffices to show that a flow is maximal iff there is no no path
 in the residual graph .

s ↝ t
Gf

f
s ↝ t Gf

5

The max flow/min cut theorem

• Max flow/min cut theorem: Let be a flow in a network . The
following statements are equivalent!

• (1) There exists a s-t cut such that .

• (2) is a max flow.

• (3) There is no augmentation path in .

• We will prove that (1) (2), (2) (3), and (3) (1).

f (G, s, t, c)

(S, T) v(f) = c(S, T)

f

s ↝ t Gf

⟹ ⟹ ⟹

6

The max flow/min cut theorem
(1) (2)⟹

• (1) There exists a s-t cut such that .

• (2) is a max flow.

• Proof:

• We know that for any s-t cut [Weak duality].

• So if , then there cannot be any flow s.t.

• So must be maximal.

(S, T) v(f) = c(S, T)

f

v(f) ≤ c(S, T)

v(f) = c(S, T) f′￼ v(f′￼) > v(f) .

f

7

The max flow/min cut theorem
(2) (3)⟹

• (2) is a max flow.

• (3) There is no augmentation path in .

• Proof: By contrapositive.

f

s ↝ t Gf

8

The max flow/min cut theorem
 (3) (2)¬ ⟹ ¬

• (2) is not a max flow.

• (3) There is a augmentation path in .

• Proof:

• Let be the augmentation path.

• We saw last lecture that is a flow in . And .

¬ f

¬ s ↝ t Gf

faug

f + faug G v(f + faug) > v(f)

9

The max flow/min cut theorem
(3) (1)⟹

• (3) There is no augmentation path in .

• (1) There exists a s-t cut such that .

• Proof: This is a lengthy proof! It will take us a few slides. Key ideas:

• We will need to find the s-t cut . It should be based on the aug. path.

• Then we will use that to prove that .

s ↝ t Gf

(S, T) v(f) = c(S, T)

(S, T)

v(f) = f out(S) − f in(S) v(f) = c(S, T)

10

The max flow/min cut theorem
(3) (1)⟹

• Proof:

• Let be a flow such that there are no
augmenting paths in .

• Let be the set of vertices reachable from .

• Since there are no paths, .

• Let and this defines a s-t cut.

f
Gf

S s

t ∉ S

T = V∖S

11

The max flow/min cut theorem
(3) (1)⟹

• Proof:

• What does it mean for there to be no edges
to in the residual graph ?

• For any edge from to ,

S
T Gf

e = (u → v) ∈ G S T

12

The max flow/min cut theorem
(3) (1)⟹

• Proof:

• What does it mean for there to be no edges
to in the residual graph ?

• For any edge from to ,

S
T Gf

e = (u → v) ∈ G S T

13

The max flow/min cut theorem
(3) (1)⟹

• Proof:

• What does it mean for there to be no edges
to in the residual graph ?

• For any edge from to ,

S
T Gf

e′￼ = (v → u) ∈ G T S

14

The max flow/min cut theorem
(3) (1)⟹

• Proof:

• Edges from to are saturated with flow.

• Edges from to have no flow.

•

•

•

• .

S T

T S

v(f) = f out(S) − f in(S)

v(f) = ∑
e from S to T

f(e) − ∑
e′￼ from T to S

f(e′￼)

v(f) = ∑
e from S to T

c(e)

C(S,T)

− ∑
e′￼ from T to S

0

0

v(f) = C(S, T)

15

The max flow/min cut theorem
(3) (1)⟹

• (3) There is no augmentation path in .

• (1) There exists a s-t cut such that .

• Proof: This is a lengthy proof! It will take us a few slides. Key ideas:

• We will need to find the s-t cut . It should be based on the aug. path.

• Then we will use that to prove that .

s ↝ t Gf

(S, T) v(f) = c(S, T)

(S, T)

v(f) = f out(S) − f in(S) v(f) = c(S, T)

16

The max flow/min cut theorem

• Max flow/min cut theorem: Let be a flow in a network . The
following statements are equivalent!

• (1) There exists a s-t cut such that .

• (2) is a max flow.

• (3) There is no augmentation path in .

• Corollary: The value of the max flow equals the value of the min cut!

f (G, c, s, t)

(S, T) v(f) = c(S, T)

f

s ↝ t Gf

17

Returning to Ford-Fulkerson

• Ford-Fulkerson is a greedy algorithm which calculates the max flow by incrementally
increasing the flow.

• Max flow/min cut theorem proves that Ford-Fulkerson only terminates when the max flow
is achieved.

• If the capacities are integer, Ford-Fulkerson will increase the flow by at least 1 per iteration.

• Yields a runtime of where is the sum of capacities of edges leaving .

• Runtime can be exponential time in input length for large as capacities are expressed in
binary in the input.

• But when , then algorithm can be very efficient.

O(mC) C s

C

C = poly(n)

18

Integral max flow

• Theorem: Consider a graph network where . Then,
there exists a max flow which assigns an integer flow to every edge.

• Proof:

• Ford-Fulkerson will calculate the max flow.

• Ford-Fulkerson only increases the flow by integer quantities starting from 0.

• Therefore, there exists a max flow that has integer flow.

(G, s, t, c) c : E → ℤ≥0

19

Application: Bipartite matching

• Input: A bipartite graph

• Output: A maximal collection of edges that don’t
share any vertices.

• We saw this problem earlier in the course, but
didn’t come up with an algorithm.

• We will see that there is an algorithm based on
Ford-Fulkerson.

(V = L ⊔ R, E)

20

Application: Bipartite matching

• Input: A bipartite graph

• Output: A maximal collection of edges that don’t
share any vertices.

• To solve with Ford-Fulkerson, we need to create a
directed graph and identify a source and sink .

(V = L ⊔ R, E)

s t

21

Application: Bipartite matching

22

Application: Bipartite matching

23

Application: Bipartite matching

24

Application: Bipartite matching

25

Application: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.

• Proof:

• Integer flow and bipartite matching bijection:

• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge
leaving a can be selected. So a integer flow yields a matching of equal size.

• For every edge from to in the bipartite matching add the flow
. All flows will be compatible. So a bipartite matching yields a flow

of equal size.

• By bijection, max flow will yield a max bipartite matching.

v ∈ L

u → v L R
s → u → v → t

26

Application: Bipartite matching

• Runtime: Each edge has capacity , root node has total output capacity .

• , number of edges in network is .

• Total runtime after reduction, .

1 n

C = n m + 2n

O((2n + m)n) = O(n2 + mn)

27

Ford-Fulkerson can be slow

• Input: The input is a flow network

• Formally, for each edge with being a
number expressed in binary.

• Then is an exponential number in the size of the input.

• Ford-Fulkerson can be slow! Runtime of .

• Because each update only guarantees flow increase by 1.

• Is there a fast way to find bigger increases in flow?

(G, s, t, c)

c = {c(e1), c(e2), …, c(em)} ej c(ej)

C = C({s}, V∖{s})

O(mC)

28

Finding an augmenting path

• We previously chose an augmenting path in
by running a graph traversal from to and picking a
path

• This will find an augmenting path but may fail to find
the augmenting path of largest bottleneck capacity

• Idea: If there exists some augmenting path of
bottleneck capacity , can we construct an
algorithm that finds an augmenting path of bottleneck
capacity at least

s ↝ t Gf
s t

≥ 2k

2k?

29

Finding a pretty big augmenting path

• Fast (Scaling) Augment: Starting with ,

• Find an augmenting path of size :

• Run regular augmenting path search on except with capacities .

• If a path exists of bottleneck , it still exists in adjusted graph.

• If yes, add this augmenting path and restart.

• If not, decrease , and repeat.

• Theorem: If the max bottleneck capacity of any augmenting path is , the fast
augment subroutine finds an augment of size in time

k ← ⌊log C⌋

2k

Gf c′￼ = ⌊c/2k⌋

≥ 2k

k ← k − 1

v
≥ v/2 O(m log C) .

30

Scaling Ford-Fulkerson

• Algorithm: Start with flow and .

• While the fast augment subroutine can find an augmenting path

• Augment by along path and update  

• Theorem: The scaling version of Ford-Fulkerson runs in time .

f ← 0 Gf ← G

p

f faug Gf

O(m2 log C)

31

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Proof:

• While there exists a path in the flow,

• Remove flow along of the bottleneck capacity of .

• The resulting flow is 0 along some edge.

• This can be repeated times.

O(m2 log C)

f ≤ m

p : s ↝ t

p p

≤ m

32

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Corollary: There exists a path within the flow of bottleneck capacity .

• Proof:

• Run the lemma on the max flow.

• By pigeon-hole principle, one of the paths must have large flow.

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

33

Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.

• Lemma: Every flow can be expressed as the sum of flows along paths.

• Corollary: There exists a path within the flow of bottleneck capacity
.

• Corollary: Fast-Augment will find an augmenting path in of bottleneck
capacity .

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

Gf
≥ maxflow(Gf)/(2m)

34

Scaling Ford-Fulkerson runtime

• Corollary: Fast-Augment will find an augmenting path in of bottleneck capacity
.

• Each iteration of Fast-Augment will decrease by a mult. factor of

• # of iterations .

• Total runtime is .

Gf
≥ maxflow(Gf)/(2m)

1 − 1/(2m)

≤ log(1−1/(2m))−1(C) =
log C

−log(1 − 1/(2m))
≤

log C
1/(2m)

= 2m log C

O(m) ⋅ 2m log C = O(m2 log C)

35

Flow independent of capacity

• So far, for integer capacities:

• Vanilla Ford-Fulkerson: Runtime

• Pick any augmenting path

• Scaling Ford-Fulkerson: Runtime

• Pick the largest augmenting paths

• Edmonds-Karp (next): Runtime

• Pick the shortest augmenting path (in terms of # of edges)

O(mC)

O(m2 log C)

O(m2n)

36

Edmonds-Karp algorithm

• Initialize and

• While BFS starting from outputs a path in .

• Compute bottleneck capacity and update and
by augmenting along at capacity .

• Output resulting flow .

f ← 0 Gf ← G

s p : s ↝ t Gf

b f Gf
f p b

f

37

Edmonds-Karp

• We know the algorithm: it’s BFS based-augumentations.

• Each run of BFS will compute an augmentation in time .

• I’ve claimed the runtime is .

• Therefore, we need to be able to prove that only augmentations are
needed.

O(m)

O(m2n)

O(mn)

38

Edmonds-Karp

• Every time an augmenting path is chosen, the bottleneck edge becomes
saturated — i.e.

• Let’s show that each edge can only be the bottleneck in at most
augmenting paths.

• Since there are edges, this yields a max of augmenting paths.

• Details will be a problem set problem!

e
f(e) = c(e)

e n/2

m
mn
2

39

Maximum flow algs are minimum cut algs

• Given a maximum flow in a network , the set of edges that are saturated:
 form a minimum cut

• The min cut may not be unique just as the max flow may not be unique

• Maximum flow and minimum cut are dual problems

• Two sides of the same coin

• We will see this come up again in a couple of weeks!

f G
f(e) = c(e)

40

Applications of max flow/min cut

41

Recall: bipartite matching

42

Recall: bipartite matching

43

Recall: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.

• Proof:

• Integer flow and bipartite matching equivalence:

• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge
leaving a can be selected. So a integer flow yields a matching of equal size.

• For every edge from to in the bipartite matching add the flow
. All flows will be compatible. So a bipartite matching yields a flow

of equal size.

• By equivalence, max flow will yield a max bipartite matching.

v ∈ L

u → v L R
s → u → v → t

44

Min cut perspective

• We could solve the same flow problem if we set the capacity to the edges out
of and into as 1 and set the middle edges to capacity .s t ∞

45

Min cut perspective

• Vertices of involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of that block all flow from to

G
G s t

46

Min cut perspective

• Vertices of involved in the min cut (one per edge crossing the cut) forms a
minimum size set of vertices of that block all flow from to

G
G s t

47

Minimum vertex cover problem

• Definition: A subset of vertices is a vertex cover of an undirected graph
iff every edge is touched by some vertex in .

• is a trivial vertex cover for .

• Input: An undirected graph

• Output: A minimal vertex cover for .

• Min Vertex Cover is a -complete problem

• However, min vertex cover on bipartite graphs is efficient!

C ⊆ V G = (V, E)
C

V G

G = (V, E)

C G

𝖭𝖯

48

Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a vertex cover.

49

Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a min vertex cover.

• Proof:

• Suppose it did not generate a vertex cover.

• Then there is an edge not covered. We can augment the flow along the
path , a contradiction.

• Suppose there is a smaller min vertex cover

• Then the edges connecting or to form the crossing edges of a smaller min
cut. A contradiction.

e = (u, v)
s → u → v → t

C′￼

s t C′￼

50

Perfect Matching

• Definition: A matching is perfect iff every vertex participates in some
edge of .

• The previous algorithms give us an algorithm for computing a maximal
matching for a bipartite graph.

• The matching is perfect if the size of the matching equals .

• However, it also provides a criterion for whether a bipartite graph has a
perfect matching: Hall’s theorem.

M ⊆ E
M

|L | = |R |

51

Hall’s theorem

• Theorem: If for all subsets , then there is a
perfect matching.

• Contrapositive: If there is no perfect matching, then
for some subset .

• Proof: No perfect matching min cut is in flow network.

• Let be a s-t cut with

• Choose .

• Then since no edges across the middle are in the cut.

• So

• So .

|N(A) | ≥ |A | A ⊆ V

|N(A) | < |A |
A

⟹ < |L |

(S, T) c(S, T) < |L |

A = S ∩ L, B = S ∩ R

N(A) ⊆ B

|L | > c(S, T) = |L | − |A | + |B | ≥ |L | − |A | + |N(A) |

|N(A) | < |A |

52

Maximum matching in general graphs

• Bipartite maximum matching runtimes:

• Generic augmenting path:

• State of the art algorithm run in time time with high probability

• General matching algorithm:

• Solved — time algorithm exists by Micali-Vazirani

• Beyond the scope of this course

O(mn)

O(m1+o(1))

O(mn1/2)

53

Edge disjoint paths

• Input: A directed graph with identified vertices

• Output: A maximal collection of paths that share no edges

• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t

54

Edge disjoint paths

• Input: A directed graph with identified vertices

• Output: A maximal collection of paths that share no edges

• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t

55

Edge disjoint paths

• Idea: Use max flow to calculate edge disjoint paths

• Need to convert our graph to a flow network

• Remove any edge and

• Set capacity of all remaining edges to 1

• Correctness argument: Prove a bijection between integer flows and edge
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

⋅ → s t → ⋅

56

Edge disjoint paths

• Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.

• Proof:

• Since capacities are 1, since it is integer.

• Then for each edge , at most one flow along a path can use .

• We previously proved that every flow can be decomposed into paths.

• Therefore, the paths founds are edge disjoint.

f(e) ∈ {0,1}

e e

≤ m

57

Edge disjoint paths

• Theorem: There is a bijection between integer flows and edge disjoint paths.

• Proof:

• Previous lemma converts each integer flow into an edge disjoint path.

• Sending 1-flow along each edge disjoint path is a valid flow.

• Conservation of flow follows at every vertex from that of paths.

• Capacity constraints follow from being a 1-flow and edge disjoint.

• Together, this proves both directions of the bijection.

v ∈ V∖{s, t}

58

Network connectivity

• Definition: A set of edges disconnects the source and sink if every
path must use one edge from .

• Input: directed graph with source and sink

• Output: a minimal set of edges that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F

59

Network connectivity

• Definition: A set of edges disconnects the source and sink if every
path must use one edge from .

• Input: directed graph with source and sink

• Output: a minimal set of edges that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F

60

Network connectivity

• Idea: Use min cut to calculate minimal network disconnecting set

• Again, need to convert our graph to a flow network

• Remove any edge and

• Set capacity of all remaining edges to 1

• Correctness argument: Prove a bijection between cuts and network
disconnecting sets. Then minimality of cut yields minimal disconnecting set.

⋅ → s t → ⋅

61

Network connectivity

• Network connectivity and edge disjoint
paths use the same reduction

• Network connectivity is equivalent to
min cut

• Edge disjoint paths is equivalent to
max flow

• Menger’s theorem: the maximum
number of edge disjoint s-t paths is
equal to the minimum size of a
disconnecting set

62

Directed flow cycle

• Definition: A directed flow cycle is a flow of value 0 but on every edge

• Examples:

• Directed flow cycles can be removed by running graph traversal on , finding cycles
and removing bottleneck flow around the cycle

f ≢ 0

f

63

Undirected graphs

• Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed
graphs

• What about undirected graphs?

• Solution: Replace each edge with directed edges

• Run directed algorithm on new graph

• Remove any directed flow cycles

• Include edge if either edge is used after removing flow cycles

(u, v) (u → v), (v → u)

{u, v}

64

Circulation Demands

• Some countries produce more rice than the consume and
some countries consume more rice than the consume

• There are trade routes that describe which countries can trade
with which others and at what capacity

• How do we calculate rice routing?

• Input: directed graph with capacities
and demand such that .

• Output: A flow such that

G = (V, E) c : E → ℝ≥0
d : V → ℝ ∑

v∈V

d(v) = 0

f : E → ℝ f in(v) − f out(v) = d(v)

65

Circulation demands

• Add source and
to graph

• Add edge of
 if .

• Add edge of
 if .

• Compute max flow
on the graph.

s t

s → v
−d(v) d(v) < 0

v → t
d(v) d(v) ≥ 0

66

Capacity demands

• Theorem: Let .

• Then if, max flow = , there
is a circulation meeting all
capacities and demands.

• If max flow , then no
circulation exists meeting all
capacities and demands.

 is the “wasted”
production.

D = ∑
v:d(v)≥0

d(v)

D

< D

D − v(f)

67

Capacity demands

• When does a circulation
not exist? When max
flow = min cut .

• Min-cut between
``source’’ and ``sink’’
vertices is smaller than
demand.

• Look at India: The trade
network is too small to
satisfy the output.

< D

68

General max flow/min cut algorithmic paradigm

• If source and sink are not obvious, they may need to be added to the graph

• We need to choose capacity limits for edges: 0, 1, or an input from the problem
are logical choices

• Undirected graphs will need to be converted to directed equivalents

• Unnecessary flow cycles can be removed after flow is calculated

• Split a vertex into two (will show up on problem set):

• Choose correct version of flow algorithm based on capacities

∞

69

Cut like problems

• Until now, most of the problems looked mostly “flow”-like

• Max flow = min cut tells us that there are probably many “cut”-like problems
we can also solve

• Next: an examples of a cut-like problem

• Goal here is to get you to see flow networks appear in unexpected
situations

• This is at the heart of learning algorithms

70

Baseball winner

• Imagine a simplified scenario — the team(s) that wins the most games overall
is crowned the winner(s).

• Midway through the season, we have the following win totals for the teams

71

Team Wins
Games

remaining vs
Angels

Games
remaining vs

Rangers

Games
remaining vs

Athletics

Games
remaining vs

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —

Could the Mariners
possibly win or tie

for first?

Baseball winner

• Best case is Mariners win out — 82 wins

• Still depends on how the other teams play each
other. How do we algorithmically calculate this?

• In order to win, Mariners must have a run total
at least as high as every other team.

72

Team Wins
Games

remaining vs
Angels

Games
remaining vs

Rangers

Games
remaining vs

Athletics

Games
remaining vs

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —

Baseball winner

• If there was a way that the games could
play out such that no team amassed
wins then there would be a flow of value

 in this network.

• However, the min cut equals = 6

> 82

5 + 4 + 3 = 12

73

Team Wins
Games

remaining vs
Angels

Games
remaining vs

Rangers

Games
remaining vs

Athletics

Games
remaining vs

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —

Baseball winner

• Even though no team has won > 82 games
yet, this mathematically proves that the
Mariners cannot win/tie for 1st.

• A clever way to consider all possible scenarios
without exploring all the remaining games.

74

Team Wins
Games

remaining vs
Angels

Games
remaining vs

Rangers

Games
remaining vs

Athletics

Games
remaining vs

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —

