Lecture 16 The max flow and min cut problems

Chinmay Nirkhe | CSE 421 Spring 2025

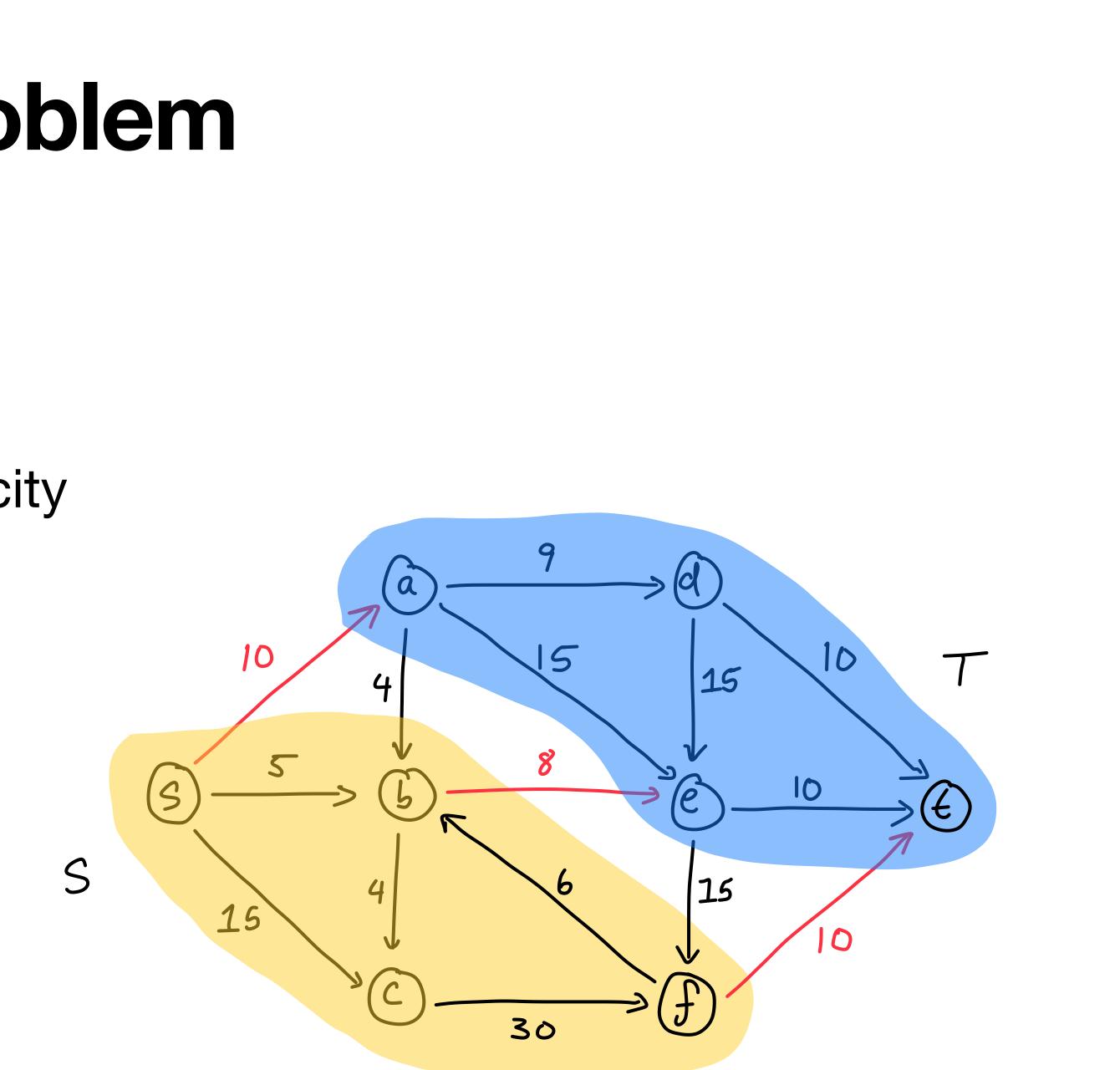
Previously in CSE 421...

The minimum cut problem

- Input: a flow network (G, c, s, t)
- Output: a s-t cut of minimum capacity

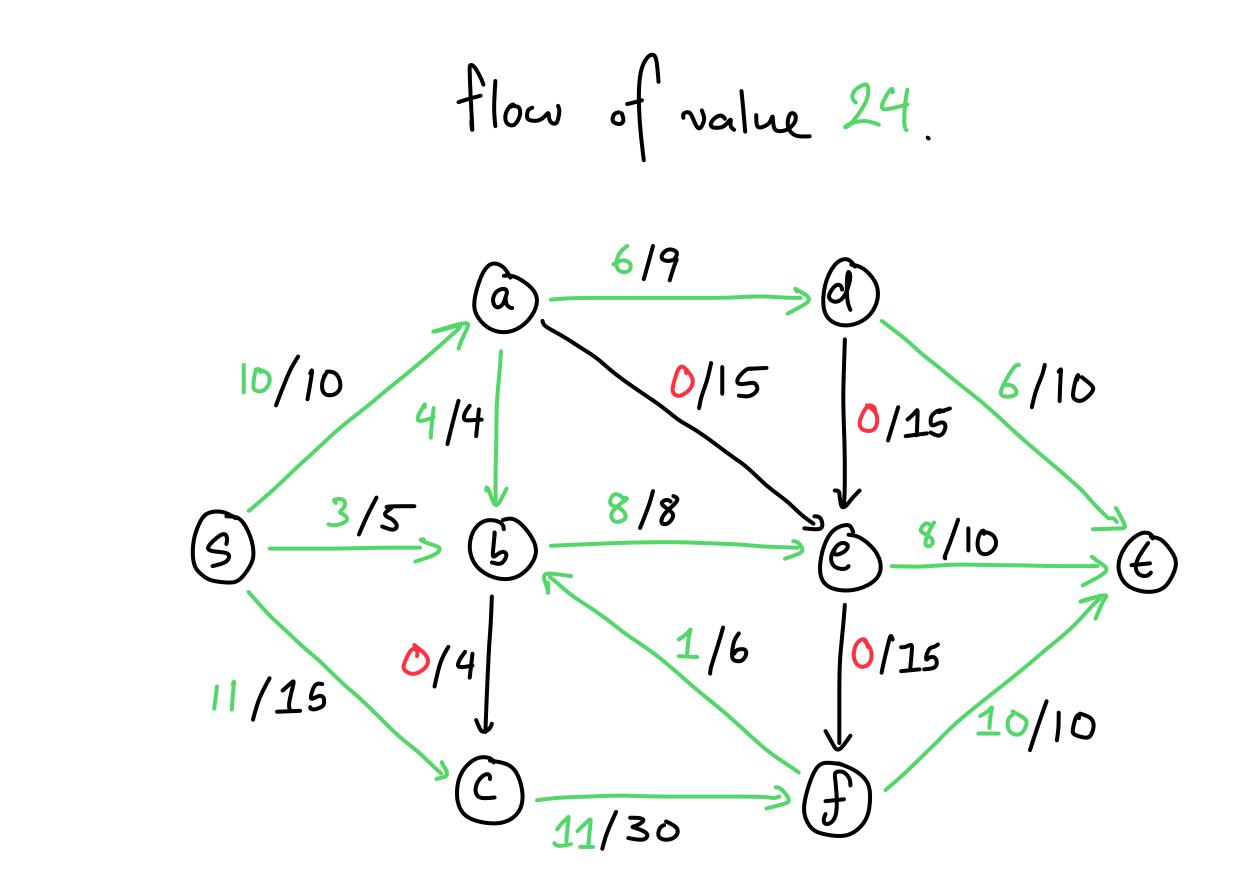
$$mincut(G_{1}c,s,t) = \min_{\substack{s \neq cut \\ (S_{1}T)}} \left\{ c(S_{1}T) \right\}$$

in this case, mincut = 28



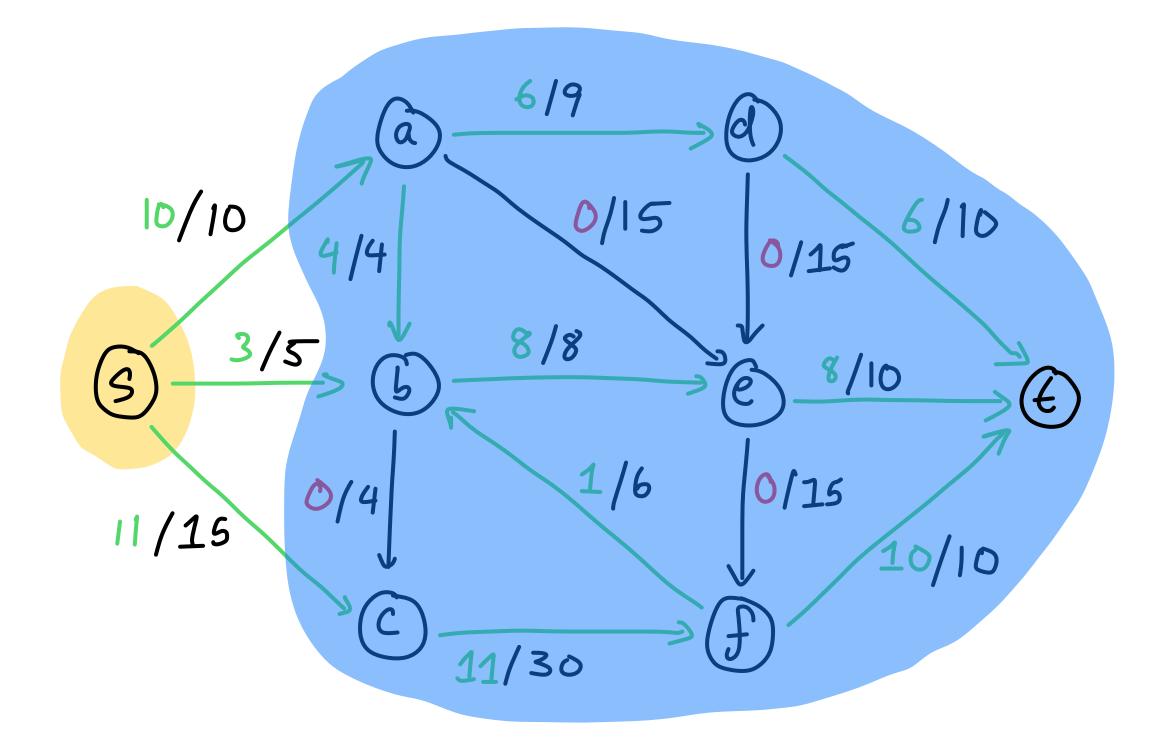
The maximum flow problem

- Input: a flow network (G, c, s, t)
- Output: a s-t flow of maximum value



Conservation of flow

• Let $S_0 = \{s\}, T_0 = V \setminus \{s\}.$ • Then, $v(f) = \sum_{e \text{ from } S_0 \text{ to } T_0} f(e).$



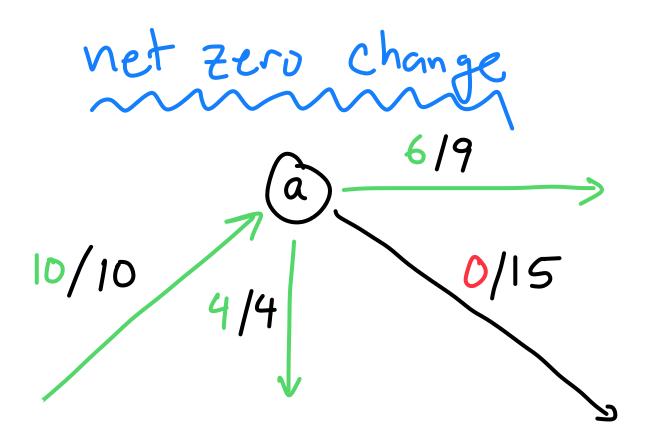
Conservation of flow

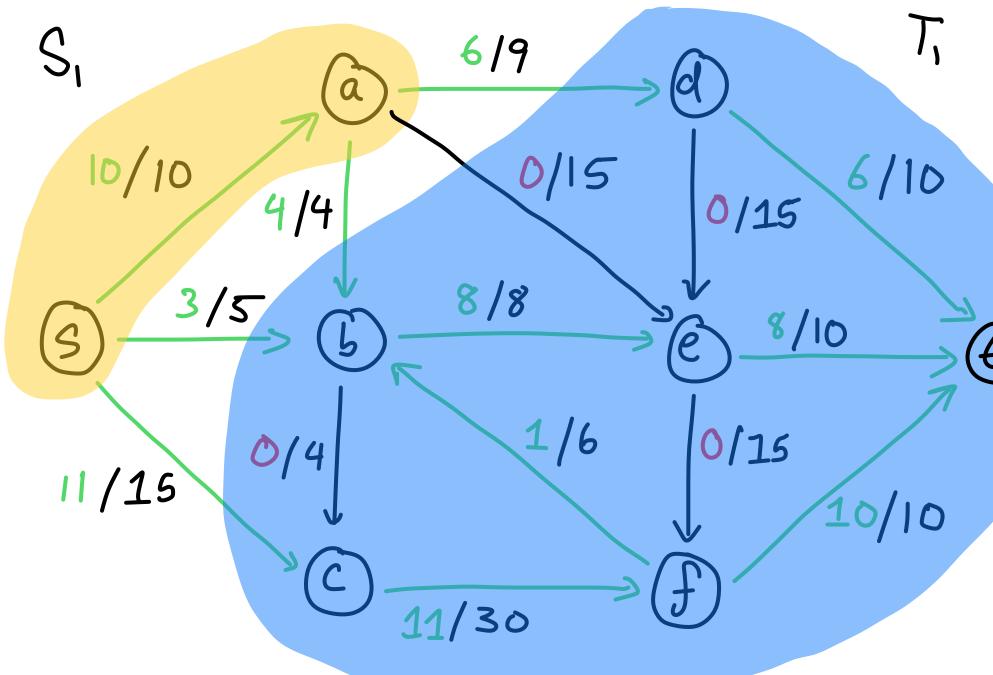
• Let
$$S_0 = \{s\}, T_0 = V \setminus \{s\}$$
.
Then, $v(f) = \sum_{e \text{ from } S_0 \text{ to } T_0} f(e)$.

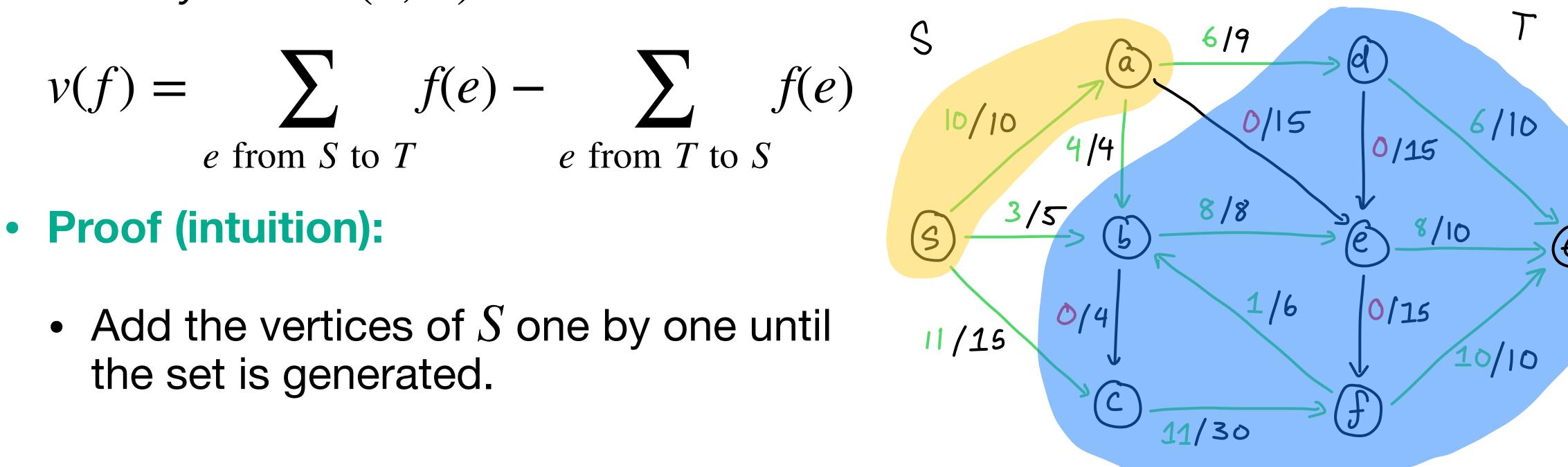
• Define $S_1 \leftarrow S_0 \cup \{a\}, T_1 \leftarrow T_0 \setminus \{a\}$.

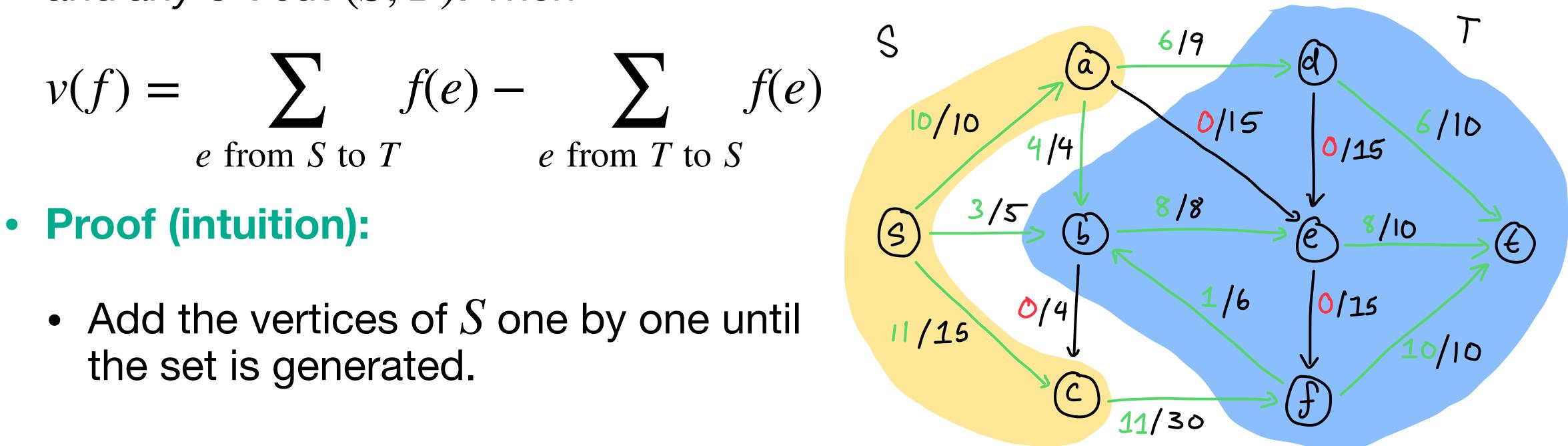
Claim:
$$v(f) = \sum_{e \text{ from } S_1 \text{ to } T_1} f(e).$$

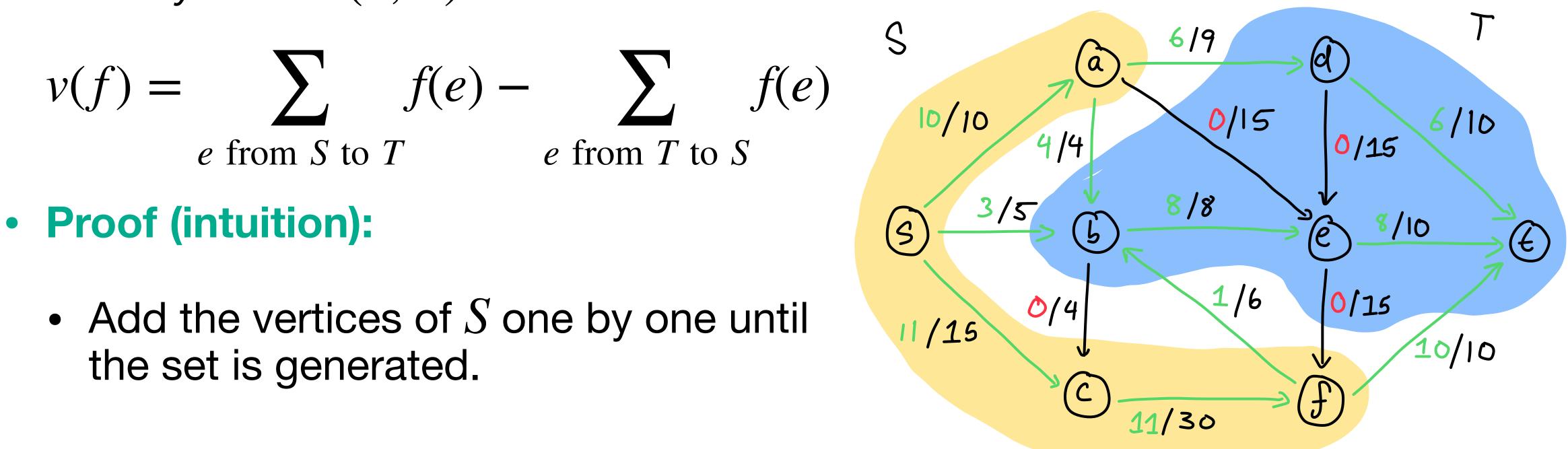
- **Proof:** Switching between sums requires
 - subtracting the flow $f(s \rightarrow a)$ and
 - adding the flows $f(a \rightarrow b)$, $f(a \rightarrow e)$, $f(a \rightarrow d)$.
 - by flow conservation, these changes are net zero.

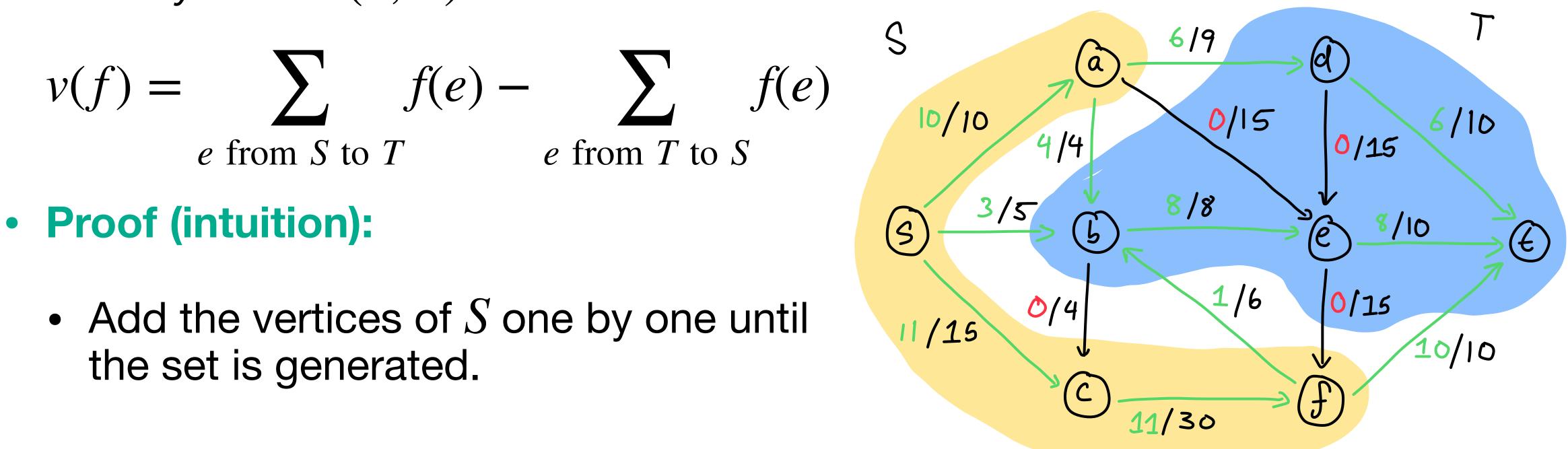






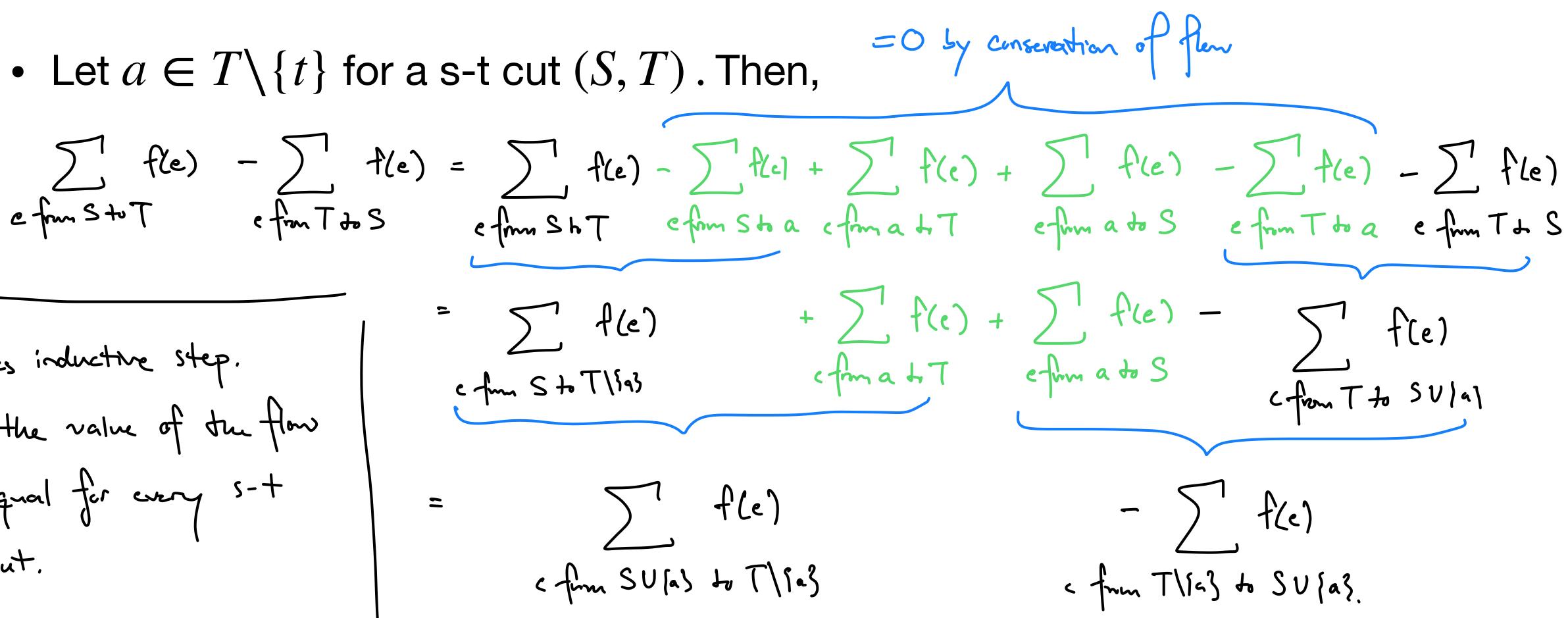






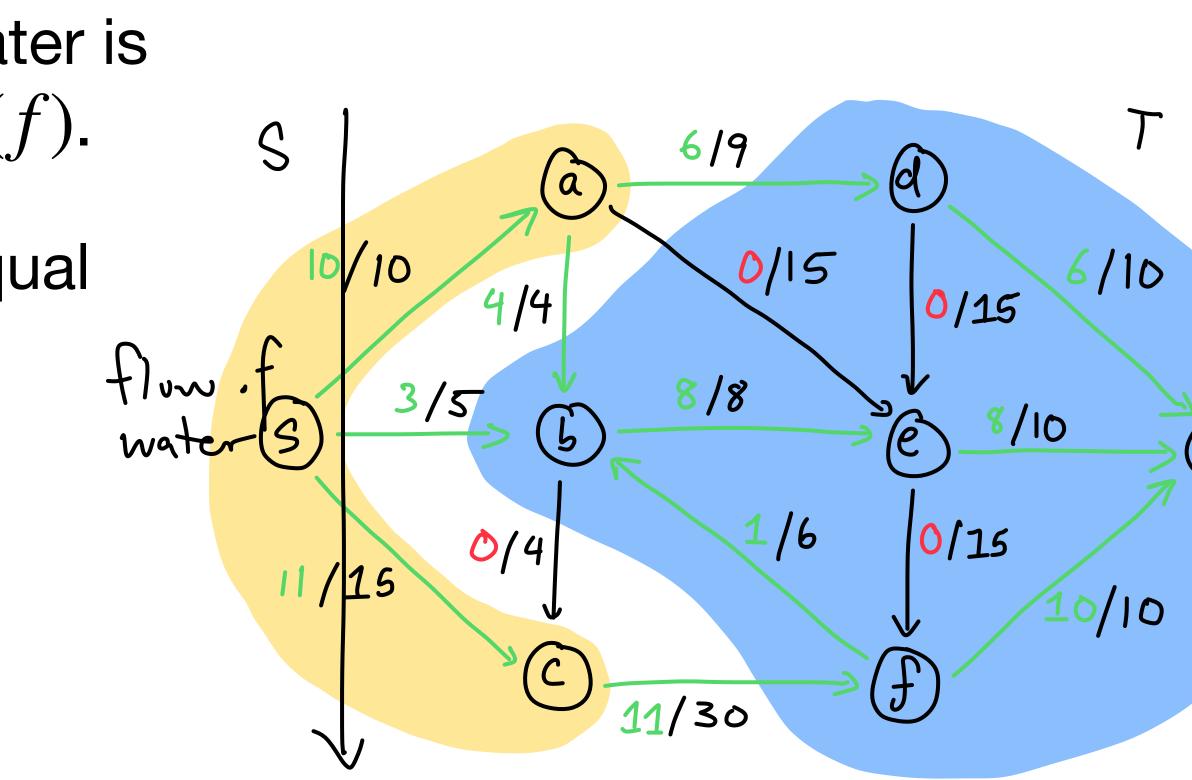
Flow value proof (formal)

• Let $a \in T \setminus \{t\}$ for a s-t cut (S, T). Then, $= \sum f(e)$ Proves inductive step. c from S to T\\$93 So the value of the flow is equal for every s-t 5 fle) [] cut. c fim SU[a] du T\sa}

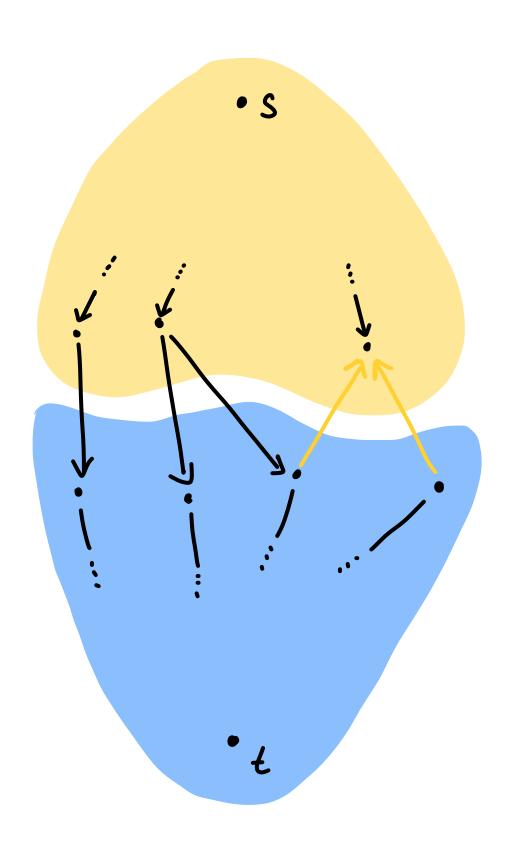


The water intuition

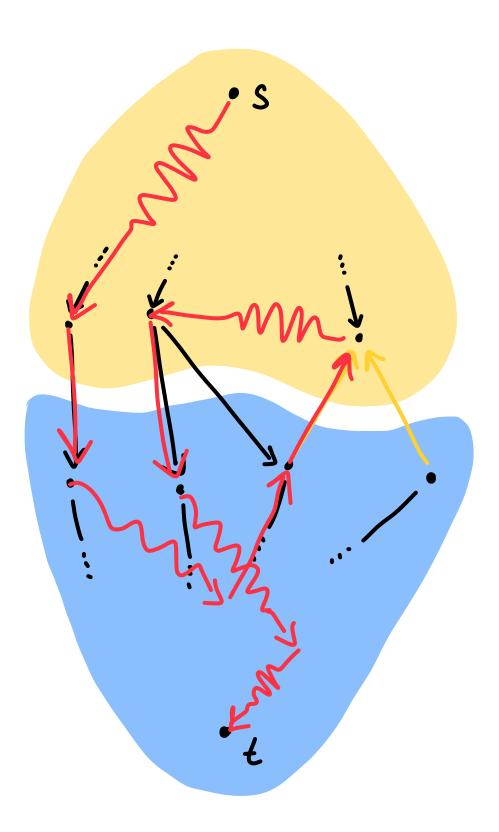
- Imagine the edges as pipes and water is flowing from *s* at a steady rate of v(f).
- The flow of water leaving *s* must equal the flow of water leaving *S*.
- Water moving within S or T is inconsequential to the total flow



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof intuition:**
 - In order for water to flow (positively) from S to T it has to use one of the edges from S to T.
 - The total capacity of which is C(S, T).
 - And the value of the flow is \leq the sum of the flow out of S.



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof intuition:**
 - In order for water to flow (positively) from S to T it has to use one of the edges from S to T.
 - The total capacity of which is C(S, T).
 - And the value of the flow is \leq the sum of the flow out of S.



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof**:

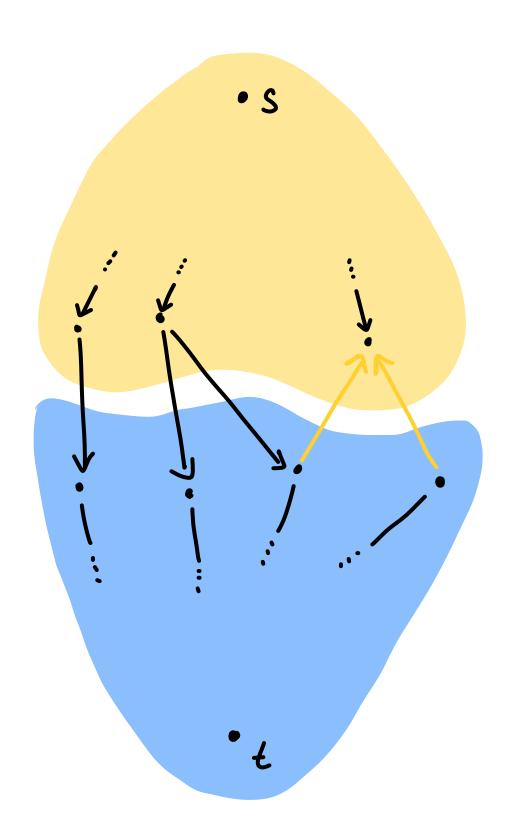
• $v(f) = \sum_{e \text{ from } S \text{ to } T} f(e) - \sum_{e \text{ from } T \text{ to } S} f(e)$ $\leq \int f(e) = f(e) \int f(e$ e from S to T $\leq C(e) \leftarrow since f(e) \in c(e)$ for all edges e from S to T = C(S, T)



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- Corollary: As this is true for all s-t cuts and all s-t flows, for any flow network,

The max flow is always \leq the min cut.

- Theorem: If there exists a flow f and a cut (S, T) such that v(f) = C(S, T) then f must be a maximal flow and (S, T) must be a minimizing cut.
- **Proof:** $v(f_{\max}) \ge v(f)$ and $C(S_{\min}, T_{\min}) \le C(S, T)$. This with v(f) = C(S, T) sandwiches everything to get a max flow and hit cut.



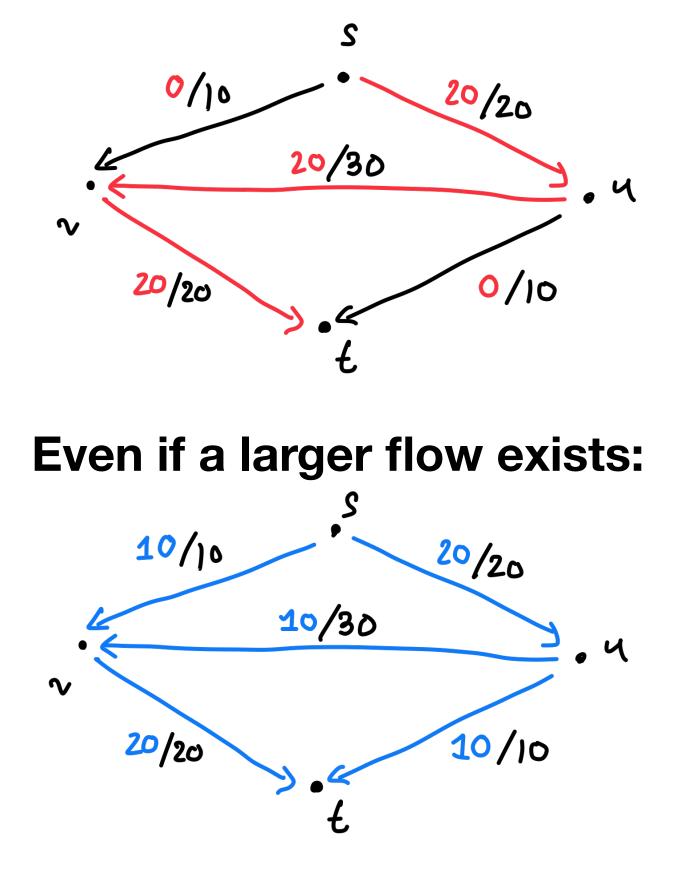
Algorithms for max flow

- **Greedy algorithm attempt:**
 - Start with f(e) = 0.
 - While there is a s-t path $p : s \sim t$ where each edge $e \in p$ has $f(e) \leq c(e)$,
 - "Augment" the flow along p by adding α flow on each edge $e \in p$

• Where
$$\alpha = \min_{e \in p} \left[c(e) - f(e) \right]$$

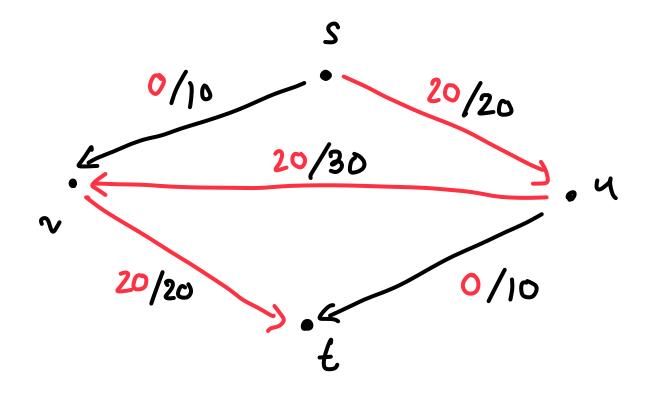
Each augmentation increases v(f) by α and preserves a valid flow (capacity and conservation of flow constraints).

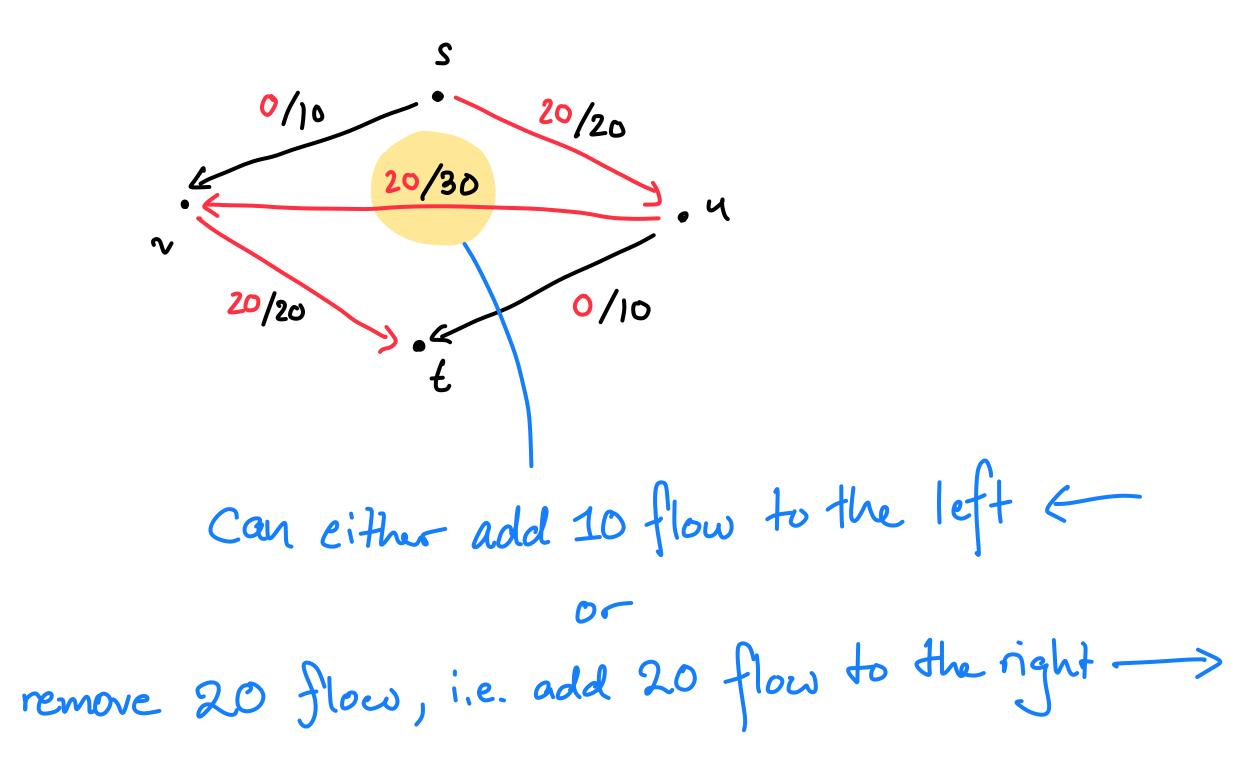
Greedy algorithm can get stuck...



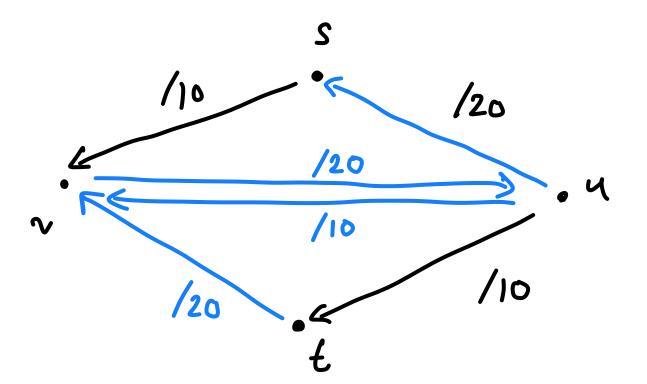
Greedy algorithms get stuck

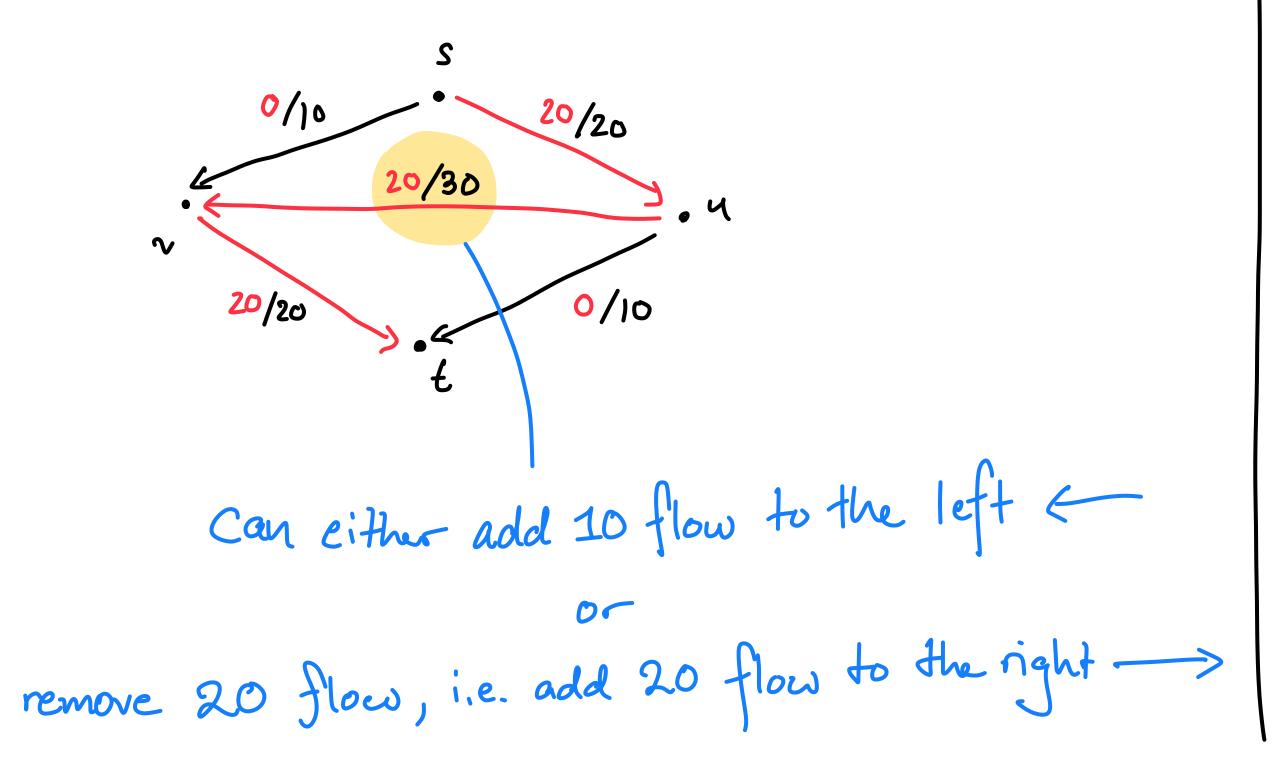
- What if there was a way to "undo" a choice made by a greedy algorithm and keep going?
- Residual graphs
 - A graph that represents how much we can change for any edge
 - If an edge has a capacity of c(e) and is currently flow assigns it $f(e) \leq c(e)$
 - Then we can either add up to f(e) c(e) additional flow
 - Or remove up to c(e) flow from this edge.

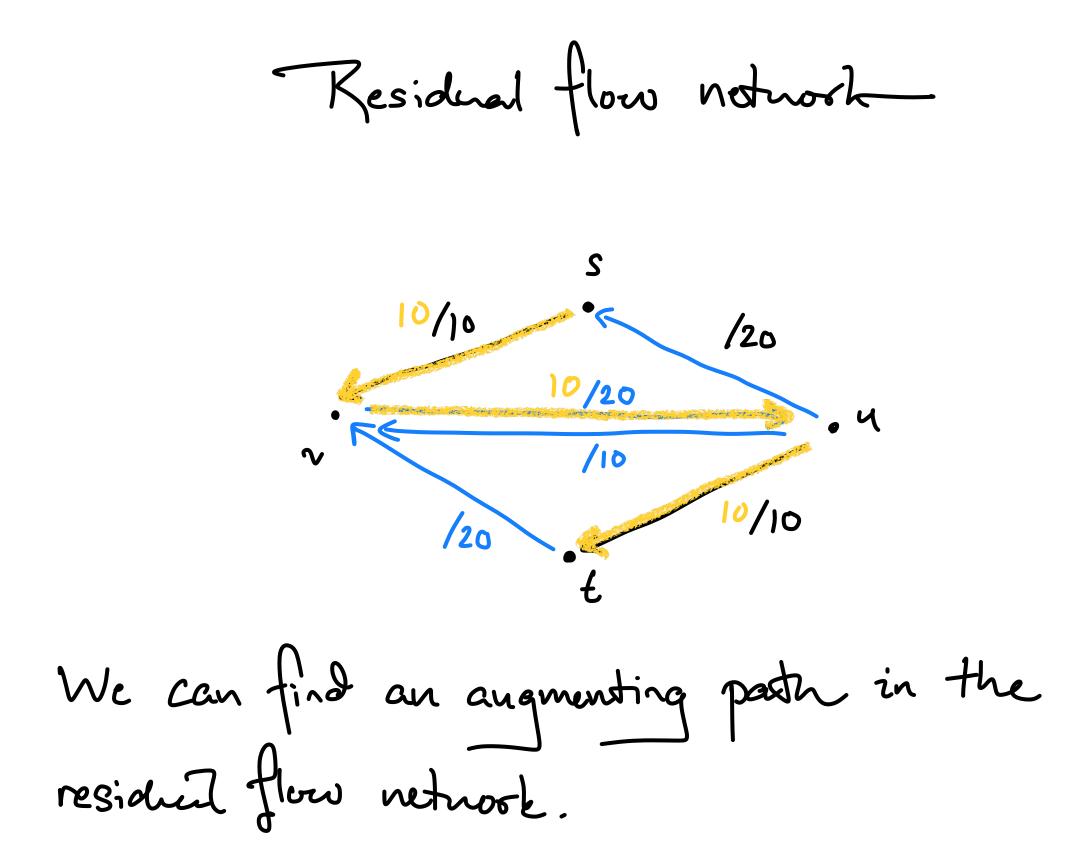


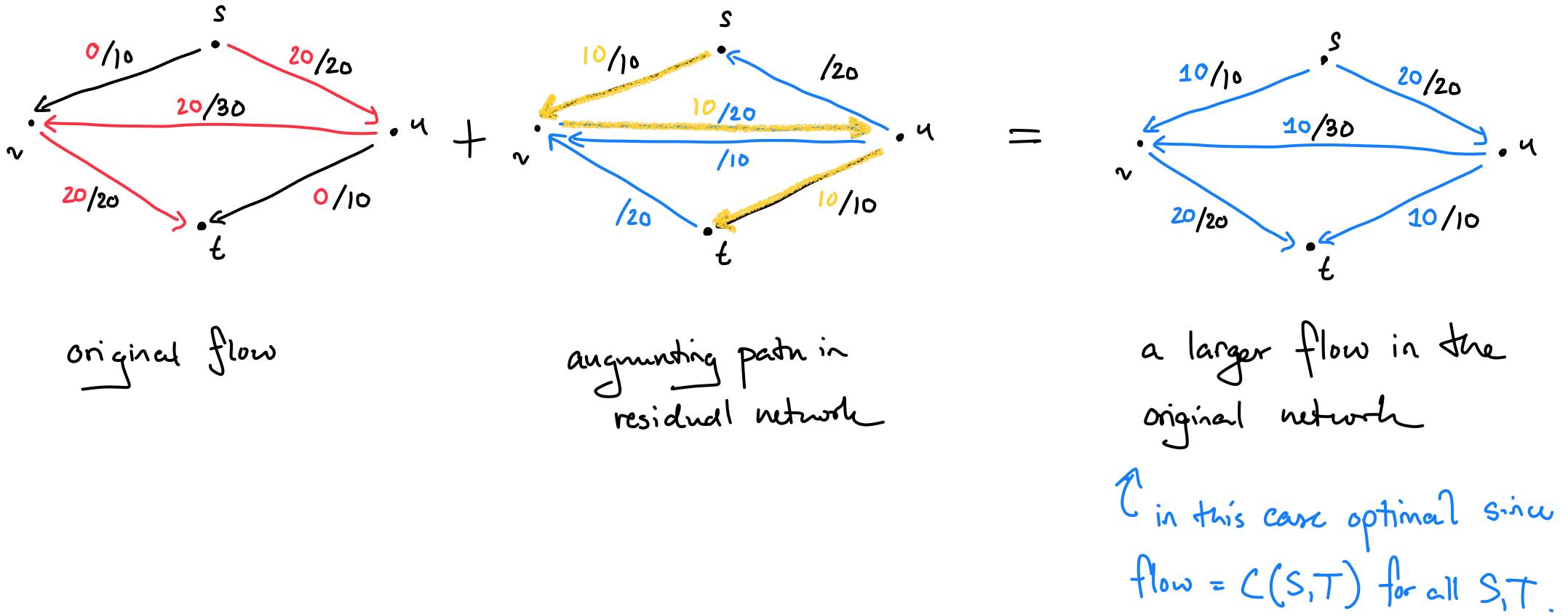


Residual flow notwork





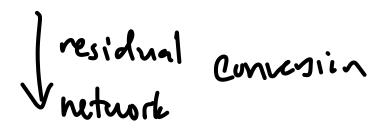


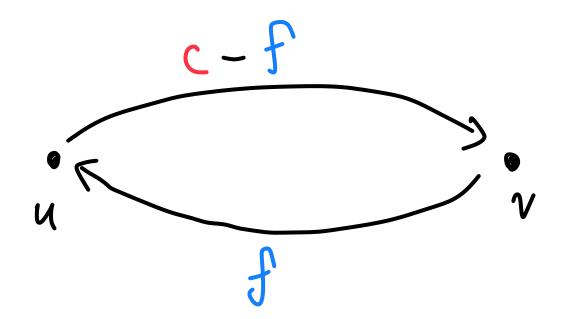


Residual network definition

- For (G, c, s, t) and flow f, define G_f as the residual network with the same vertices, source s and sink t
 - For every edge $e = (u \rightarrow v)$,
 - (Forward edge): Add an edge $u \rightarrow v$ of capacity c(e) f(e)
 - (Backward edge): Add an edge $v \rightarrow u$ of capacity f(e)







Notation

• For a flow
$$f$$
, let $f^{out}(v) = \sum_{e \text{ outof } v} f(e)$

- Conservation of flow: $f^{in}(v) = f^{out}(v)$.
- Positivity of flow: $0 \le f(e) \le c(e)$.

 $f(e), \quad f^{\text{in}}(v) = \sum f(e).$ *e* into *v*

Augmenting path

- An alternative (and mathematically equivalent) way to think about an augment flow f_{aug} in the residual network G_f is that • Capacity constraints: $-f(e) \le f_{aug} \le c(e) - f(e)$
- - Conservation of augmenting flow: $(f_{aug})^{in}(v) = (f_{aug})^{out}(v)$
- Claim: If f is a flow in G and f_{aug} is an augmenting flow in G_f , then $f + f_{aug}$ is a flow in G.
- flow.
- $v(f + f_{aug}) = v(f) + v(f_{aug})$ so a positive augmenting flow increases the flow in the graph.

• **Proof:** Adding up capacity constraints and conservation equations proves that $f + f_{aug}$ is a valid

New greedy algorithm (Ford-Fulkerson)

- Initialize a flow of $f(e) \leftarrow 0$ for all edges. Set residual network $G_f \leftarrow G$
- While there is a simple path $p: s \sim t$ in G_f

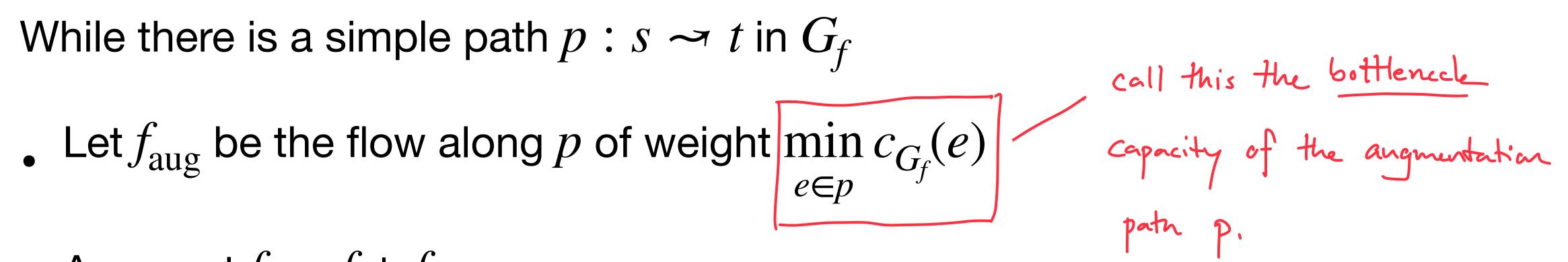
 - Augment $f \leftarrow f + f_{aug} \leftarrow O(n)$ time. Update G_f along the edges of p

While there is a simple path $p: s \sim t$ in G_f . Let f_{aug} be the flow along p of weight $\min_{e \in p} c_{G_f}(e)$ How do ne find such a path? $e \in p$ from s to t using the edges of positive capacity. O(n+m) time.

New greedy algorithm (Ford-Fulkerson)

- Initialize a flow of $f(e) \leftarrow 0$ for all edges. Set residual network $G_f \leftarrow G$
- While there is a simple path $p: s \sim t$ in G_f

 - Augment $f \leftarrow f + f_{aug}$
 - Update G_f along the edges of p

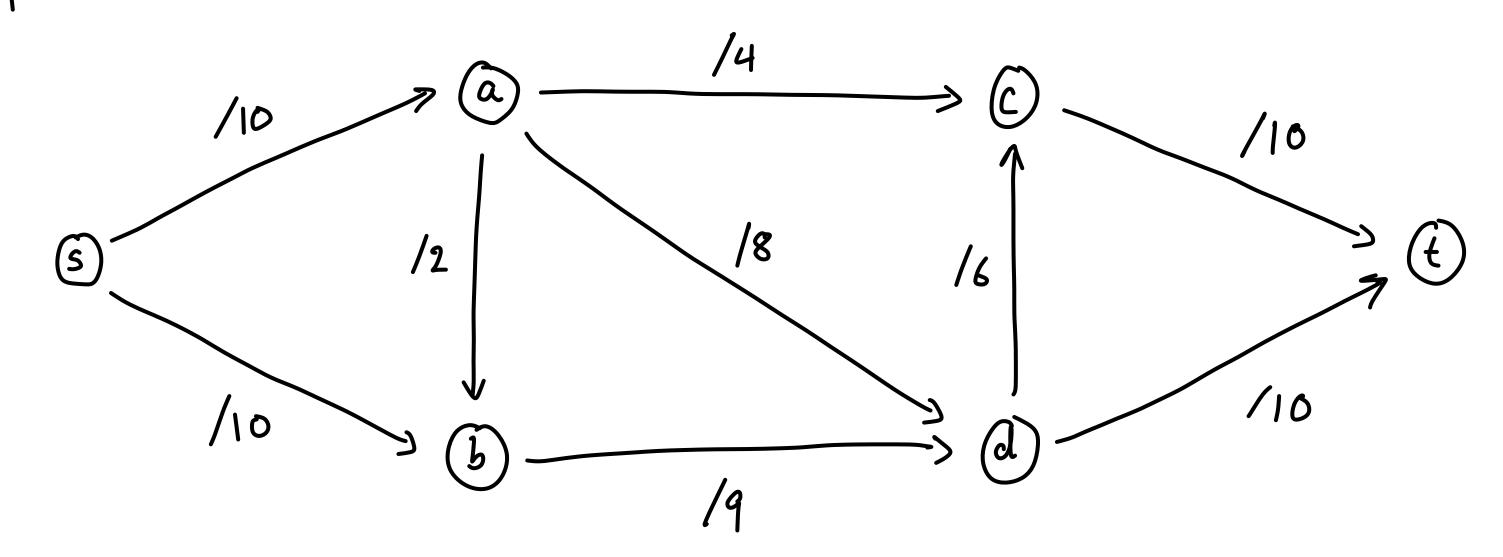


Ford Fulkerson algorithm

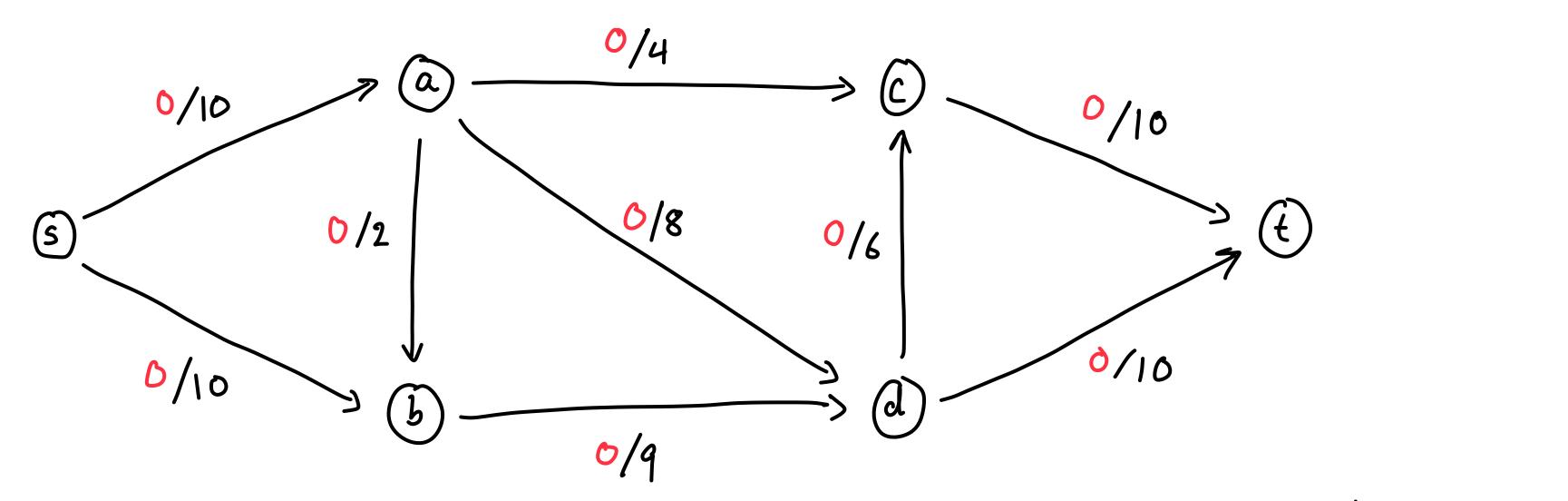
- Lemma: Let (G, c, s, t) be a flow network with integer capacities: $c : E \to \mathbb{Z}_{\geq 0}$ and $C = c^{\text{out}}(s)$.
- Then the previous greedy algorithm terminates in time O(Cm).
- **Proof:**
 - Each iteration of the while loop must increase v(f) by at least 1.
 - C is a trivial bound on the max flow in the network.
 - Therefore, at most C iterations each taking O(m) time.

Ford Fulkerson algorithm correctness

- Lemma: Let (G, c, s, t) be a flow network with integer capacities: $c: E \to \mathbb{Z}_{>0}$ and $C = c^{\text{out}}(s)$.
- Then the previous greedy algorithm computes the max flow.
- **Proof:** In due time.

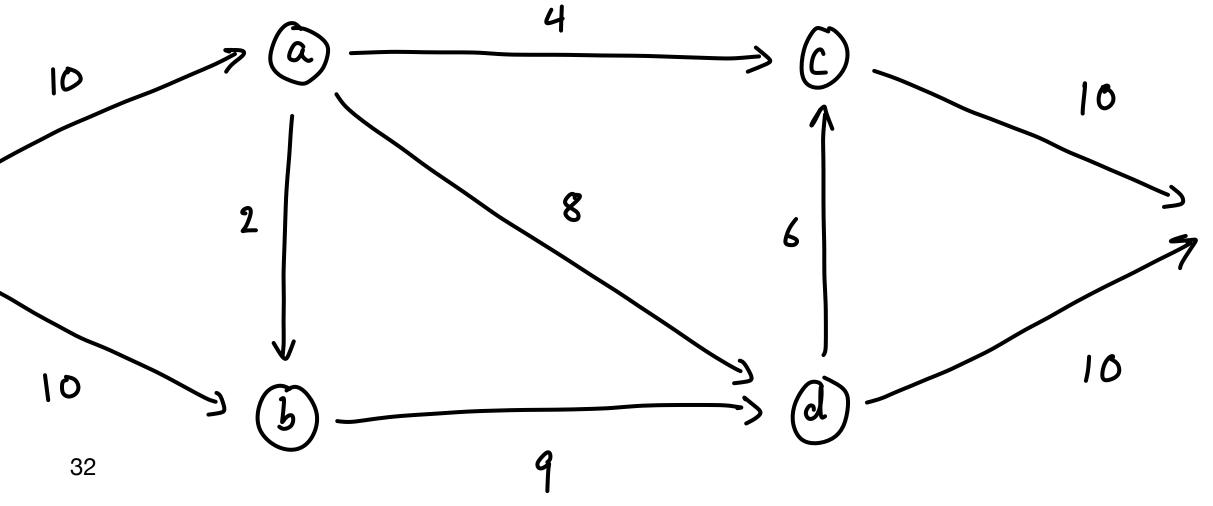


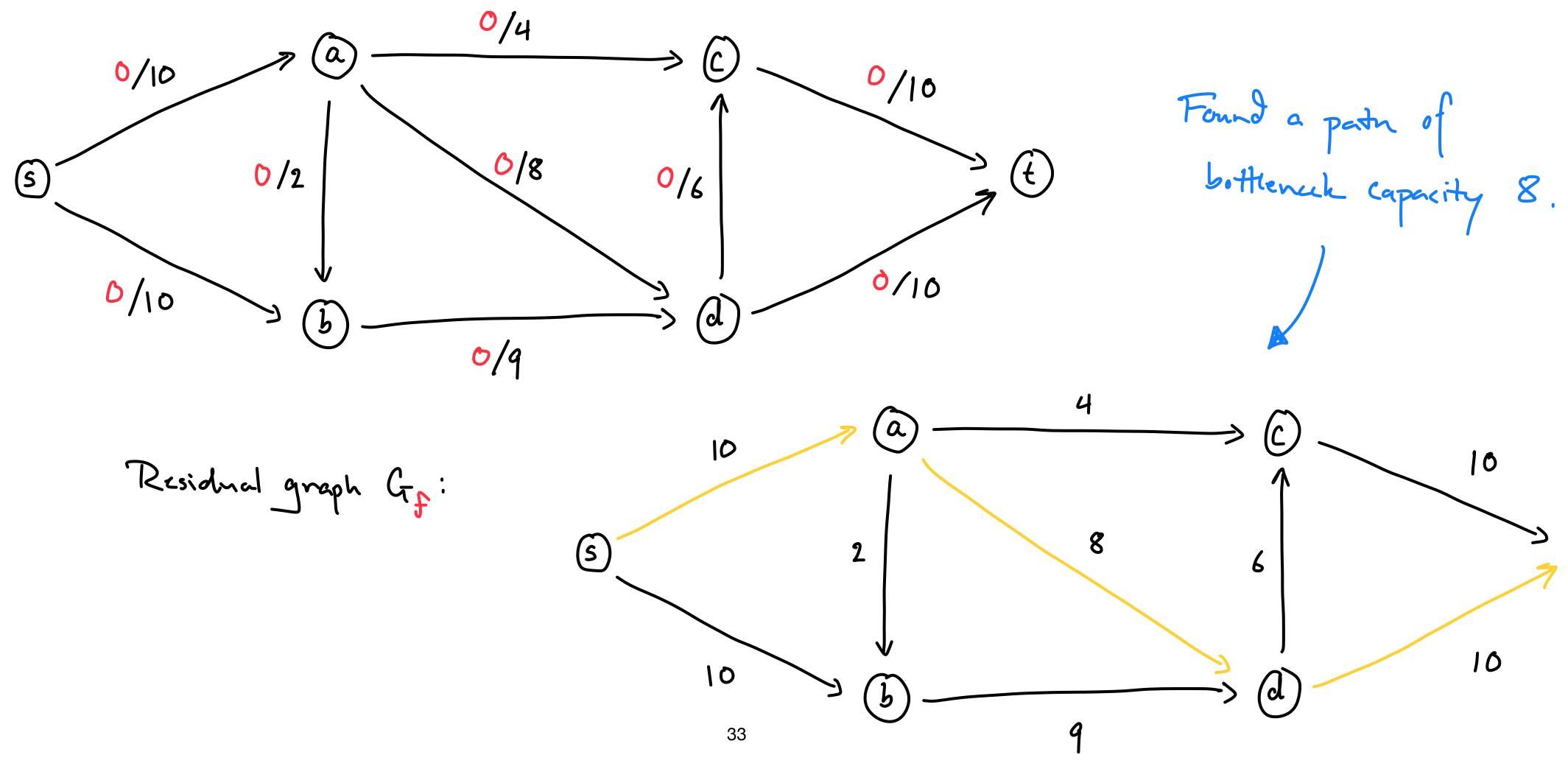
Graph G and flow f:



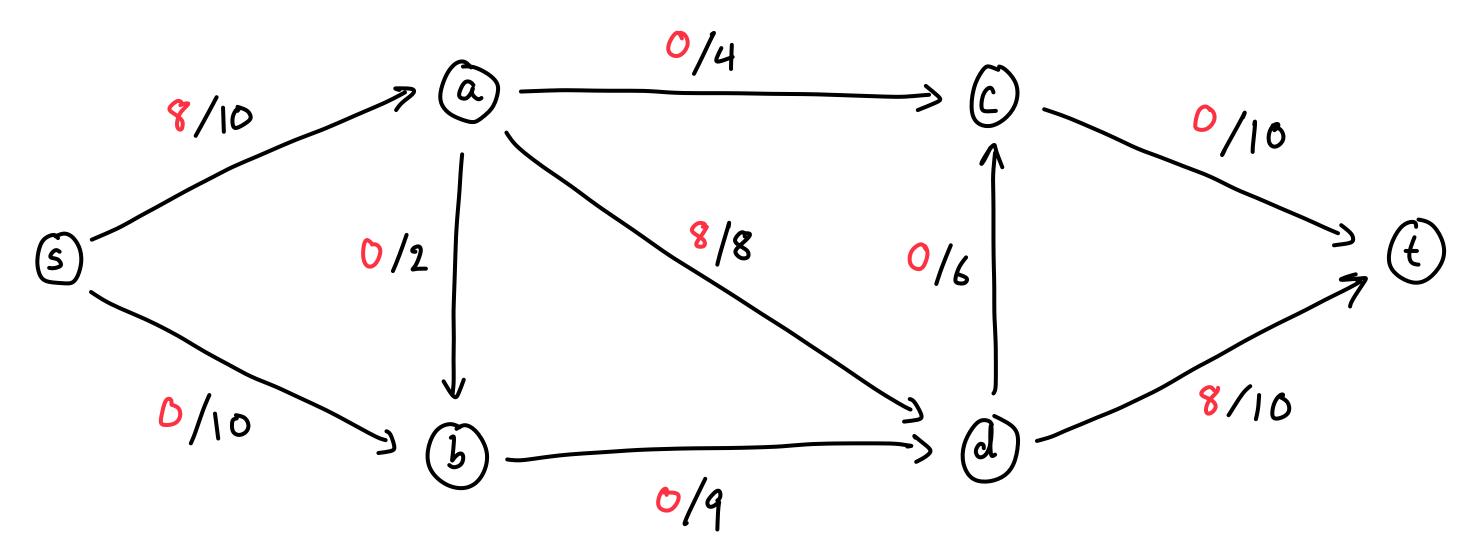
S

Residual graph GF:



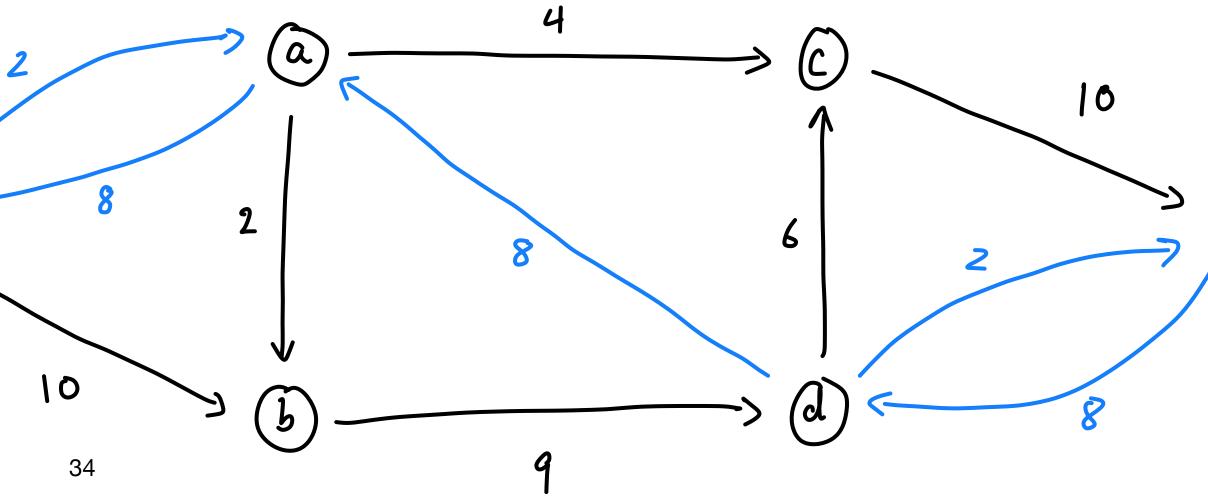


Graph G and flow f:

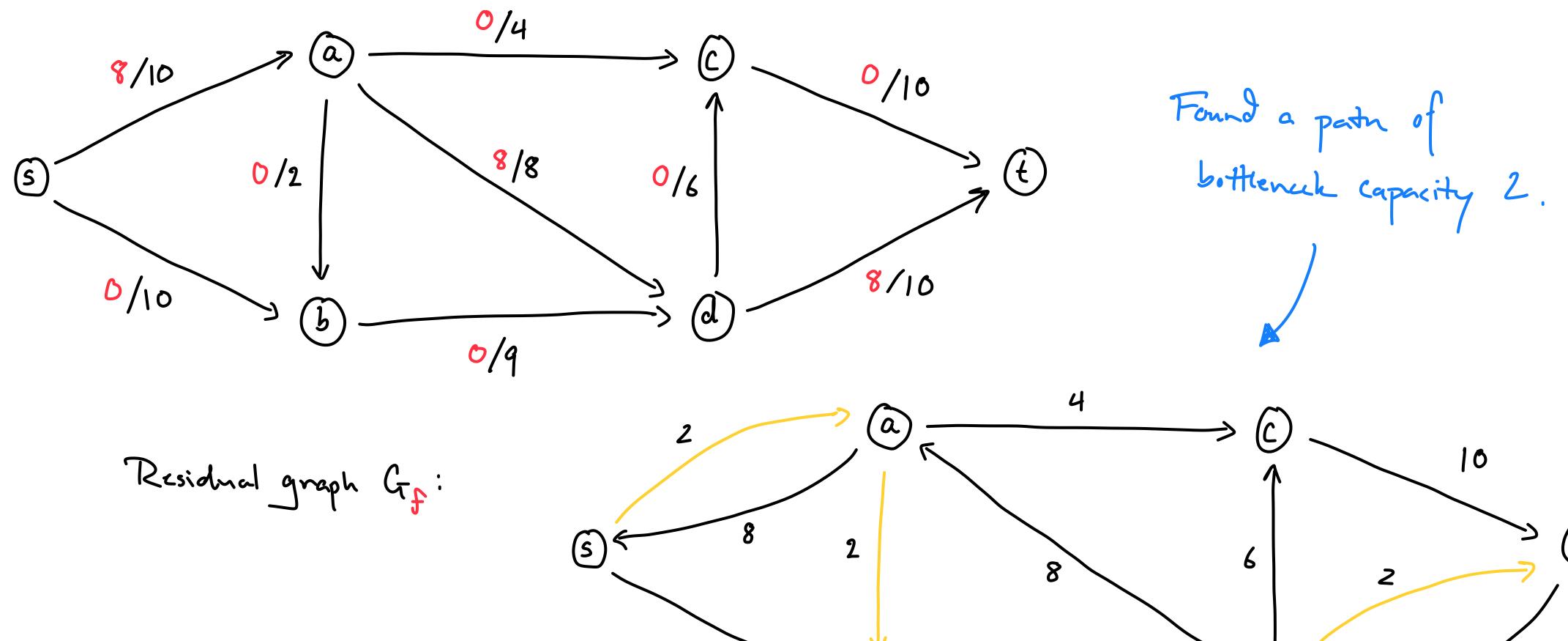


S

Residual graph GF:



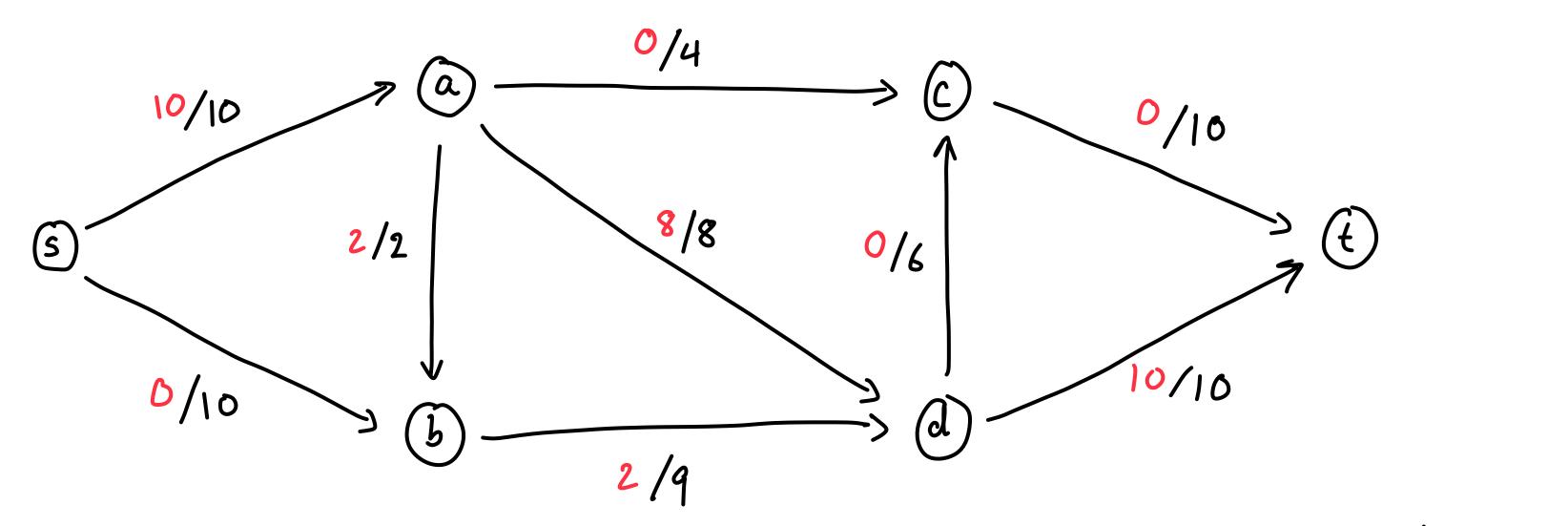
Graph G and flow f:



10

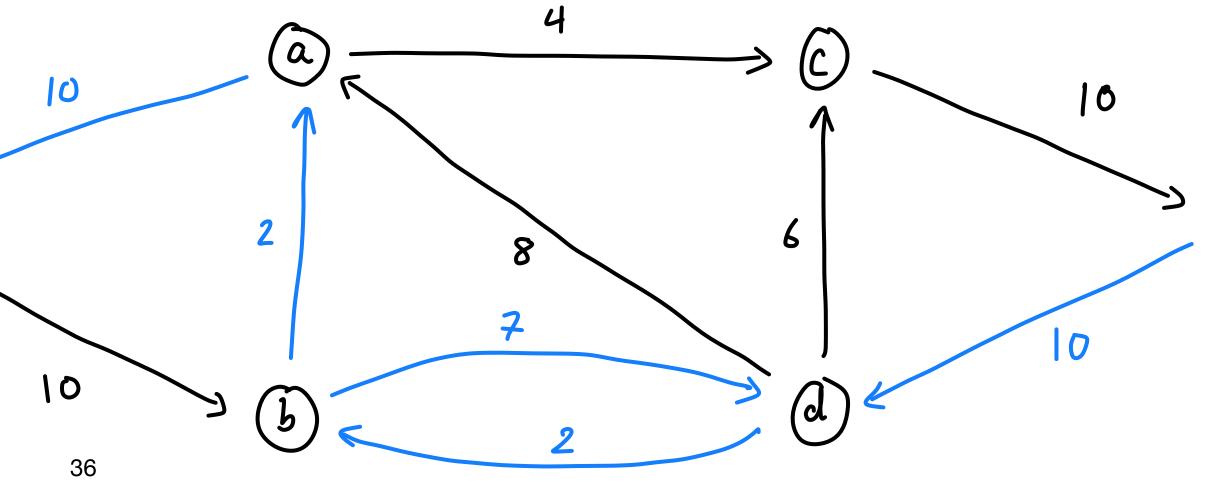
Cl

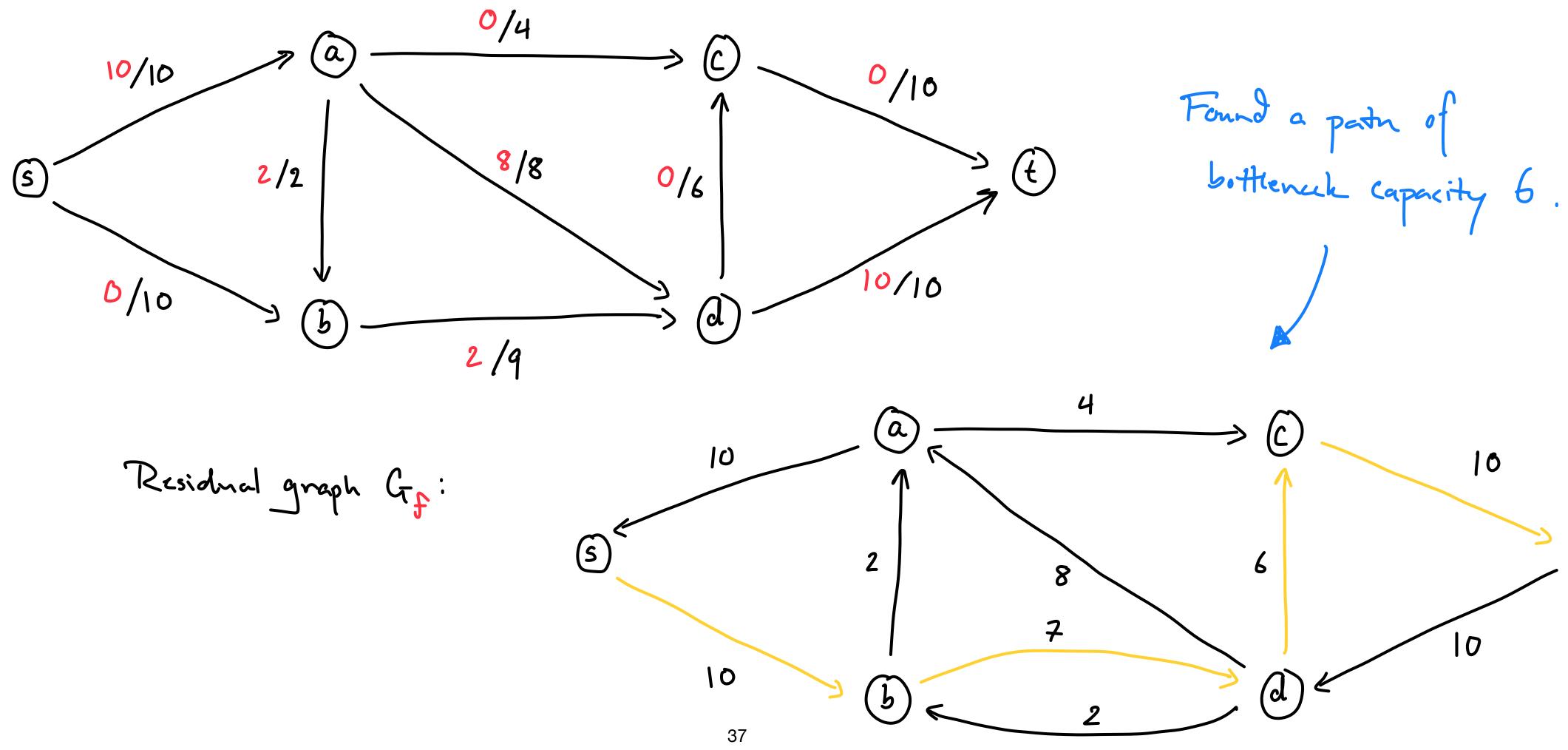
Graph G and flow f:



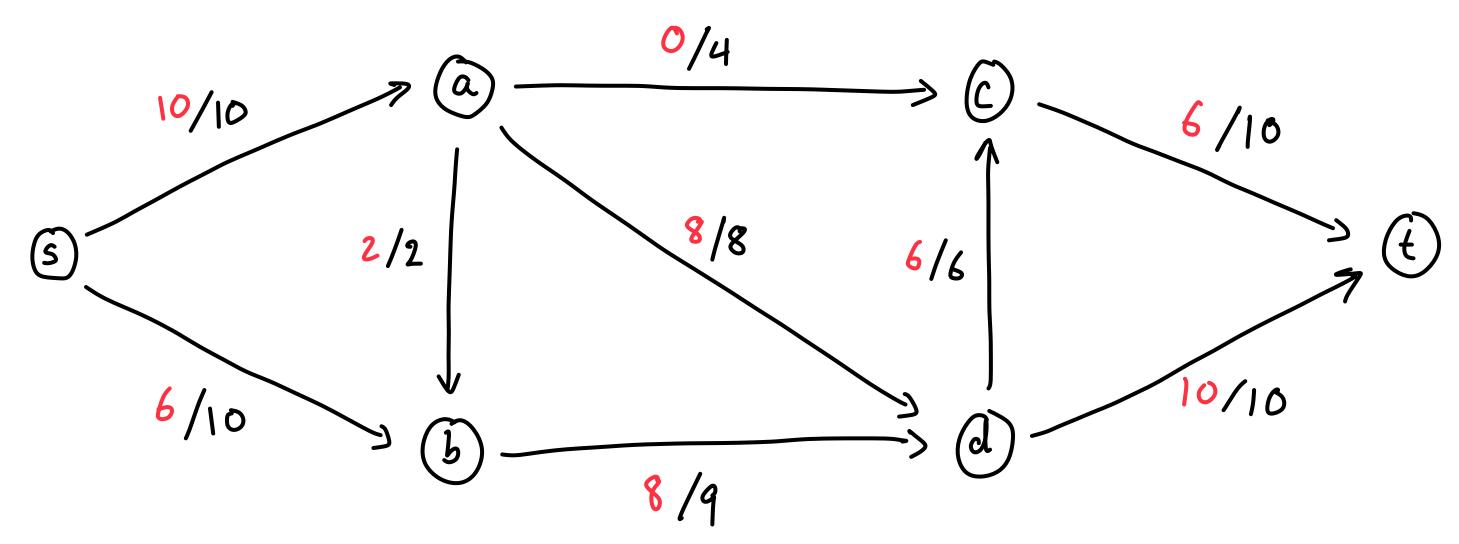
S

Residual graph GF:





Graph G and flow f:



S

Residual graph G:

