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Lecture 17
Efficient Maximum Flow and applications
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Previously in CSE 421…
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The maximum flow problem

• Input: a flow network 


• Output: a s-t flow of maximum value

(G, c, s, t)
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Today
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Ford-Fulkerson always finds a max flow

• Theorem: When capacities are positive integers, Ford-Fulkerson always 
terminates and outputs a max-flow.


• Observation: Ford-Fulkerson only terminates if there is no path  in the 
residual graph .


• Therefore, it suffices to show that a flow  is maximal iff there is no no path 
 in the residual graph .

s ↝ t
Gf

f
s ↝ t Gf
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The max flow/min cut theorem

• Max flow/min cut theorem: Let  be a flow in a network . The 
following statements are equivalent!


• (1) There exists a s-t cut  such that .


• (2)  is a max flow.


• (3) There is no augmentation path  in .


• We will prove that (1)  (2), (2)  (3), and (3)  (1).

f (G, s, t, c)

(S, T) v( f ) = c(S, T)

f

s ↝ t Gf

⟹ ⟹ ⟹
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The max flow/min cut theorem
(1)  (2)⟹

• (1) There exists a s-t cut  such that .


• (2)  is a max flow.


• Proof:  

• We know that  for any s-t cut [Weak duality].


• So if , then there cannot be any flow  s.t. 


• So  must be maximal. 

(S, T) v( f ) = c(S, T)

f

v( f ) ≤ c(S, T)

v( f ) = c(S, T) f′ v( f′ ) > v( f ) .

f
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The max flow/min cut theorem
(2)  (3)⟹

• (2)  is a max flow.


• (3) There is no augmentation path  in .


• Proof: By contrapositive.

f

s ↝ t Gf
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The max flow/min cut theorem
 (3)   (2)¬ ⟹ ¬

•  (2)  is not a max flow.


•  (3) There is a augmentation path  in .


• Proof: 

• Let  be the augmentation path.


• We saw last lecture that  is a flow in . And .  

¬ f

¬ s ↝ t Gf

faug

f + faug G v( f + faug) > v( f )
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The max flow/min cut theorem
(3)  (1)⟹

• (3) There is no augmentation path  in .


• (1) There exists a s-t cut  such that .


• Proof: This is a lengthy proof! It will take us a few slides. Key ideas:


• We will need to find the s-t cut . It should be based on the aug. path.


• Then we will use that  to prove that .

s ↝ t Gf

(S, T) v( f ) = c(S, T)

(S, T)

v( f ) = f out(S) − f in(S) v( f ) = c(S, T)
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The max flow/min cut theorem
(3)  (1)⟹

• Proof:  

• Let  be a flow such that there are no 
augmenting paths in .


• Let  be the set of vertices reachable from . 


• Since there are no paths, .


• Let  and this defines a s-t cut.

f
Gf

S s

t ∉ S

T = V∖S
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The max flow/min cut theorem
(3)  (1)⟹

• Proof:  

• What does it mean for there to be no edges  
to  in the residual graph ?


• For any edge  from  to ,

S
T Gf

e = (u → v) ∈ G S T
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The max flow/min cut theorem
(3)  (1)⟹

• Proof:  

• What does it mean for there to be no edges  
to  in the residual graph ?


• For any edge  from  to ,

S
T Gf

e = (u → v) ∈ G S T
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The max flow/min cut theorem
(3)  (1)⟹

• Proof:  

• What does it mean for there to be no edges  
to  in the residual graph ?


• For any edge  from  to ,

S
T Gf

e′ = (v → u) ∈ G T S
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The max flow/min cut theorem
(3)  (1)⟹

• Proof:  

• Edges from  to  are saturated with flow.


• Edges from  to  have no flow.


• 


• 


•



• .

S T

T S

v( f ) = f out(S) − f in(S)

v( f ) = ∑
e from S to T

f(e) − ∑
e′ from T to S

f(e′ )

v( f ) = ∑
e from S to T

c(e)

C(S,T)

− ∑
e′ from T to S

0

0

v( f ) = C(S, T)
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The max flow/min cut theorem
(3)  (1)⟹

• (3) There is no augmentation path  in .


• (1) There exists a s-t cut  such that .


• Proof: This is a lengthy proof! It will take us a few slides. Key ideas:


• We will need to find the s-t cut . It should be based on the aug. path.


• Then we will use that  to prove that .

s ↝ t Gf

(S, T) v( f ) = c(S, T)

(S, T)

v( f ) = f out(S) − f in(S) v( f ) = c(S, T)
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The max flow/min cut theorem

• Max flow/min cut theorem: Let  be a flow in a network . The 
following statements are equivalent!


• (1) There exists a s-t cut  such that .


• (2)  is a max flow.


• (3) There is no augmentation path  in .


• Corollary: The value of the max flow equals the value of the min cut!

f (G, c, s, t)

(S, T) v( f ) = c(S, T)

f

s ↝ t Gf
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Returning to Ford-Fulkerson

• Ford-Fulkerson is a greedy algorithm which calculates the max flow by incrementally 
increasing the flow.


• Max flow/min cut theorem proves that Ford-Fulkerson only terminates when the max flow 
is achieved.


• If the capacities are integer, Ford-Fulkerson will increase the flow by at least 1 per iteration.


• Yields a runtime of  where  is the sum of capacities of edges leaving .


• Runtime can be exponential time in input length for large  as capacities are expressed in 
binary in the input.


• But when , then algorithm can be very efficient. 

O(mC) C s

C

C = poly(n)
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Integral max flow

• Theorem: Consider a graph network  where . Then, 
there exists a max flow which assigns an integer flow to every edge.


• Proof:


• Ford-Fulkerson will calculate the max flow.


• Ford-Fulkerson only increases the flow by integer quantities starting from 0.


• Therefore, there exists a max flow that has integer flow.

(G, s, t, c) c : E → ℤ≥0
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Application: Bipartite matching

• Input: A bipartite graph 


• Output: A maximal collection of edges that don’t 
share any vertices.


• We saw this problem earlier in the course, but 
didn’t come up with an algorithm.


• We will see that there is an algorithm based on 
Ford-Fulkerson. 

(V = L ⊔ R, E)
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Application: Bipartite matching

• Input: A bipartite graph 


• Output: A maximal collection of edges that don’t 
share any vertices.


• To solve with Ford-Fulkerson, we need to create a 
directed graph and identify a source  and sink .

(V = L ⊔ R, E)

s t
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Application: Bipartite matching
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Application: Bipartite matching
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Application: Bipartite matching
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Application: Bipartite matching
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Application: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.


• Proof:


• Integer flow and bipartite matching bijection: 


• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge 
leaving a  can be selected. So a integer flow yields a matching of equal size.


• For every edge  from  to  in the bipartite matching add the flow 
. All flows will be compatible. So a bipartite matching yields a flow 

of equal size.


• By bijection, max flow will yield a max bipartite matching. 

v ∈ L

u → v L R
s → u → v → t
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Application: Bipartite matching

• Runtime: Each edge has capacity , root node has total output capacity .


• , number of edges in network is .


• Total runtime after reduction, .

1 n

C = n m + 2n

O((2n + m)n) = O(n2 + mn)
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Ford-Fulkerson can be slow

• Input: The input is a flow network 


• Formally,  for each edge  with  being a 
number expressed in binary.


• Then  is an exponential number in the size of the input.


• Ford-Fulkerson can be slow! Runtime of .


• Because each update only guarantees flow increase by 1.


• Is there a fast way to find bigger increases in flow?

(G, s, t, c)

c = {c(e1), c(e2), …, c(em)} ej c(ej)

C = C({s}, V∖{s})

O(mC)
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Finding an augmenting path

• We previously chose an augmenting path  in  
by running a graph traversal from  to  and picking a 
path


• This will find an augmenting path but may fail to find 
the augmenting path of largest bottleneck capacity


• Idea: If there exists some augmenting path of 
bottleneck capacity , can we construct an 
algorithm that finds an augmenting path of bottleneck 
capacity at least 

s ↝ t Gf
s t

≥ 2k

2k?
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Finding a pretty big augmenting path

• Fast (Scaling) Augment: Starting with , 


• Find an augmenting path of size :


• Run regular augmenting path search on  except with capacities .


• If a path exists of bottleneck , it still exists in adjusted graph.


• If yes, add this augmenting path and restart.


• If not, decrease , and repeat.


• Theorem: If the max bottleneck capacity of any augmenting path is , the fast 
augment subroutine finds an augment of size  in time  

k ← ⌊log C⌋

2k

Gf c′ = ⌊c/2k⌋

≥ 2k

k ← k − 1

v
≥ v/2 O(m log C) .
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Scaling Ford-Fulkerson

• Algorithm: Start with flow  and .


• While the fast augment subroutine can find an augmenting path 


• Augment  by  along path and update  

• Theorem: The scaling version of Ford-Fulkerson runs in time .

f ← 0 Gf ← G

p

f faug Gf

O(m2 log C)
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Proof:


• While there exists a path  in the flow, 


• Remove flow along  of the bottleneck capacity of .


• The resulting flow is 0 along some edge. 


• This can be repeated  times.

O(m2 log C)

f ≤ m

p : s ↝ t

p p

≤ m
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Corollary: There exists a path within the flow of bottleneck capacity .


• Proof:


• Run the lemma on the max flow. 


• By pigeon-hole principle, one of the paths must have large flow.

O(m2 log C)

f ≤ m

≥ maxflow(G)/m
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Scaling Ford-Fulkerson runtime

• To prove the runtime of , we need to prove a few lemmas.


• Lemma: Every flow  can be expressed as the sum of  flows along paths.


• Corollary: There exists a path within the flow of bottleneck capacity 
.


• Corollary: Fast-Augment will find an augmenting path in  of bottleneck 
capacity .

O(m2 log C)

f ≤ m

≥ maxflow(G)/m

Gf
≥ maxflow(Gf)/(2m)
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Scaling Ford-Fulkerson runtime

• Corollary: Fast-Augment will find an augmenting path in  of bottleneck capacity 
.


• Each iteration of Fast-Augment will decrease by a mult. factor of 


• # of iterations .


• Total runtime is .

Gf
≥ maxflow(Gf)/(2m)

1 − 1/(2m)

≤ log(1−1/(2m))−1(C) =
log C

−log(1 − 1/(2m))
≤

log C
1/(2m)

= 2m log C

O(m) ⋅ 2m log C = O(m2 log C)
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Flow independent of capacity

• So far, for integer capacities:


• Vanilla Ford-Fulkerson: Runtime 


• Pick any augmenting path


• Scaling Ford-Fulkerson: Runtime 


• Pick the largest augmenting paths 


• Edmonds-Karp (next): Runtime 


• Pick the shortest augmenting path (in terms of # of edges) 

O(mC)

O(m2 log C)

O(m2n)
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Edmonds-Karp algorithm

• Initialize  and 


• While BFS starting from  outputs a path  in . 


• Compute bottleneck capacity  and update  and  
by augmenting  along  at capacity . 


• Output resulting flow .

f ← 0 Gf ← G

s p : s ↝ t Gf

b f Gf
f p b

f
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Edmonds-Karp

• We know the algorithm: it’s BFS based-augumentations.


• Each run of BFS will compute an augmentation in time .


• I’ve claimed the runtime is .


• Therefore, we need to be able to prove that only  augmentations are 
needed.

O(m)

O(m2n)

O(mn)
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Edmonds-Karp

• Every time an augmenting path is chosen, the bottleneck edge  becomes 
saturated — i.e. 


• Let’s show that each edge  can only be the bottleneck in at most  
augmenting paths.


• Since there are  edges, this yields a max of  augmenting paths. 


• Details will be a problem set problem!

e
f(e) = c(e)

e n/2

m
mn
2
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Maximum flow algs are minimum cut algs

• Given a maximum flow  in a network , the set of edges that are saturated: 
 form a minimum cut 


• The min cut may not be unique just as the max flow may not be unique


• Maximum flow and minimum cut are dual problems 


• Two sides of the same coin


• We will see this come up again in a couple of weeks!

f G
f(e) = c(e)
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Applications of max flow/min cut
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Recall: bipartite matching
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Recall: bipartite matching
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Recall: Bipartite matching

• Claim: The edges of flow 1 in the max flow form a maximal bipartite matching.


• Proof:


• Integer flow and bipartite matching equivalence: 


• Since FF only outputs integer flow, and each edge capacity is 1, at most 1 edge 
leaving a  can be selected. So a integer flow yields a matching of equal size.


• For every edge  from  to  in the bipartite matching add the flow 
. All flows will be compatible. So a bipartite matching yields a flow 

of equal size.


• By equivalence, max flow will yield a max bipartite matching. 

v ∈ L

u → v L R
s → u → v → t
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Min cut perspective

• We could solve the same flow problem if we set the capacity to the edges out 
of  and into  as 1 and set the middle edges to capacity .s t ∞
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Min cut perspective

• Vertices of  involved in the min cut (one per edge crossing the cut) forms a 
minimum size set of vertices of  that block all flow from  to 

G
G s t
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Min cut perspective

• Vertices of  involved in the min cut (one per edge crossing the cut) forms a 
minimum size set of vertices of  that block all flow from  to 

G
G s t
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Minimum vertex cover problem

• Definition: A subset of vertices  is a vertex cover of an undirected graph  
iff every edge is touched by some vertex in .


•  is a trivial vertex cover for .


• Input: An undirected graph 


• Output: A minimal vertex cover  for .


• Min Vertex Cover is a -complete problem


• However, min vertex cover on bipartite graphs is efficient!

C ⊆ V G = (V, E)
C

V G

G = (V, E)

C G

𝖭𝖯
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Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a vertex cover.
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Minimum vertex cover problem
Bipartite graphs

• Claim: The min cut we observed just a minute ago generates a min vertex cover.


• Proof: 


• Suppose it did not generate a vertex cover.


• Then there is an edge  not covered. We can augment the flow along the 
path , a contradiction.


• Suppose there is a smaller min vertex cover 


• Then the edges connecting  or  to  form the crossing edges of a smaller min 
cut. A contradiction.

e = (u, v)
s → u → v → t

C′ 

s t C′ 
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Perfect Matching

• Definition: A matching  is perfect iff every vertex participates in some 
edge of .


• The previous algorithms give us an algorithm for computing a maximal 
matching for a bipartite graph.


• The matching is perfect if the size of the matching equals .


• However, it also provides a criterion for whether a bipartite graph has a 
perfect matching: Hall’s theorem.

M ⊆ E
M

|L | = |R |
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Hall’s theorem

• Theorem: If  for all subsets , then there is a 
perfect matching.


• Contrapositive: If there is no perfect matching, then  
for some subset .


• Proof: No perfect matching  min cut is  in flow network.


• Let  be a s-t cut with 


• Choose .


• Then  since no edges across the middle are in the cut.


• So 


• So .

|N(A) | ≥ |A | A ⊆ V

|N(A) | < |A |
A

⟹ < |L |

(S, T ) c(S, T ) < |L |

A = S ∩ L, B = S ∩ R

N(A) ⊆ B

|L | > c(S, T ) = |L | − |A | + |B | ≥ |L | − |A | + |N(A) |

|N(A) | < |A |

52



Maximum matching in general graphs

• Bipartite maximum matching runtimes:


• Generic augmenting path: 


• State of the art algorithm run in time  time with high probability


• General matching algorithm:


• Solved —  time algorithm exists by Micali-Vazirani


• Beyond the scope of this course

O(mn)

O(m1+o(1))

O(mn1/2)
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Edge disjoint paths

• Input: A directed graph  with identified vertices 


• Output: A maximal collection of paths  that share no edges


• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t
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Edge disjoint paths

• Input: A directed graph  with identified vertices 


• Output: A maximal collection of paths  that share no edges


• Application: routing transmissions in communication networks

G = (V, E) s, t

s ↝ t
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Edge disjoint paths

• Idea: Use max flow to calculate edge disjoint paths


• Need to convert our graph to a flow network


• Remove any edge  and 


• Set capacity of all remaining edges to 1


• Correctness argument: Prove a bijection between integer flows and edge 
disjoint paths. Then maximality of flow yields maximal edge disjoint paths.

⋅ → s t → ⋅
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Edge disjoint paths

• Lemma: Every integer flow is the sum of 1-flow along edge disjoint paths.


• Proof:


• Since capacities are 1,  since it is integer.


• Then for each edge , at most one flow along a path can use .


• We previously proved that every flow can be decomposed into  paths.


• Therefore, the paths founds are edge disjoint.

f(e) ∈ {0,1}

e e

≤ m
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Edge disjoint paths

• Theorem: There is a bijection between integer flows and edge disjoint paths.


• Proof:


• Previous lemma converts each integer flow into an edge disjoint path.


• Sending 1-flow along each edge disjoint path is a valid flow.


• Conservation of flow follows at every vertex  from that of paths.


• Capacity constraints follow from being a 1-flow and edge disjoint.


• Together, this proves both directions of the bijection.

v ∈ V∖{s, t}
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Network connectivity

• Definition: A set of edges  disconnects the source and sink if every 
path  must use one edge from .


• Input: directed graph  with source  and sink 


• Output: a minimal set of edges  that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F
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Network connectivity

• Definition: A set of edges  disconnects the source and sink if every 
path  must use one edge from .


• Input: directed graph  with source  and sink 


• Output: a minimal set of edges  that disconnect the source and sink

F ⊆ E
s ↝ t F

G = (V, E) s t

F
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Network connectivity

• Idea: Use min cut to calculate minimal network disconnecting set


• Again, need to convert our graph to a flow network


• Remove any edge  and 


• Set capacity of all remaining edges to 1


• Correctness argument: Prove a bijection between cuts and network 
disconnecting sets. Then minimality of cut yields minimal disconnecting set.

⋅ → s t → ⋅
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Network connectivity

• Network connectivity and edge disjoint 
paths use the same reduction


• Network connectivity is equivalent to 
min cut


• Edge disjoint paths is equivalent to 
max flow


• Menger’s theorem: the maximum 
number of edge disjoint s-t paths is 
equal to the minimum size of a 
disconnecting set
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Directed flow cycle

• Definition: A directed flow cycle is a flow of value 0 but  on every edge


• Examples: 

• Directed flow cycles can be removed by running graph traversal on , finding cycles 
and removing bottleneck flow around the cycle

f ≢ 0

f
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Undirected graphs

• Edge disjoint path and disconnecting set problems can be solved with flow algorithms for directed 
graphs


• What about undirected graphs?


• Solution: Replace each edge  with directed edges 


• Run directed algorithm on new graph


• Remove any directed flow cycles


• Include edge  if either edge is used after removing flow cycles

(u, v) (u → v), (v → u)

{u, v}
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Circulation Demands

• Some countries produce more rice than the consume and 
some countries consume more rice than the consume


• There are trade routes that describe which countries can trade 
with which others and at what capacity


• How do we calculate rice routing?


• Input: directed graph  with capacities  
and demand  such that .


• Output: A flow  such that 

G = (V, E) c : E → ℝ≥0
d : V → ℝ ∑

v∈V

d(v) = 0

f : E → ℝ f in(v) − f out(v) = d(v)
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Circulation demands

• Add source  and  
to graph


• Add edge  of 
 if .


• Add edge  of 
 if .


• Compute max flow 
on the graph.

s t

s → v
−d(v) d(v) < 0

v → t
d(v) d(v) ≥ 0
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Capacity demands

• Theorem: Let .


• Then if, max flow = , there 
is a circulation meeting all 
capacities and demands.


• If max flow , then no 
circulation exists meeting all 
capacities and demands. 

 is the “wasted” 
production.

D = ∑
v:d(v)≥0

d(v)

D

< D

D − v( f )
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Capacity demands

• When does a circulation 
not exist? When max 
flow = min cut .


• Min-cut between 
``source’’ and ``sink’’ 
vertices is smaller than 
demand.


• Look at India: The trade 
network is too small to 
satisfy the output.

< D
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General max flow/min cut algorithmic paradigm

• If source and sink are not obvious, they may need to be added to the graph


• We need to choose capacity limits for edges: 0, 1,  or an input from the problem 
are logical choices


• Undirected graphs will need to be converted to directed equivalents


• Unnecessary flow cycles can be removed after flow is calculated


• Split a vertex into two (will show up on problem set):


• Choose correct version of flow algorithm based on capacities

∞
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Cut like problems

• Until now, most of the problems looked mostly “flow”-like


• Max flow = min cut tells us that there are probably many “cut”-like problems 
we can also solve


• Next: an examples of a cut-like problem


• Goal here is to get you to see flow networks appear in unexpected 
situations


• This is at the heart of learning algorithms
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Baseball winner

• Imagine a simplified scenario — the team(s) that wins the most games overall 
is crowned the winner(s).


• Midway through the season, we have the following win totals for the teams

71

Team Wins
Games 

remaining vs 
Angels

Games 
remaining vs 

Rangers

Games 
remaining vs 

Athletics

Games 
remaining vs 

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —

Could the Mariners 
possibly win or tie 

for first?



Baseball winner

• Best case is Mariners win out — 82 wins


• Still depends on how the other teams play each 
other. How do we algorithmically calculate this?


• In order to win, Mariners must have a run total 
at least as high as every other team.
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Team Wins
Games 

remaining vs 
Angels

Games 
remaining vs 

Rangers

Games 
remaining vs 

Athletics

Games 
remaining vs 

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —



Baseball winner

• If there was a way that the games could 
play out such that no team amassed  
wins then there would be a flow of value 

 in this network.


• However, the min cut equals = 6

> 82

5 + 4 + 3 = 12
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Team Wins
Games 

remaining vs 
Angels

Games 
remaining vs 

Rangers

Games 
remaining vs 

Athletics

Games 
remaining vs 

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —



Baseball winner

• Even though no team has won > 82 games 
yet, this mathematically proves that the 
Mariners cannot win/tie for 1st.


• A clever way to consider all possible scenarios 
without exploring all the remaining games.

74

Team Wins
Games 

remaining vs 
Angels

Games 
remaining vs 

Rangers

Games 
remaining vs 

Athletics

Games 
remaining vs 

Mariners
Angels 81 — 5 4 3

Rangers 80 5 — 3 4
Athletics 69 4 3 — 5
Mariners 70 3 4 5 —


