Lecture 15

Network flow

Chinmay Nirkhe | CSE 421 Spring 2025




Midterm

 Midterm during class on May 5th in the usual lecture hall
* For with registered services with DRS for alternate testing
* Glerum Room CSE2 345 starting at 3:30
* Your responsibility to convey to the proctor your specific alterations
* You are allowed to bring XXXX resources with you. Pen and paper exam.

 Midterm will be 1 hour and starts promptly.



Midterm

* Covers subjects up through the dynamic programming except Bellman-Ford
 Sample midterm for practice problems and length is posted
» Section this week will review problems and strategy

* |’ll host a Q&A section about the subject on XXXX.
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Maximum flow and minimum cut

* [wo very rich algorithmic problems.
* Cornerstone problems in combinatorial optimization.

» Beautiful mathematical duality.

Nontrivial applications / reductions:

* Data mining. * Network reliability.
* Project selection. e Distributed computing.
« Airline scheduling. * Egalitarian stable matching.

* Security of statistical data.

* Network intrusion detection.
e Multi-camera scene reconstruction.
°* many many more ...

e Bipartite matching.

e Baseball elimination.
* Image segmentation.
* Network connectivity.
e Strip mining.
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e Max Flow problem: Ralil
transportation for the Soviet

Union

 Min Cut problem: Cold War
attempts to cripple Soviet
supply routes

e Ford & Fullerton prove (1955)
that problems are equivalent
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The origin of the max flow/min cut problems

Reference: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.




Flow network definition

* Imagine each edge in a graphis a
directional water pipe

» Each edge has a capacity c(e) for

 There are two specified vertices s, f for
source and sink

« G = (V, E) graph with no parallel edges
* The tuple (G, c, s, t) define a flow network
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Graph cuts

* An s-t cutin a graph is a partition of the vertices into V = § LI 7 such that
s€ Sandt € 1. The capacity of as-tcut (S5, 7)) is

/q \ 15\
e(s,T) ::—_7 (e) c b N\

cdees € leam

aﬁg 1 Xq \ 15/
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Graph cuts

* An s-t cutin a graph is a partition of the vertices into V = § LI 7 such that
s € Sandt € T. The capacity of as-tcut (S, 7) is

. \ 15\ -
C(S,T) = 7‘ c(e) g LV \

5 >0 B0 @)

cda,es e |£w'\_:"j . . »
> \ \! 10

J
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Graph cuts

* An s-t cutin a graph is a partition of the vertices into V = § LI 7 such that
s € Sandt € T. The capacity of as-tcut (S, 7) is

Mq \ 15\‘1‘
C<§}T> = 7\ C(c) i X! .
cdees & lens
aﬁS ~ S xq\b \ 15/

c(8,T)= 40+8+30 = 48 O—=30)
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Graph cuts

* An s-t cutin a graph is a partition of the vertices into V = § LI 7 such that
s € Sandt € T. The capacity of as-tcut (S, 7) is

\

c(8, T)=40+5+6+10 = 21 O——0@
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Graph cuts

* An s-t cutin a graph is a partition of the vertices into V = § LI 7 such that
s € Sandt € T. The capacity of as-tcut (S, 7) is

bz \ 15\-,-
C(S)T) i 7\ C(C) - 4 oY \\
cdoes & loaw
Yo - X‘l \ 15/

C(S,T>=10+5+é*10 ©- 30 26
+ 40 + 45 = 46 .




The minimum cut problem

 |Input: a flow network (G, ¢, s, 1)

e Output: a s-t cut of minimum capacity

nm -
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s-t flow

e As-tflow in a flow network is a fn.
f E — R, that satisfies:

Ca ek
e P
Cun s‘\‘f‘o\\ 1\4’5

« Foreachedgee € E,0 < f(e) < c(e)

0/10 DJI&
» Foreveryv € V\{s,t}, . . . 1. 0/ 0/15

rivial *\\ow {\2 o)

S fo= Y fio ®

e Into v e outof v o/

_ The value of a flow fis v(f) := Z f(e)

e outofs
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s-t flow

e As-tflow in a flow network is a fn.
f E — R, that satisfies:

« Foreachedgee € E,0 < f(e) < c(e)

« Foreveryv € V\{s,1},

2 flo= ), flo

e 1nto v e outof v

_ The value of a flow fis v(f) := Z f(e)
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s-t flow

e As-tflow in a flow network is a fn.
f E — R, that satisfies:

« Foreachedgee € E,0 < f(e) < c(e)

« Foreveryv € V\{s,1},

2 flo= ), flo

e 1nto v e outof v

_ The value of a flow fis v(f) := Z f(e)

e outofs

21

m \
4[4 0/1s
0/5 &/8 v



s-t flow

e As-tflow in a flow network is a fn.
f E — R, that satisfies:

« Foreachedgee € E,0 < f(e) < c(e)

« Foreveryv € V\{s,1},

2 flo= ), flo

e 1nto v e outof v

_ The value of a flow fis v(f) := Z f(e)

e outofs

22




The maximum flow problem

 |Input: a flow network (G, ¢, s, 1)

e Output: a s-t flow of maximum value
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Conservation of flow

e LetSy={s},T, = V\{s}.
CThen,v(f)= ) fle).

e trom §, to T,




Conservation of flow

e LetS, = {s},Ty=V\{s}.

)IRN/O]

e from S, to T,

_ Then, v(f) =

» Define S| « SyU {a}, T, « Ty\{a}.

Cclaimv(f)= ) fle).

e from §, to T,

* Proof: Switching between sums requires

» subtracting the flow f(s — a) and

« adding the flows fla — b), fla — e), fla = d).

* by flow conservation, these changes are net zero.
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Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

i)=Y flo- ) fle

e from Sto T e from T to S

* Proof (intuition):

« Add the vertices of S one by one until
the set is generated.

26

/10 s
/5. .
"4 ®
/16 0/1

D)
g
a@ /10 >@
!
0f1s
\# 1of1o




Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

S /9
=Y fo- X fo o A
e from Sto T e from 7 to S [4 \

* Proof (intuition): @ /s ®) /
 Add the vertices of .S one by one until /15 O/‘l
the set Is generated. @
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Flow value lemma

e Flow value lemma: Let f be a s-t flow
and any s-t cut (S, T'). Then

S /9
=Y, fo- X fo o AN
e from Sto T e from 7 to S [4 \

* Proof (intuition): @ /S] ©) /
 Add the vertices of .S one by one until /15 O/‘l
the set Is generated. @
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Flow value proof (formal)

=0 L f\&m\l'\‘m o
e Leta € T\{t} foras-tcut(S,T).Then, 7/01 fﬁw
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The water intuition

* |magine the edges as pipes and water
flowing from s at a steady rate of v(f).

 The flow of water leaving s must equal
the flow of water leaving 3.

« Water moving within S or T'is
iInconsequential to the total flow
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The relationship between flows and cuts

o Weak duality: For any s-t cut (S, T), v(f) < C(S, T).
* Proof intuition:

* |In order for water to flow (positively) from S to 7' it .J:

YA OX
has to use one of the edges from S to 7. \\
ool :
 The total capacity of which is C(S, T). v\ S

« And the value of the flow is < the sum of the flow
OUt Of S .{.
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The relationship between flows and cuts

» Weak duality: Forany s-t cut (S, 7T), v(f) < C(S,T).

* Proof intuition: /§
» In order for water to flow (positively) from S to 7'it Wx
has to use one of the edges from § to 7. l &\ /
« The total capacity of which is C(S, T'). M / |
: "\, .
 And the value of the flow is < the sum of the flow 2;/‘
out of S L
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The relationship between flows and cuts

« Weak duality: For any s-tcut (S, 7), v(f) < C(S, T).

*S
 Proof:
= ) flo- ) fe P
e from Sto T e from T to S ' '
L v
< Z f(e) 30 shw Ae)20 Jor ol edges \ \,\
e from Sto T \ \ / /
< Z c(e) & siva Al) € cfe) for all edges -
e from Sto T .
{

= C(S,T)
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The relationship between flows and cuts

« Weak duality: For any s-t cut (S, 7)),

v(f) < CS,T). "S
e Corollary: As this is true for all s-t cuts and all s-t ..,
flows, for any flow network, 4 J\\ )
The max flow is always < the min cut. ‘t 4\ s
» Theorem: If there exists a flow fand a cut (S, T') |
such that v(f) = ¢(S, T) then f must be a maximal :
<

flow and (S, 7)) must be a minimizing cut.
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Algorithms for max flow

* Greedy algorithm attempt:
o Start with f(e) = 0

 While there is a s-t path p : § ~  where each edge
e € p has f(e) < c(e),

* “Augment” the flow along p by adding a flow on each
edgee € p

. Where ¢ = min [c(e) — f(e)]
ecp

« Each augmentation increases v(f) by a and preserves a

valid flow (capacity and conservation of flow constraints).
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Greedy algorithm can get stuck...

Even if a Iarger flow exists:
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Greedy algorithms get stuck

 What if there was a way to “undo” a choice made by a greedy algorithm and
keep going”?

* Residual graphs

* A graph that represents how much we can change for any edge
» If an edge has a capacity of c(e) and is currently flow assigns it f(e¢) < c(e)
» Then we can either add up to f(e) — c(e) additional flow

« Or remove up to c(e) flow from this edge.
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Residual network definition

. For (G,c,s,t) and flow f, define Gf as the residual
hetwork with the same vertices, source s and sink ¢

e Foreveryedgee = (u — v),

e (Forward edge): Add an edge u — v of capacity

c(e) — fle)

« (Backward edge): Add an edge v — u of
capacity f(e)
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Notation

_ Foraflowf let/™(v)= ) fle), f"(»)= ) fle).

e outof v e 1nto v

. Conservation of flow: f™(v) = FoU(v).

» Positivity of flow: 0 < f(e) < c(e).



Augmenting path

 An alternative (and mathematically equivalent) way to think about an augment flow faug in the

residual network Gf is that
. Capacity constraints: —f(e) < faug < c(e) — f(e)

) (V) = (fa) ™)

. Conservation of augmenting flow: (/.

. Claim: For flow fin G and augmenting flowfaug

in Gg, [+ faue is @ flow in G.

. Proof: Adding up capacity constraints and conservation equations proves that f + faug s a valid
flow. B

o V([ fane) = V(f) + v(f,) SO @ positive augmenting flow increases the flow in the graph.
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New greedy algorithm (Ford-Fulkerson)

+ Initialize a flow of f(e) « O for all edges. Set residual network Gy < G

- 2 oot
« While there is a simple pathp : s ~ 71In Gf | Howo o e %"‘* Se '\’H“‘
nd "'1\720\4' Ve (e Oh& OPX\CM 1S wn Crf&r\,\ 7;&\16(3 &l

. Letf,,, be the flow along p of weight mincg(€) | D ¢ h £ wsing e ctien s?

ecp i J

‘MS\'\"\& Cﬂ\ma\ .
» Augmentf—f+p < )t T ,
‘/ O(VH W\) +IN‘~€.

- Update Galong the edges of p | ,
HOV\) VV\o\V\7 ‘hwsw il the I/o\)l/\'\\e ‘DGF ‘\e'l‘_)cm.'\' ,
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Ford Fulkerson algorithm

- Lemma: Let (G, ¢, s, 1) be a flow network with integer capacities: ¢ : E — Z
and C = c®(s).

» Then the previous greedy algorithm terminates in time O(Cm).
* Proof:
» Each iteration of the while loop must increase v(f) by at least 1.

« (is atrivial bound on the max flow in the network.

« Therefore, at most C iterations each taking O(m) time.
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Ford Fulkerson algorithm correctness

 Lemma: Let (G, ¢, s, t) be a flow network with integer capacities:
c:E— Z.yand C = c®(s).

* Then the previous greedy algorithm computes the max flow.

* Proof:

e |n next lecture!
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