Lecture 16

The max flow and min cut problems

Chinmay Nirkhe | CSE 421 Spring 2025




Previously in CSE 421...



The minimum cut problem

 |Input: a flow network (G, ¢, s, 1)

e Output: a s-t cut of minimum capacity
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The maximum flow problem

 |Input: a flow network (G, ¢, s, 1)

e Output: a s-t flow of maximum value
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Conservation of flow

e LetSy={s},T, = V\{s}.
CThen,v(f)= ) fle).

e trom §, to T,




Conservation of flow

e LetS, = {s},Ty=V\{s}.
_ Then, v(f) = Z f(e).

e from S, to T,

» Define S| « SyU {a}, T, « Ty\{a}.

Cclaimv(f)= ) fle).

e from §, to T,

* Proof: Switching between sums requires
» subtracting the flow f(s — a) and

« adding the flows fla — b), fla — e), fla = d).

* by flow conservation, these changes are net zero.
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Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

i)=Y flo- ) fle

e from Sto T e from T to S

* Proof (intuition):

« Add the vertices of S one by one until
the set is generated.
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Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

S /9
=Y fo- X fo o A
e from Sto T e from 7 to S [4 \

* Proof (intuition): @ /s ®) /
 Add the vertices of .S one by one until /15 O/‘l
the set Is generated. @




Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

S /9
=Y, fo- X fo o AN
e from Sto T e from 7 to S [4 \

* Proof (intuition): @ /S] ©) /
 Add the vertices of .S one by one until /15 O/‘l
the set Is generated. @




Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

S /9
=Y, fo- X fo o AN
e from Sto T e from 7 to S [4 \

* Proof (intuition): @ /S] ©) /
 Add the vertices of .S one by one until /15 O/‘l
the set Is generated. @
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Flow value proof (formal)
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The water intuition

* |magine the edges as pipes and water
flowing from s at a steady rate of v(f).

 The flow of water leaving s must equal
the flow of water leaving 3.

« Water moving within S or T'is
iInconsequential to the total flow
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The relationship between flows and cuts

o Weak duality: For any s-t cut (S, T), v(f) < C(S, T).
* Proof intuition:

* |In order for water to flow (positively) from S to 7' it .J:

YA OX
has to use one of the edges from S to 7. \\
ool :
 The total capacity of which is C(S, T). v\ S

« And the value of the flow is < the sum of the flow
OUt Of S .{.
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The relationship between flows and cuts

» Weak duality: Forany s-t cut (S, 7T), v(f) < C(S,T).

* Proof intuition: /§
» In order for water to flow (positively) from S to 7'it Wx
has to use one of the edges from § to 7. l &\ /
« The total capacity of which is C(S, T'). M / |
: "\, .
 And the value of the flow is < the sum of the flow 2;/‘
out of S L
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The relationship between flows and cuts

« Weak duality: For any s-tcut (S, 7), v(f) < C(S, T).

*S
 Proof:
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The relationship between flows and cuts

o Weak duality: For any s-t cut (S, T), v(f) < C(S, T).

 Corollary: As this is true for all s-t cuts and all s-t flows, for
any flow network,

The max flow is always < the min cut. oY X
» Theorem: If there exists a flow f and a cut (S, 1) such that \ \\
v(f) = C(S, T) then f must be a maximal flow and (S, 7)) must \ ‘\ / /'

be a minimizing cut.

e Proof: v(f,..) = v(f)and C(S, > Trin) < C(S, T'). This with

v(f) = C(S, T) sandwiches everything to get a max flow and "¢
hit cut.
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Algorithms for max flow

* Greedy algorithm attempt:
o Start with f(e) = 0

 While there is a s-t path p : § ~  where each edge
e € p has f(e) < c(e),

* “Augment” the flow along p by adding a flow on each
edgee € p

. Where ¢ = min [c(e) — f(e)]
ecp

« Each augmentation increases v(f) by a and preserves a

valid flow (capacity and conservation of flow constraints).
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Greedy algorithm can get stuck...

Even if a Iarger flow exists:
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Greedy algorithms get stuck

 What if there was a way to “undo” a choice made by a greedy algorithm and
keep going”?

* Residual graphs

* A graph that represents how much we can change for any edge
» If an edge has a capacity of c(e) and is currently flow assigns it f(e¢) < c(e)
» Then we can either add up to f(e) — c(e) additional flow

« Or remove up to c(e) flow from this edge.
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Residual network definition

. For (G,c,s,t) and flow f, define Gf as the residual
network with the same vertices, source s and sink ¢

e Foreveryedgee = (u — v),

e (Forward edge): Add an edge u — v of capacity

c(e) — fle)

» (Backward edge): Add an edge v — u of
capacity f(e)
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Notation

_ Foraflowf let/™(v)= ) fle), f"(»)= ) fle).

e outof v e 1nto v

. Conservation of flow: f™(v) = FoU(v).

» Positivity of flow: 0 < f(e) < c(e).



Augmenting path

 An alternative (and mathematically equivalent) way to think about an augment flow faug in the

residual network Gf is that
. Capacity constraints: —f(e) < faug < c(e) — f(e)

) (V) = (fa) ™)

. Conservation of augmenting flow: (/.

 Claim: If fis a flow in G and {,

aug IS @n augmenting flow in Gy, then f + f, ., is a flow in G.

. Proof: Adding up capacity constraints and conservation equations proves that f + faug s a valid
flow. B

o V([ fane) = V(f) + v(f,) SO @ positive augmenting flow increases the flow in the graph.
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New greedy algorithm (Ford-Fulkerson)

+ Initialize a flow of f(e) « O for all edges. Set residual network Gy < G
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New greedy algorithm (Ford-Fulkerson)

+ Initialize a flow of f(e) « O for all edges. Set residual network Gy < G

» While there is a simple pathp : § ~ fin Gf

Let f.

aug

o Augment f < f+f,.

- Update Galong the edges of p

be the flow along p of weight

28

I;leln ch(e)
p

J

|~

coll Hhis Hae bottenecl
Co\ro\:N«/ 01} He At:nglu\\m

i




Ford Fulkerson algorithm

. Lemma: Let (G, ¢, s, t) be a flow network with integer capacities: ¢ : £ — Z,
and C = c®(s).

» Then the previous greedy algorithm terminates in time O(Cm).
* Proof:
» Each iteration of the while loop must increase v(f) by at least 1.

« (is atrivial bound on the max flow in the network.

« Therefore, at most C iterations each taking O(m) time.
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Ford Fulkerson algorithm correctness

« Lemma: Let (G, ¢, s, t) be a flow network with integer capacities:
c:E— Z.yand C = c®(s).

* Then the previous greedy algorithm computes the max flow.

e Proof: In due time.
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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Ford-Fulkerson animation
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