
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 16
The max flow and min cut problems

￼1

Previously in CSE 421…

2

The minimum cut problem

• Input: a flow network

• Output: a s-t cut of minimum capacity

(G, c, s, t)

3

The maximum flow problem

• Input: a flow network

• Output: a s-t flow of maximum value

(G, c, s, t)

4

Conservation of flow

5

• Let .

• Then, .

S0 = {s}, T0 = V∖{s}

v(f) = ∑
e from S0 to T0

f(e)

Conservation of flow

6

• Let .

• Then, .

• Define

• Claim: .

• Proof: Switching between sums requires

• subtracting the flow and

• adding the flows , , .

• by flow conservation, these changes are net zero.

S0 = {s}, T0 = V∖{s}

v(f) = ∑
e from S0 to T0

f(e)

S1 ← S0 ∪ {a}, T1 ← T0∖{a} .

v(f) = ∑
e from S1 to T1

f(e)

f(s → a)

f(a → b) f(a → e) f(a → d)

Flow value lemma

7

• Flow value lemma: Let be a s-t flow
and any s-t cut . Then 
 

• Proof (intuition):

• Add the vertices of one by one until
the set is generated.

f
(S, T)

v(f) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

S

Flow value lemma

8

• Flow value lemma: Let be a s-t flow
and any s-t cut . Then 
 

• Proof (intuition):

• Add the vertices of one by one until
the set is generated.

f
(S, T)

v(f) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

S

Flow value lemma

9

• Flow value lemma: Let be a s-t flow
and any s-t cut . Then 
 

• Proof (intuition):

• Add the vertices of one by one until
the set is generated.

f
(S, T)

v(f) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

S

Flow value lemma

10

• Flow value lemma: Let be a s-t flow
and any s-t cut . Then 
 

• Proof (intuition):

• Add the vertices of one by one until
the set is generated.

f
(S, T)

v(f) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

S

Today

11

Flow value proof (formal)

• Let for a s-t cut Then,a ∈ T∖{t} (S, T) .

12

The water intuition

• Imagine the edges as pipes and water is
flowing from at a steady rate of .

• The flow of water leaving must equal
the flow of water leaving .

• Water moving within or is
inconsequential to the total flow

s v(f)

s
S

S T

13

The relationship between flows and cuts

• Weak duality: For any s-t cut , .

• Proof intuition:

• In order for water to flow (positively) from to it
has to use one of the edges from to .

• The total capacity of which is .

• And the value of the flow is the sum of the flow
out of .

(S, T) v(f) ≤ C(S, T)

S T
S T

C(S, T)

≤
S

14

The relationship between flows and cuts

• Weak duality: For any s-t cut , .

• Proof intuition:

• In order for water to flow (positively) from to it
has to use one of the edges from to .

• The total capacity of which is .

• And the value of the flow is the sum of the flow
out of .

(S, T) v(f) ≤ C(S, T)

S T
S T

C(S, T)

≤
S

15

The relationship between flows and cuts

• Weak duality: For any s-t cut , .

• Proof:

•

•

•

•

(S, T) v(f) ≤ C(S, T)

v(f) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

v(f) ≤ ∑
e from S to T

f(e)

v(f) ≤ ∑
e from S to T

c(e)

v(f) = C(S, T)

16

The relationship between flows and cuts

• Weak duality: For any s-t cut , .

• Corollary: As this is true for all s-t cuts and all s-t flows, for
any flow network, 
 
The max flow is always the min cut.

• Theorem: If there exists a flow and a cut such that
 then must be a maximal flow and must

be a minimizing cut.

• Proof: and . This with
 sandwiches everything to get a max flow and

hit cut.

(S, T) v(f) ≤ C(S, T)

≤

f (S, T)
v(f) = C(S, T) f (S, T)

v(fmax) ≥ v(f) C(Smin, Tmin) ≤ C(S, T)
v(f) = C(S, T)

17

Algorithms for max flow

• Greedy algorithm attempt:

• Start with .

• While there is a s-t path where each edge
 has ,

• “Augment” the flow along by adding flow on each
edge

• Where

• Each augmentation increases by and preserves a
valid flow (capacity and conservation of flow constraints).

f(e) = 0

p : s ↝ t
e ∈ p f(e) ≤ c(e)

p α
e ∈ p

α = min
e∈p

[c(e) − f(e)]
v(f) α

18

Greedy algorithm can get stuck…

Even if a larger flow exists:

Greedy algorithms get stuck

• What if there was a way to “undo” a choice made by a greedy algorithm and
keep going?

• Residual graphs

• A graph that represents how much we can change for any edge

• If an edge has a capacity of and is currently flow assigns it

• Then we can either add up to additional flow

• Or remove up to flow from this edge.

c(e) f(e) ≤ c(e)

f(e) − c(e)

c(e)

19

Augmenting paths through residual flow

20

Augmenting paths through residual flow

21

Augmenting paths through residual flow

22

Augmenting paths through residual flow

23

Residual network definition

• For and flow , define as the residual
network with the same vertices, source and sink

• For every edge ,

• (Forward edge): Add an edge of capacity

• (Backward edge): Add an edge of
capacity

(G, c, s, t) f Gf
s t

e = (u → v)

u → v
c(e) − f(e)

v → u
f(e)

24

Notation

• For a flow , let

• Conservation of flow: .

• Positivity of flow: .

f f out(v) = ∑
e outof v

f(e), f in(v) = ∑
e into v

f(e) .

f in(v) = f out(v)

0 ≤ f(e) ≤ c(e)

25

Augmenting path

• An alternative (and mathematically equivalent) way to think about an augment flow in the
residual network is that

• Capacity constraints:

• Conservation of augmenting flow:

• Claim: If is a flow in and is an augmenting flow in , then is a flow in .

• Proof: Adding up capacity constraints and conservation equations proves that is a valid
flow.

• so a positive augmenting flow increases the flow in the graph.

faug
Gf

−f(e) ≤ faug ≤ c(e) − f(e)

(faug)in(v) = (faug)out(v)

f G faug Gf f + faug G

f + faug
∎

v(f + faug) = v(f) + v(faug)

26

New greedy algorithm (Ford-Fulkerson)

• Initialize a flow of for all edges. Set residual network

• While there is a simple path in

• Let be the flow along of weight

• Augment

• Update along the edges of

f(e) ← 0 Gf ← G

p : s ↝ t Gf

faug p min
e∈p

cGf
(e)

f ← f + faug

Gf p

27

New greedy algorithm (Ford-Fulkerson)

• Initialize a flow of for all edges. Set residual network

• While there is a simple path in

• Let be the flow along of weight

• Augment

• Update along the edges of

f(e) ← 0 Gf ← G

p : s ↝ t Gf

faug p min
e∈p

cGf
(e)

f ← f + faug

Gf p

28

Ford Fulkerson algorithm

• Lemma: Let be a flow network with integer capacities:
and .

• Then the previous greedy algorithm terminates in time .

• Proof:

• Each iteration of the while loop must increase by at least 1.

• is a trivial bound on the max flow in the network.

• Therefore, at most iterations each taking time.

(G, c, s, t) c : E → ℤ≥0
C = cout(s)

O(Cm)

v(f)

C

C O(m)
29

Ford Fulkerson algorithm correctness

• Lemma: Let be a flow network with integer capacities:
 and .

• Then the previous greedy algorithm computes the max flow.

• Proof: In due time.

(G, c, s, t)
c : E → ℤ≥0 C = cout(s)

30

Ford-Fulkerson animation

31

Ford-Fulkerson animation

32

Ford-Fulkerson animation

33

Ford-Fulkerson animation

34

Ford-Fulkerson animation

35

Ford-Fulkerson animation

36

Ford-Fulkerson animation

37

Ford-Fulkerson animation

38

Ford-Fulkerson animation

39

Ford-Fulkerson animation

40

Ford-Fulkerson animation

41

Ford-Fulkerson animation

42

Ford-Fulkerson animation

43

Ford-Fulkerson animation

44

