Lecture 15 Network flow

Chinmay Nirkhe | CSE 421 Spring 2025

1

Midterm

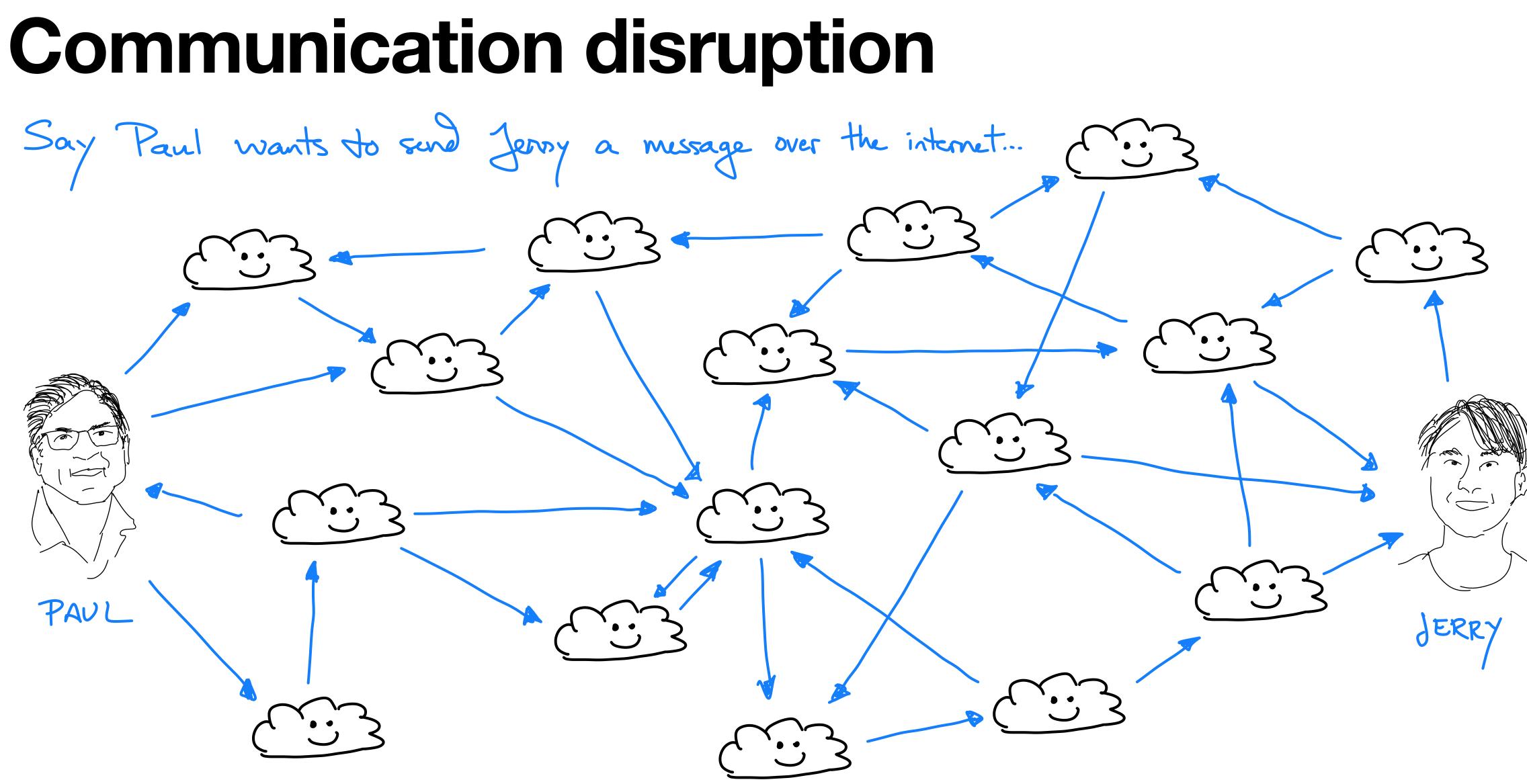
- Midterm during class on May 5th in the usual lecture hall
- For with registered services with DRS for alternate testing
 - Glerum Room CSE2 345 starting at 3:30
 - Your responsibility to convey to the proctor your specific alterations
- You are allowed to bring XXXX resources with you. Pen and paper exam.
- Midterm will be 1 hour and starts promptly.

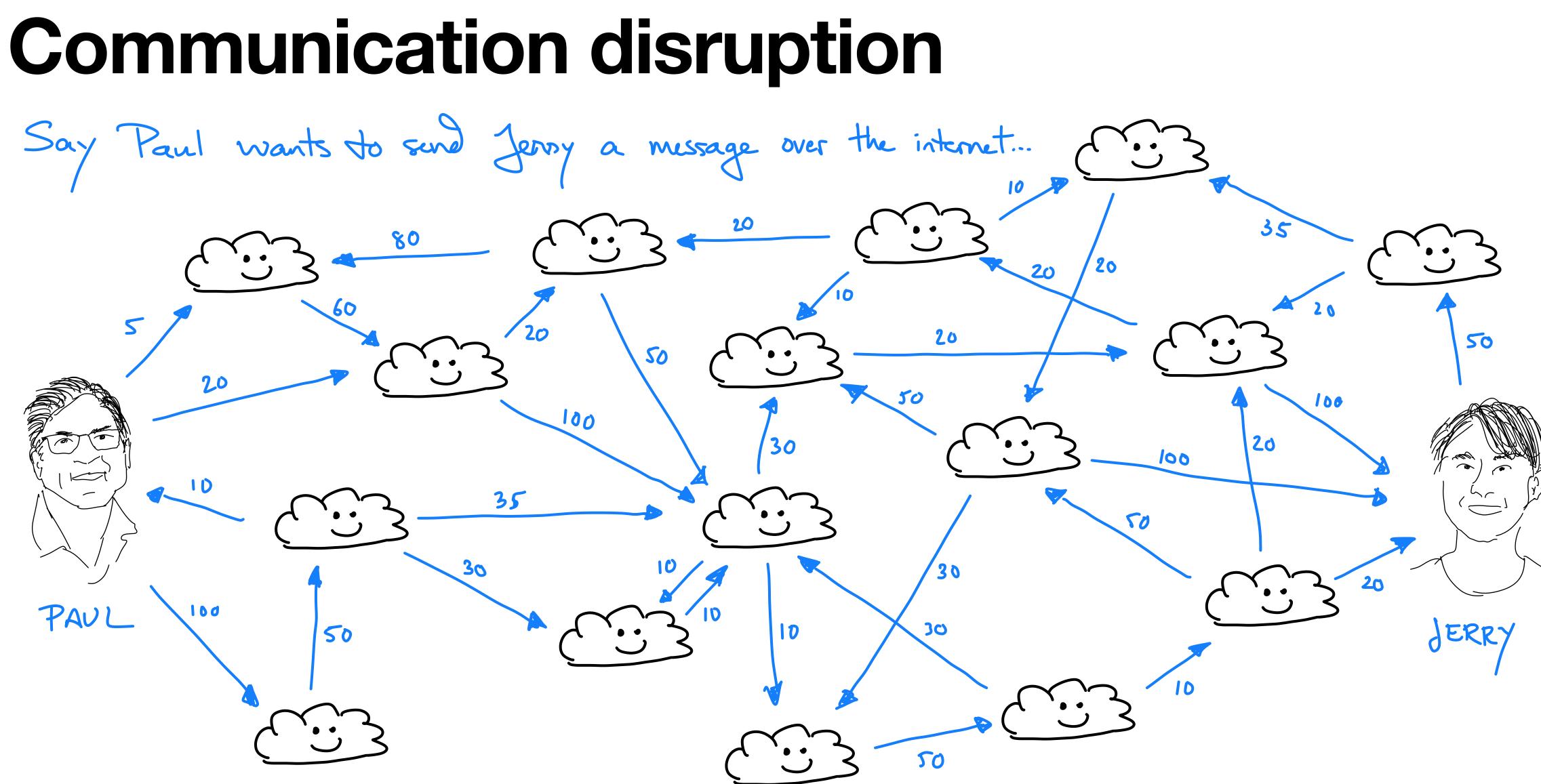
Midterm

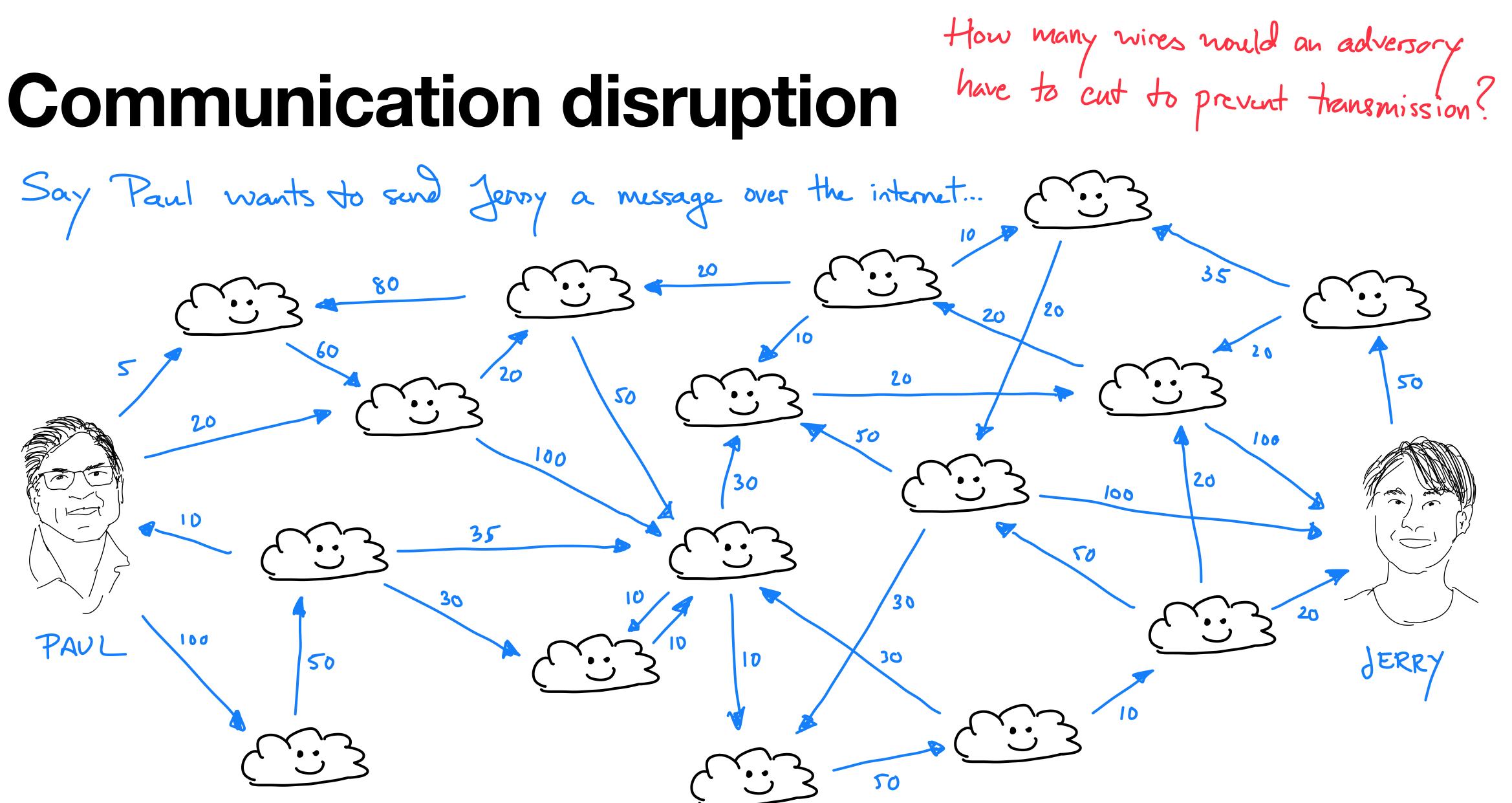
- Covers subjects up through the dynamic programming except Bellman-Ford
- Sample midterm for practice problems and length is posted
- Section this week will review problems and strategy
- I'll host a Q&A section about the subject on XXXX.

Communication disruption

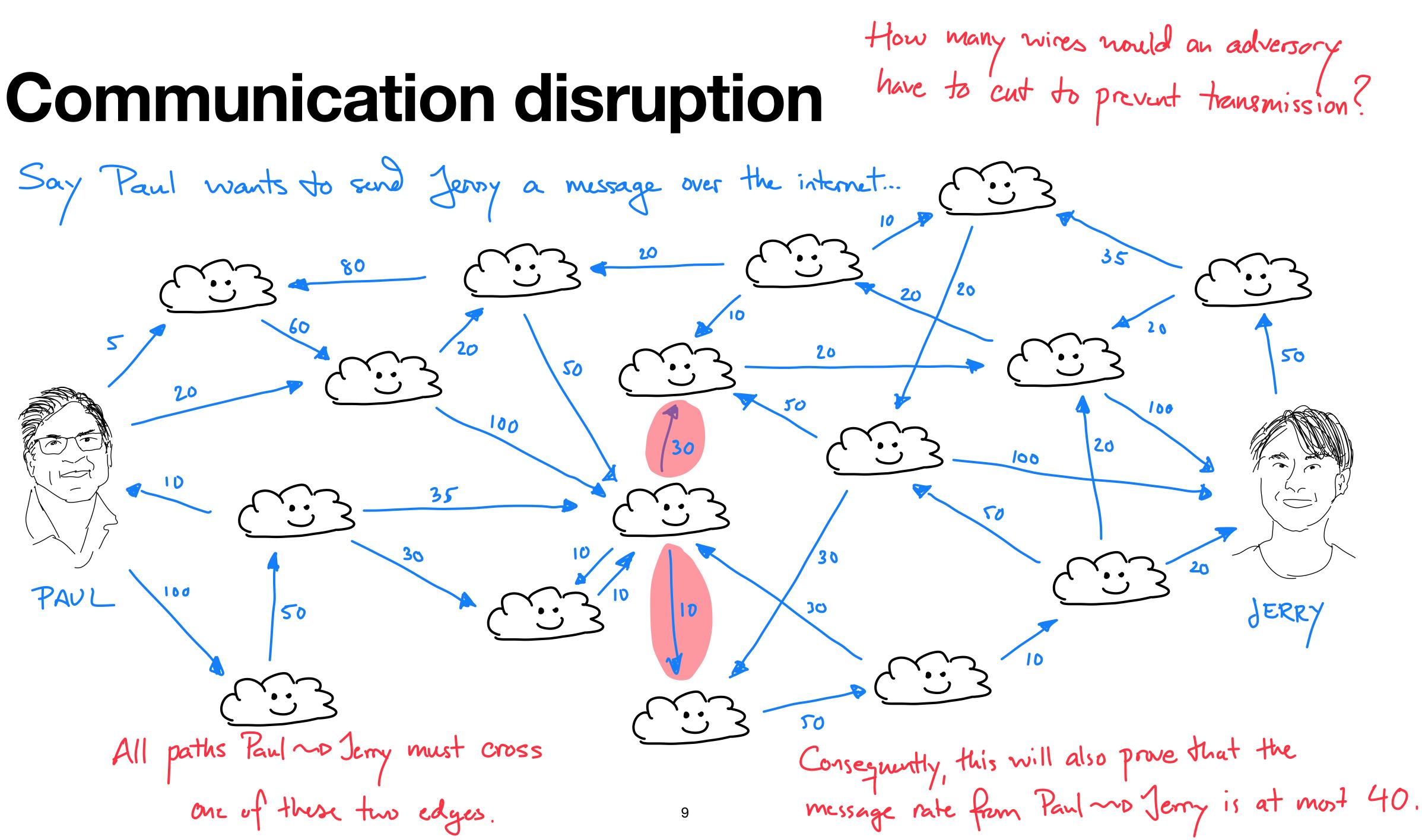
Say Paul wants to send Jerry a message over the internet...











Maximum flow and minimum cut

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

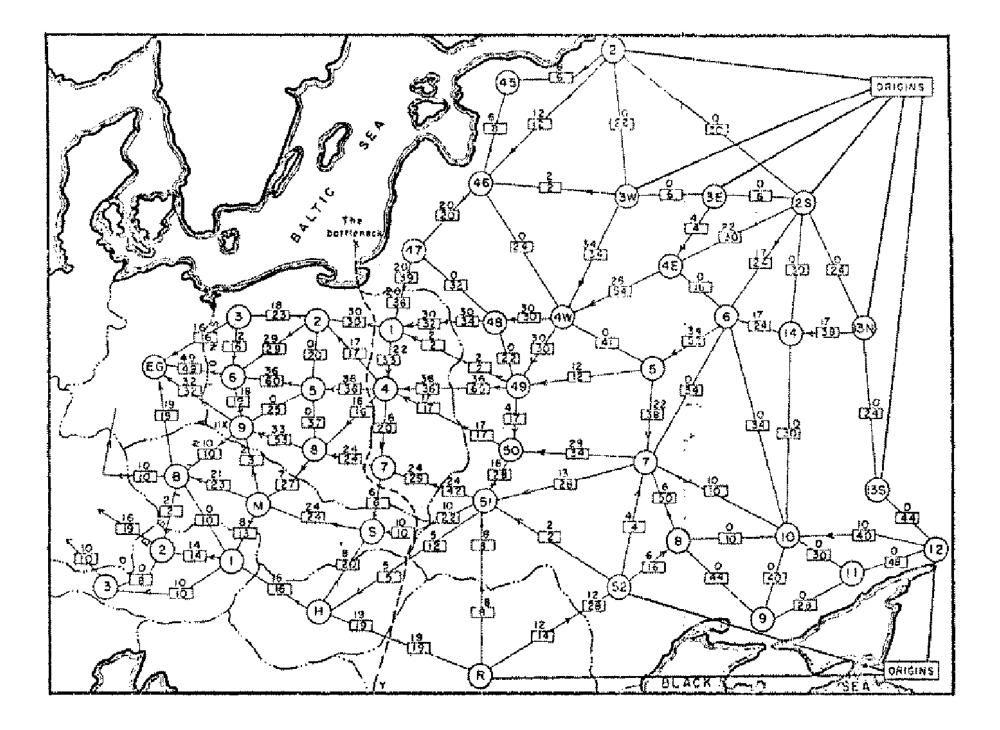
Nontrivial applications / reductions:

- Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Baseball elimination.
- Image segmentation.
- Network connectivity.
- Strip mining.

- Network reliability.
- Distributed computing.
- Egalitarian stable matching.
- Security of statistical data.
- Network intrusion detection.
- Multi-camera scene reconstruction.
- many many more ...

The origin of the max flow/min cut problems

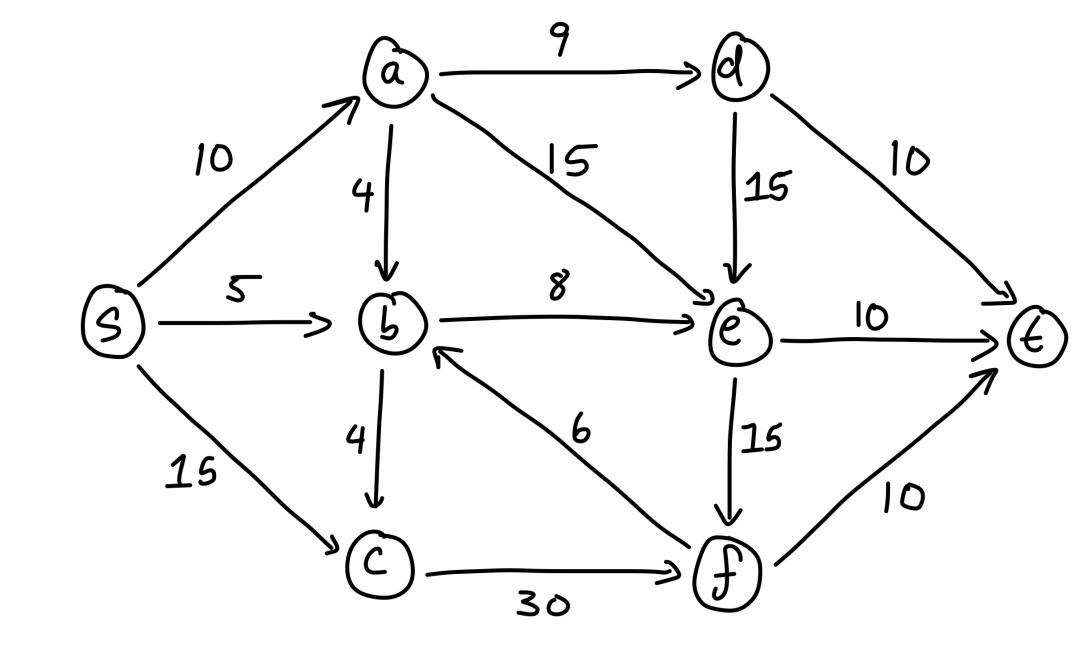
- Max Flow problem: Rail transportation for the Soviet Union
- Min Cut problem: Cold War attempts to cripple Soviet supply routes
- Ford & Fullerton prove (1955) that problems are equivalent



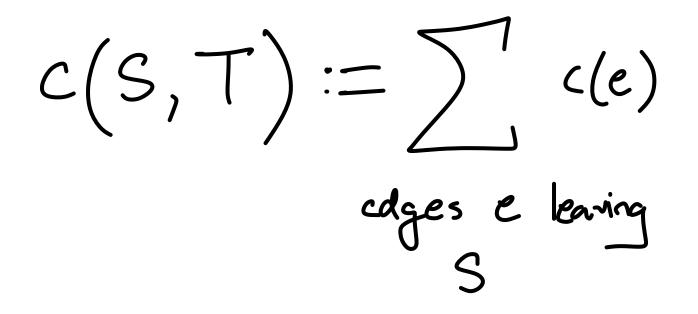
Reference: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

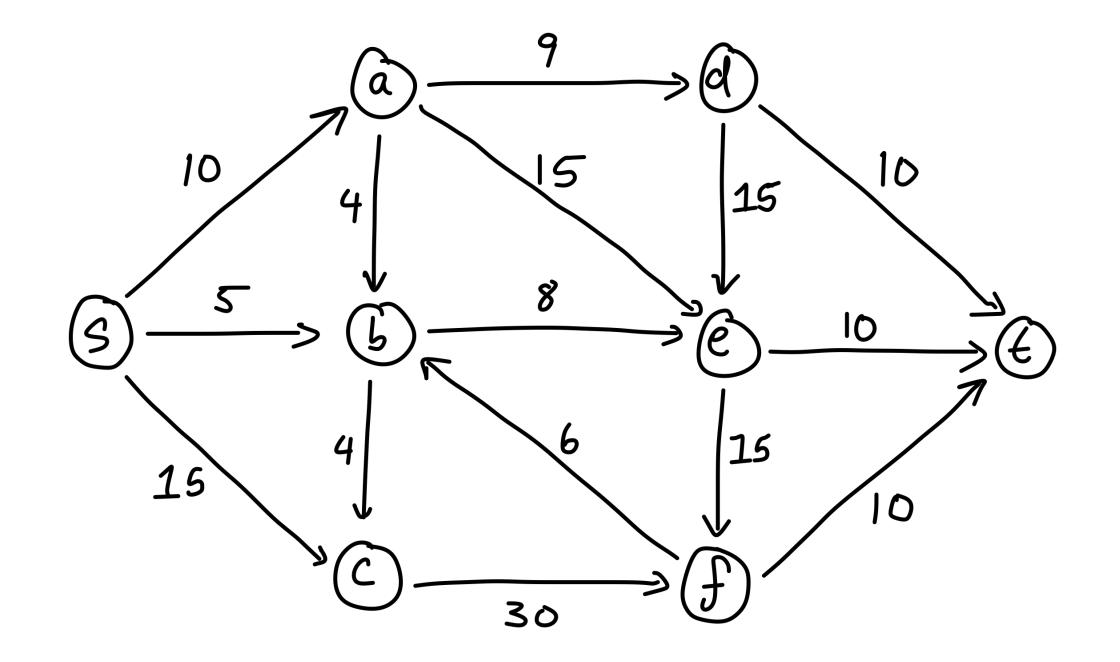
Flow network definition

- Imagine each edge in a graph is a directional water pipe
- Each edge has a capacity c(e) for $c: E \to \mathbb{R}_{>0}$
- There are two specified vertices s, t for source and sink
- G = (V, E) graph with no parallel edges
- The tuple (G, c, s, t) define a flow network

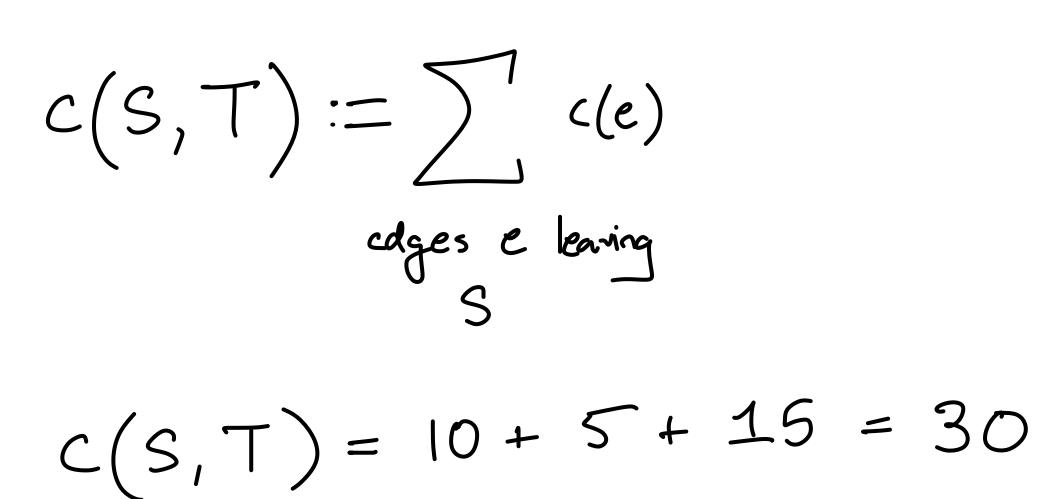


• An s-t cut in a graph is a partition of the vertices into $V = S \sqcup T$ such that $s \in S$ and $t \in T$. The capacity of a s-t cut (S, T) is

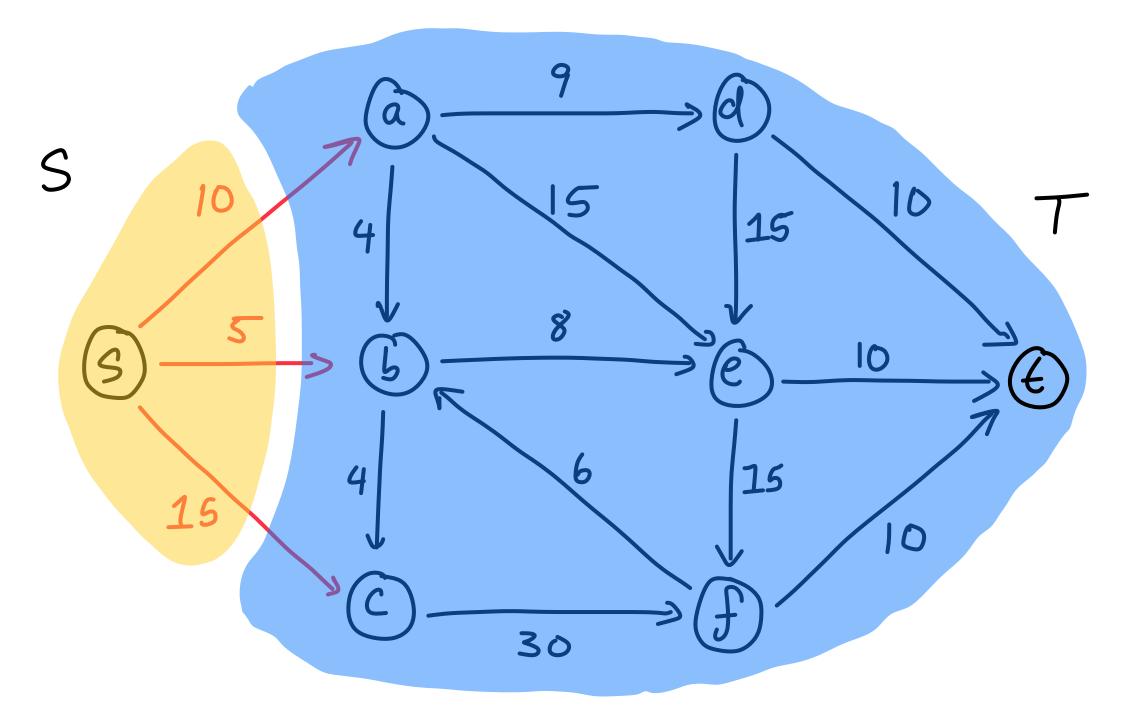




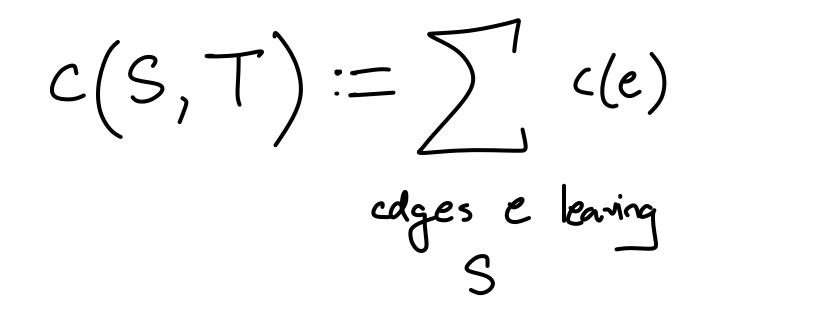
 $s \in S$ and $t \in T$. The capacity of a s-t cut (S, T) is



• An s-t cut in a graph is a partition of the vertices into $V = S \sqcup T$ such that

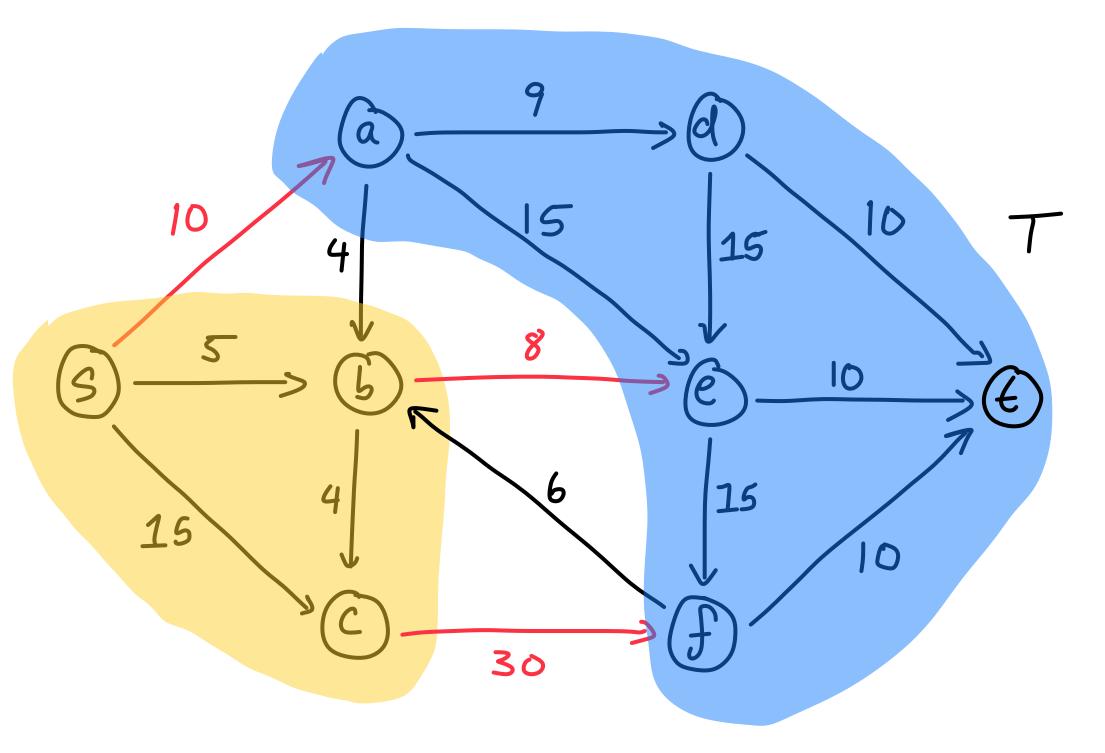


 $s \in S$ and $t \in T$. The capacity of a s-t cut (S, T) is



C(S,T) = 10 + 8 + 30 = 48

• An s-t cut in a graph is a partition of the vertices into $V = S \sqcup T$ such that



S

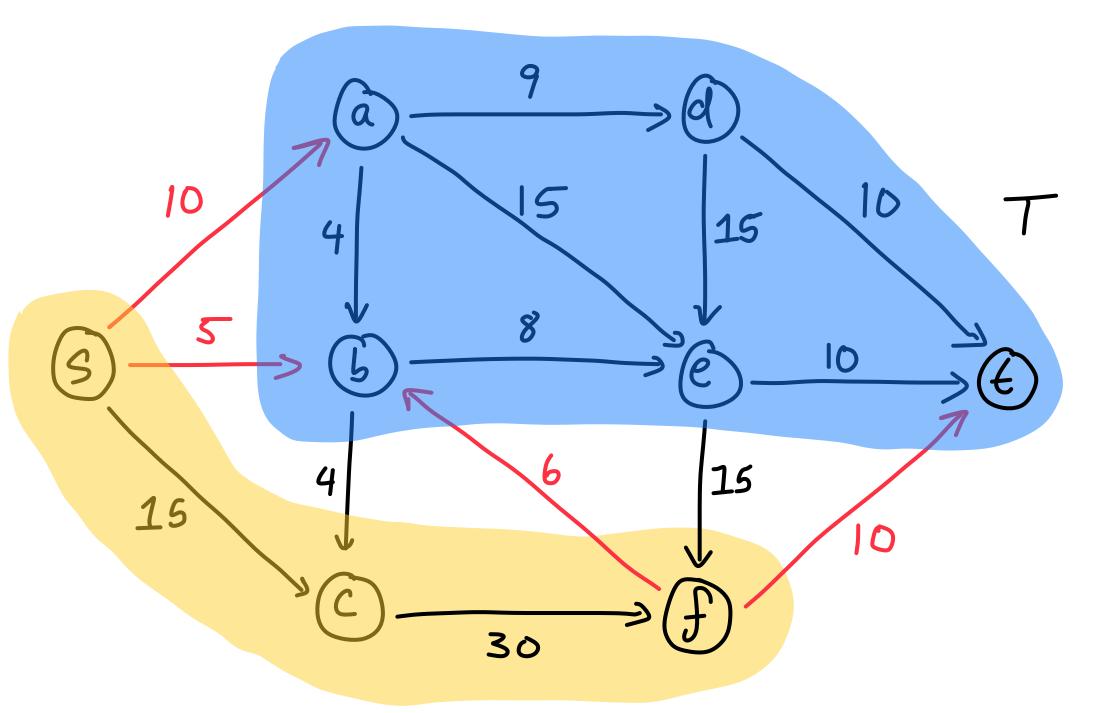
 $s \in S$ and $t \in T$. The capacity of a s-t cut (S, T) is

$$C(S,T) := \sum_{\substack{f \in S}} c(e)$$

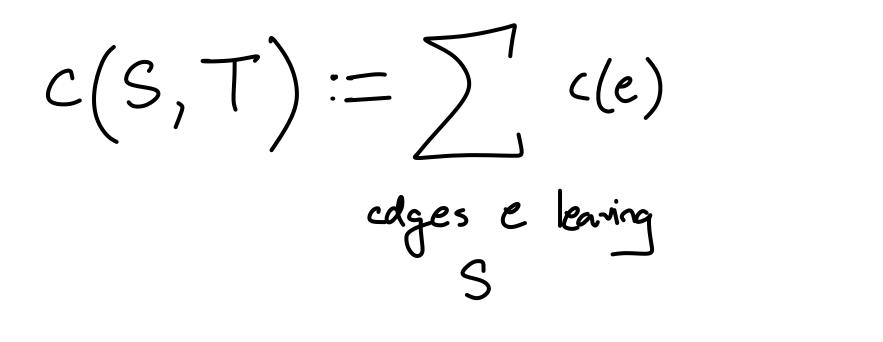
 $cdges e leaving S$

C(S,T) = 10 + 5 + 6 + 10 = 21

• An s-t cut in a graph is a partition of the vertices into $V = S \sqcup T$ such that

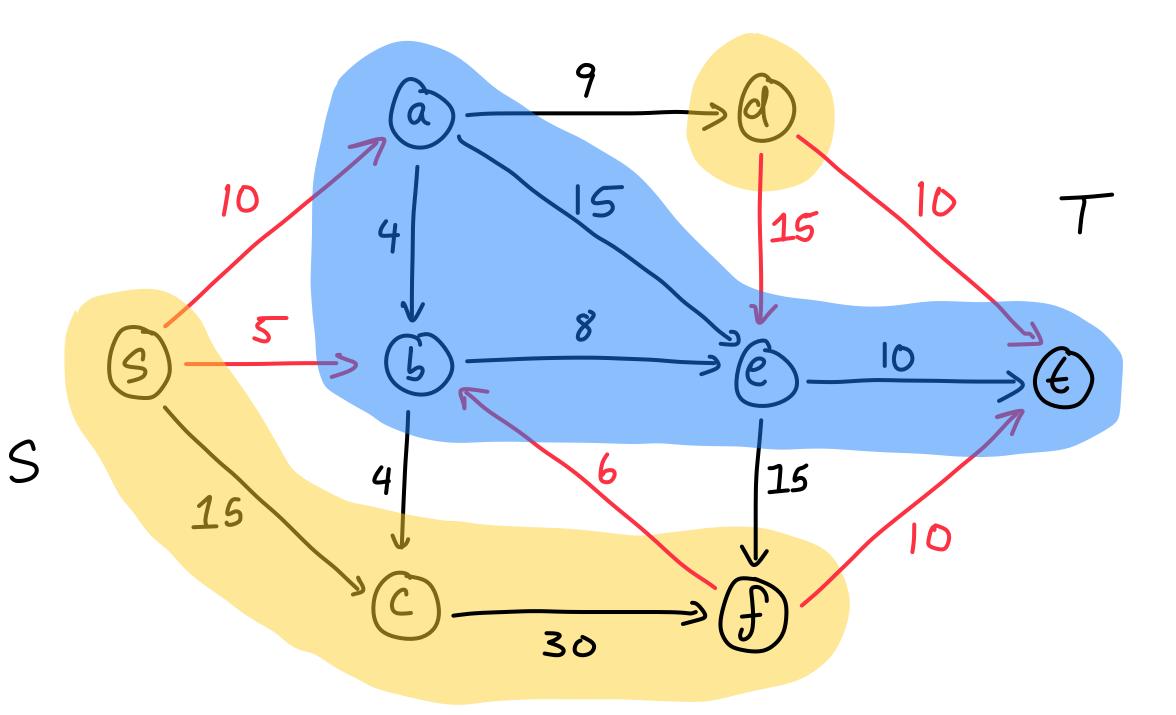


 $s \in S$ and $t \in T$. The capacity of a s-t cut (S, T) is



C(S,T) = 10 + 5 + 6 + 10 + 10 + 15 = 46

• An s-t cut in a graph is a partition of the vertices into $V = S \sqcup T$ such that

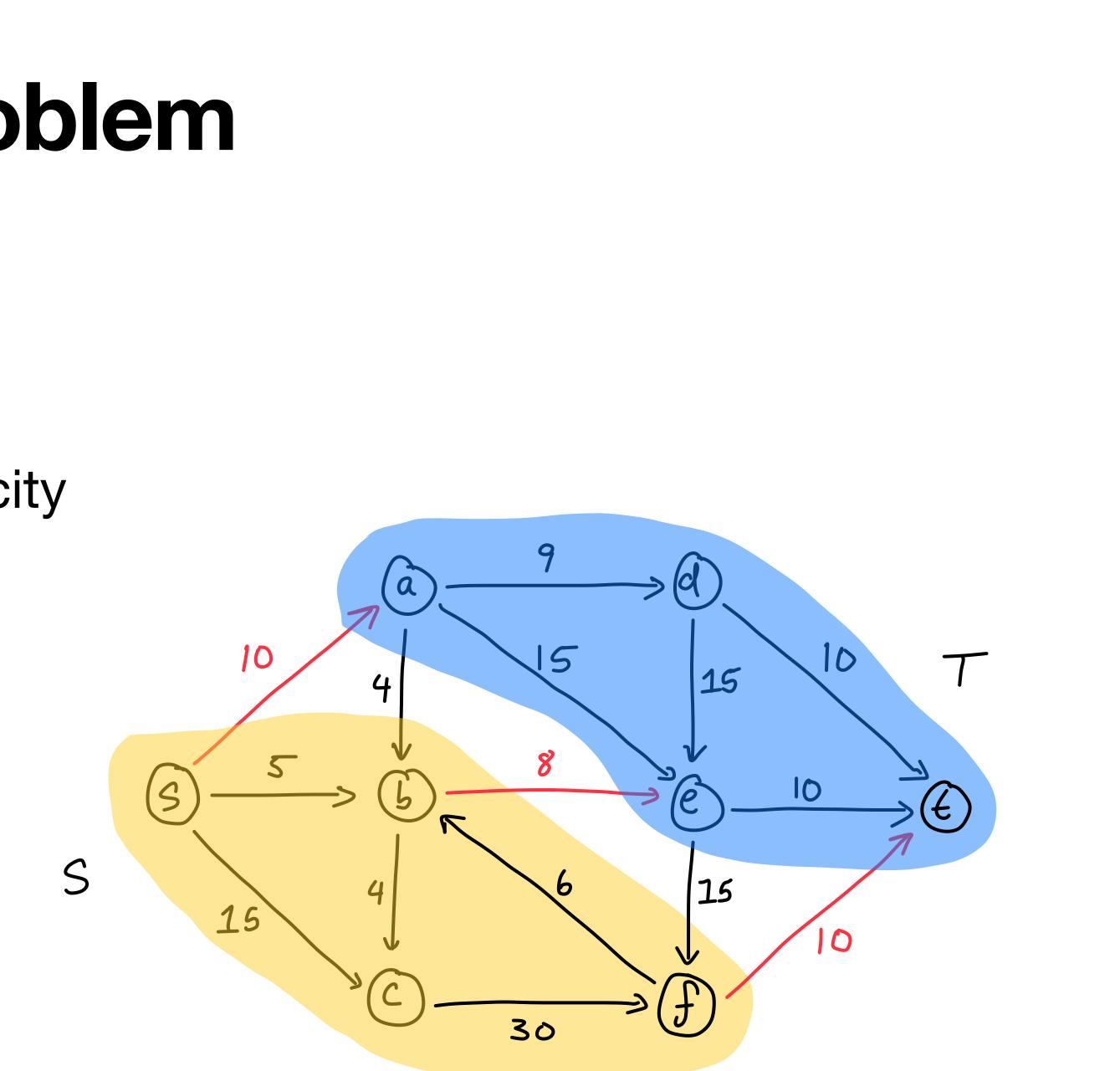


The minimum cut problem

- Input: a flow network (G, c, s, t)
- Output: a s-t cut of minimum capacity

$$mincut(G_{1}c,s,t) = \min_{\substack{s \neq cut \\ (S_{1}T)}} \left\{ c(S_{1}T) \right\}$$

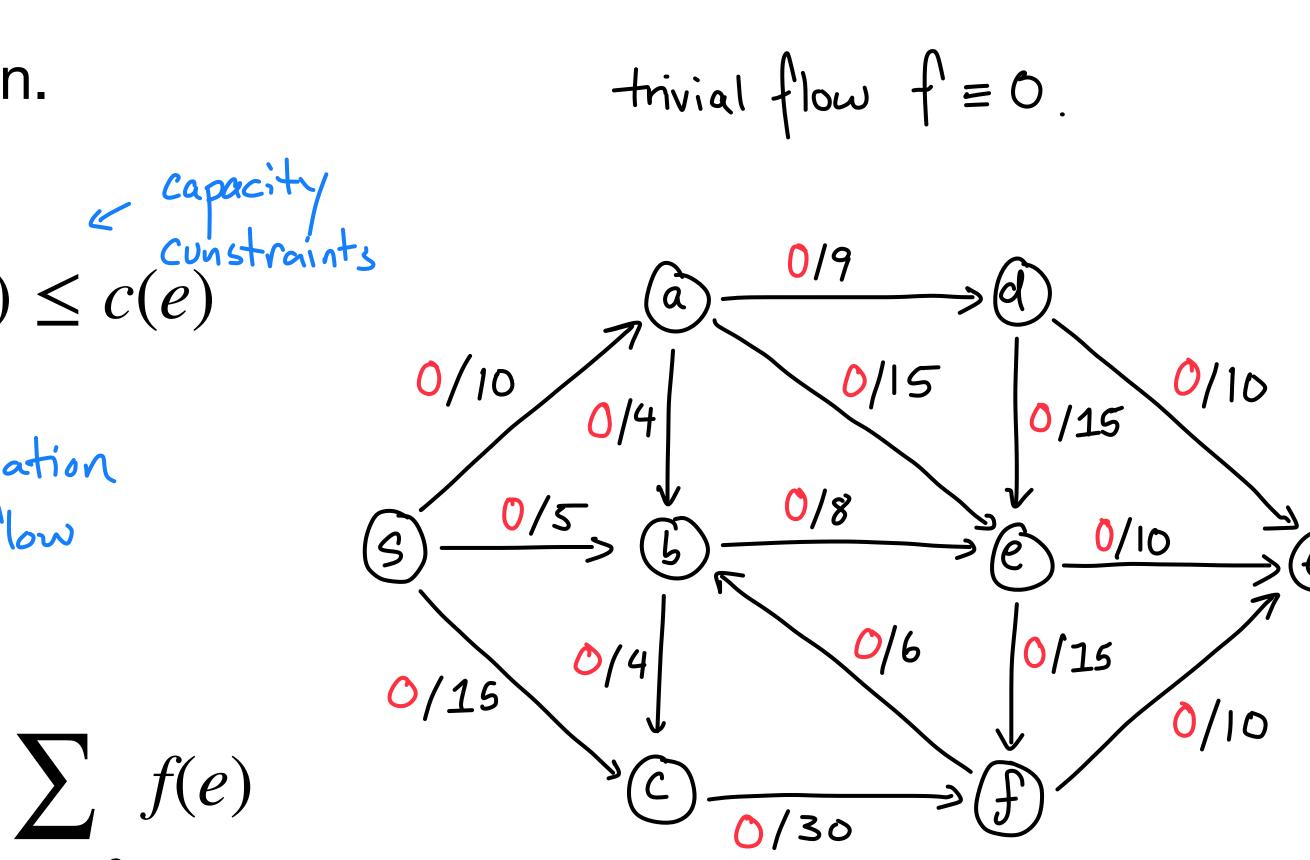
in this case, mincut = 28



- A s-t flow in a flow network is a fn. $f: E \to \mathbb{R}_{\geq 0}$ that satisfies:
 - For each edge $e \in E$, $0 \le f(e) \le c(e)$
 - For every $v \in V \setminus \{s, t\}$, conservation $\sum_{e \text{ into } v} f(e) = \sum_{e \text{ outof } v} f(e).$

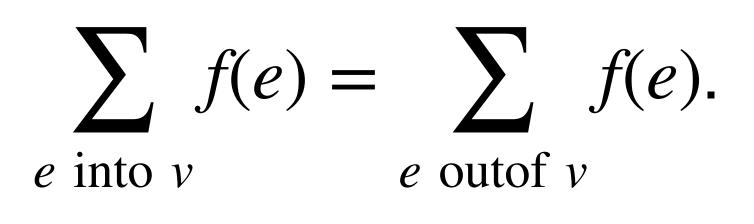
The value of a flow f is v(f) :=

e outofs



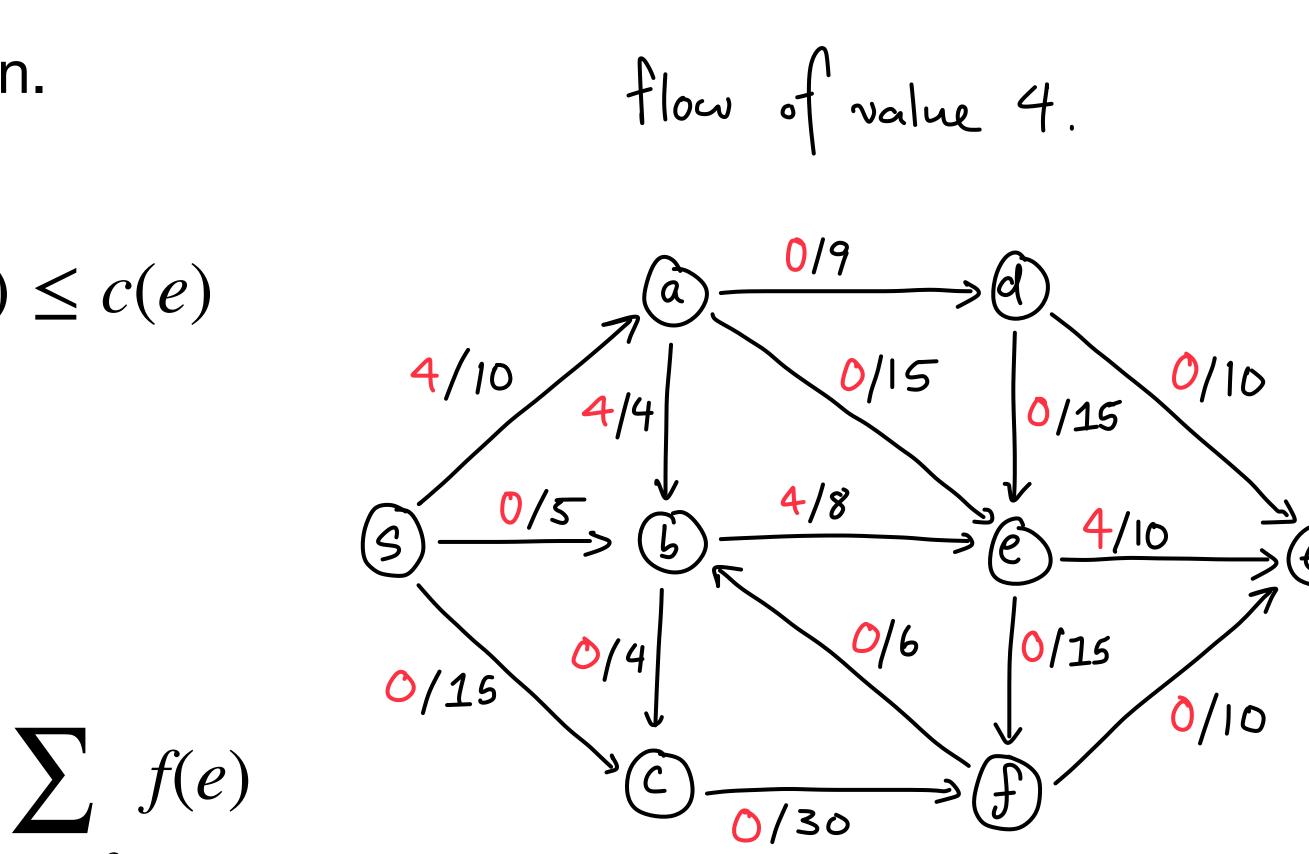
S

- A s-t flow in a flow network is a fn. $f: E \to \mathbb{R}_{>0}$ that satisfies:
 - For each edge $e \in E$, $0 \leq f(e) \leq c(e)$
 - For every $v \in V \setminus \{s, t\}$,

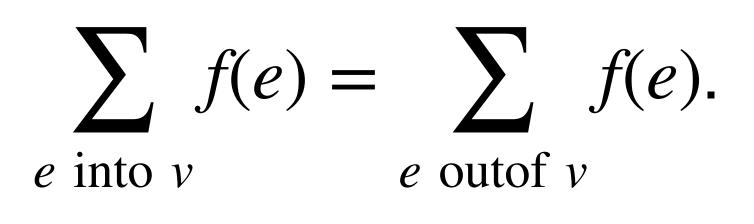


The value of a flow f is v(f) :=

e outofs

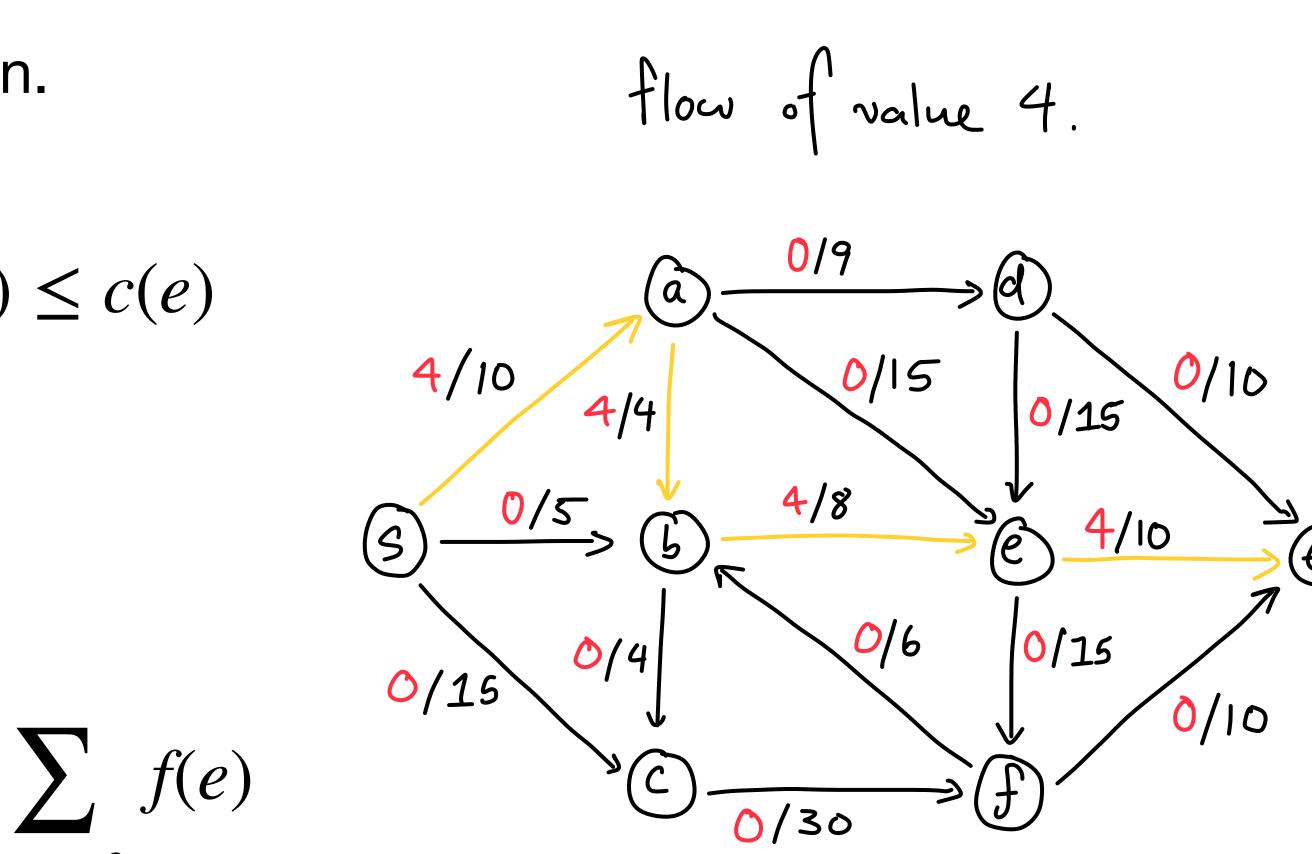


- A s-t flow in a flow network is a fn. $f: E \to \mathbb{R}_{>0}$ that satisfies:
 - For each edge $e \in E$, $0 \leq f(e) \leq c(e)$
 - For every $v \in V \setminus \{s, t\}$,

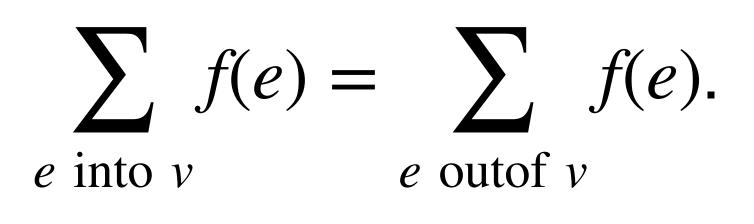


The value of a flow f is v(f) :=

e outofs

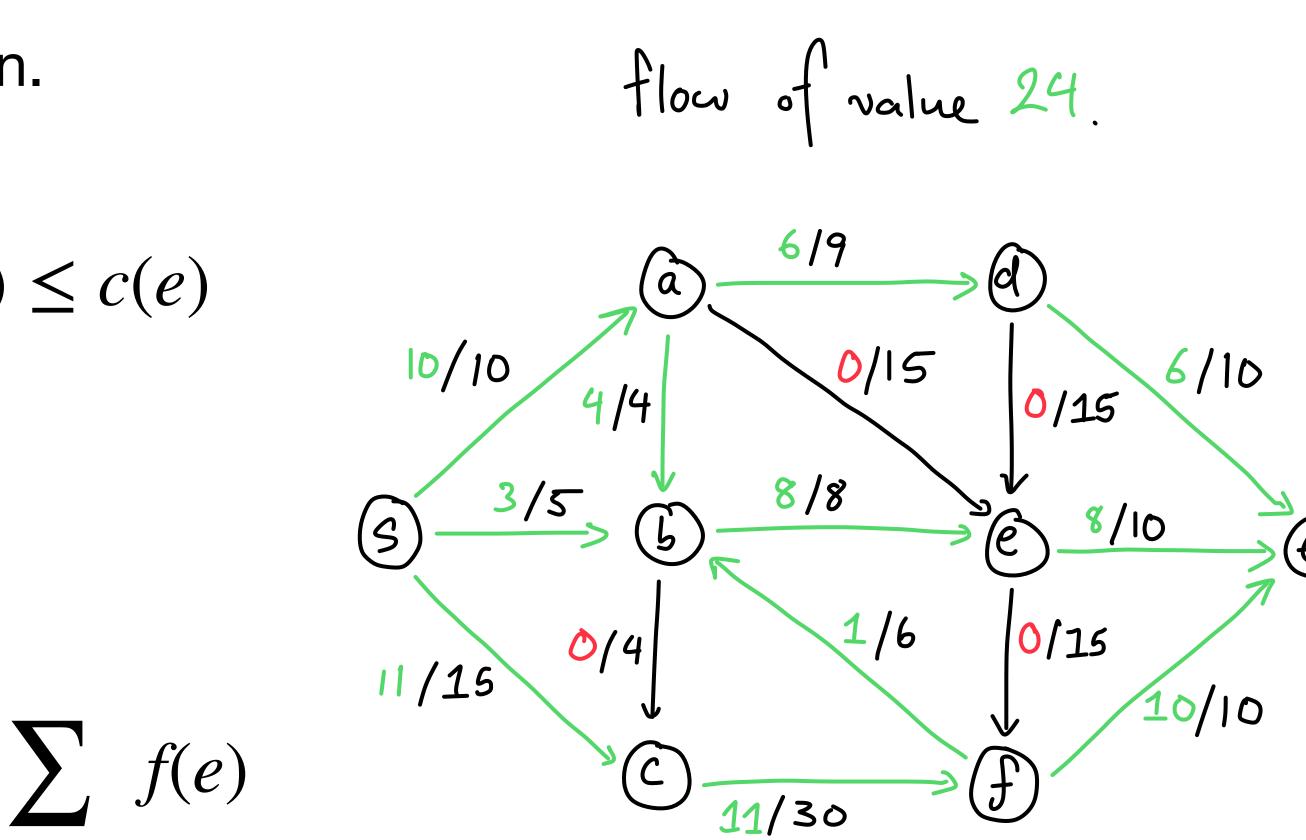


- A s-t flow in a flow network is a fn. $f: E \to \mathbb{R}_{>0}$ that satisfies:
 - For each edge $e \in E$, $0 \leq f(e) \leq c(e)$
 - For every $v \in V \setminus \{s, t\}$,



The value of a flow f is v(f) :=

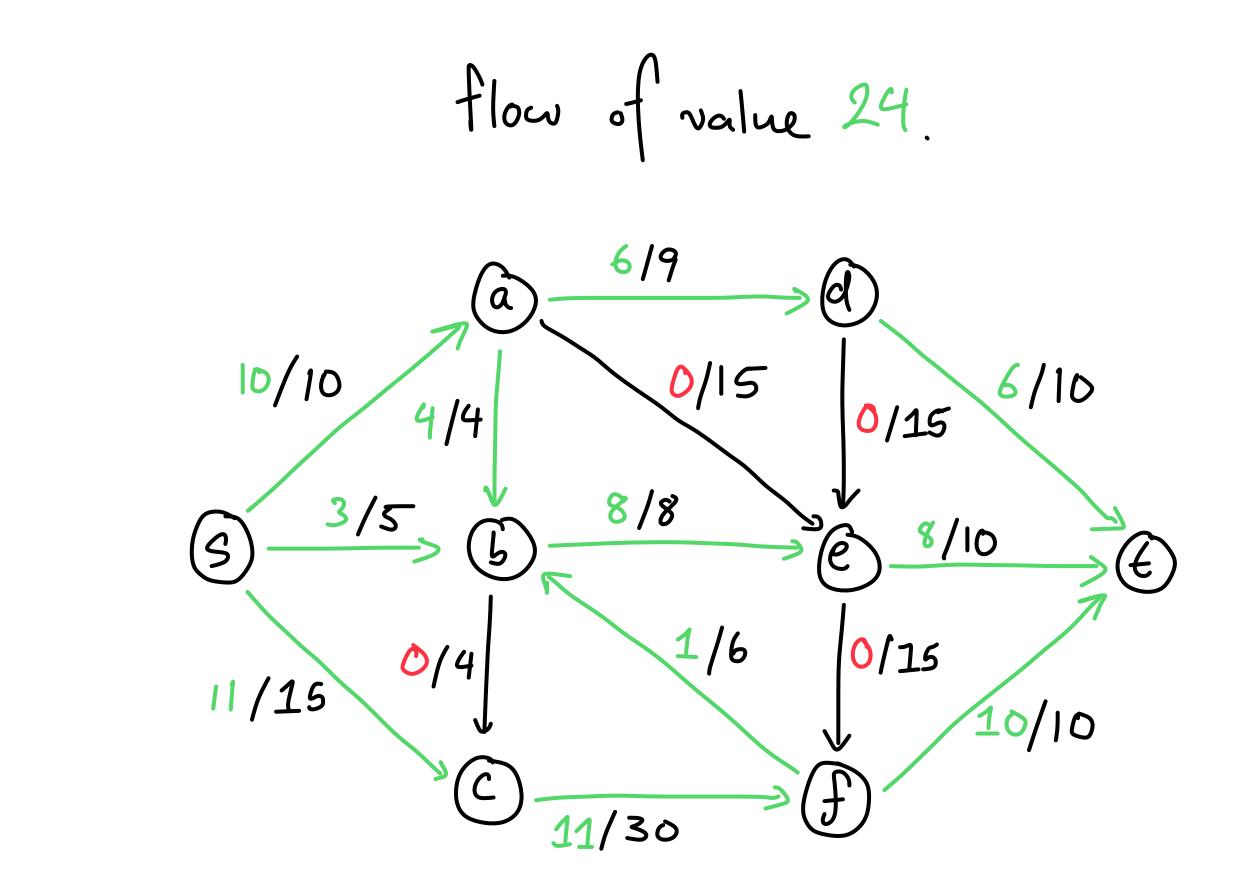
e outofs



22

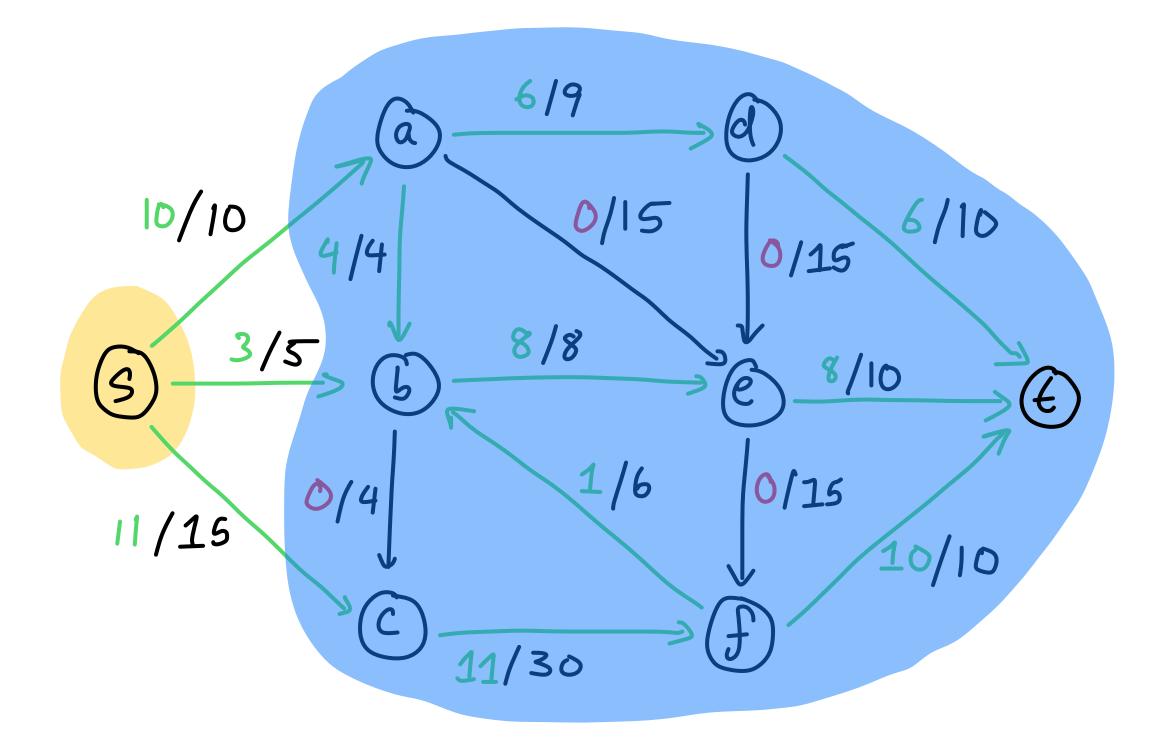
The maximum flow problem

- Input: a flow network (G, c, s, t)
- Output: a s-t flow of maximum value



Conservation of flow

• Let $S_0 = \{s\}, T_0 = V \setminus \{s\}.$ • Then, $v(f) = \sum_{e \text{ from } S_0 \text{ to } T_0} f(e).$



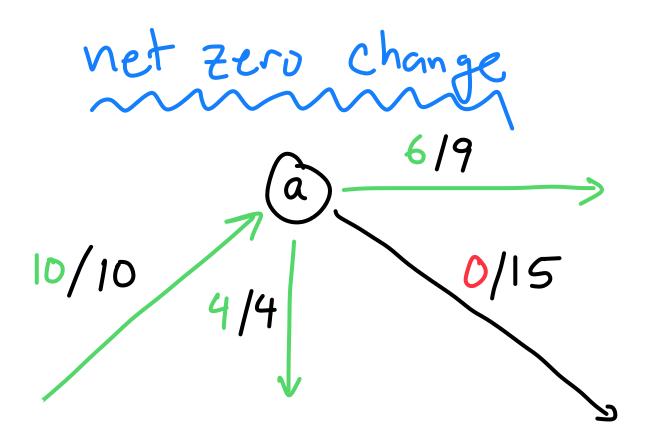
Conservation of flow

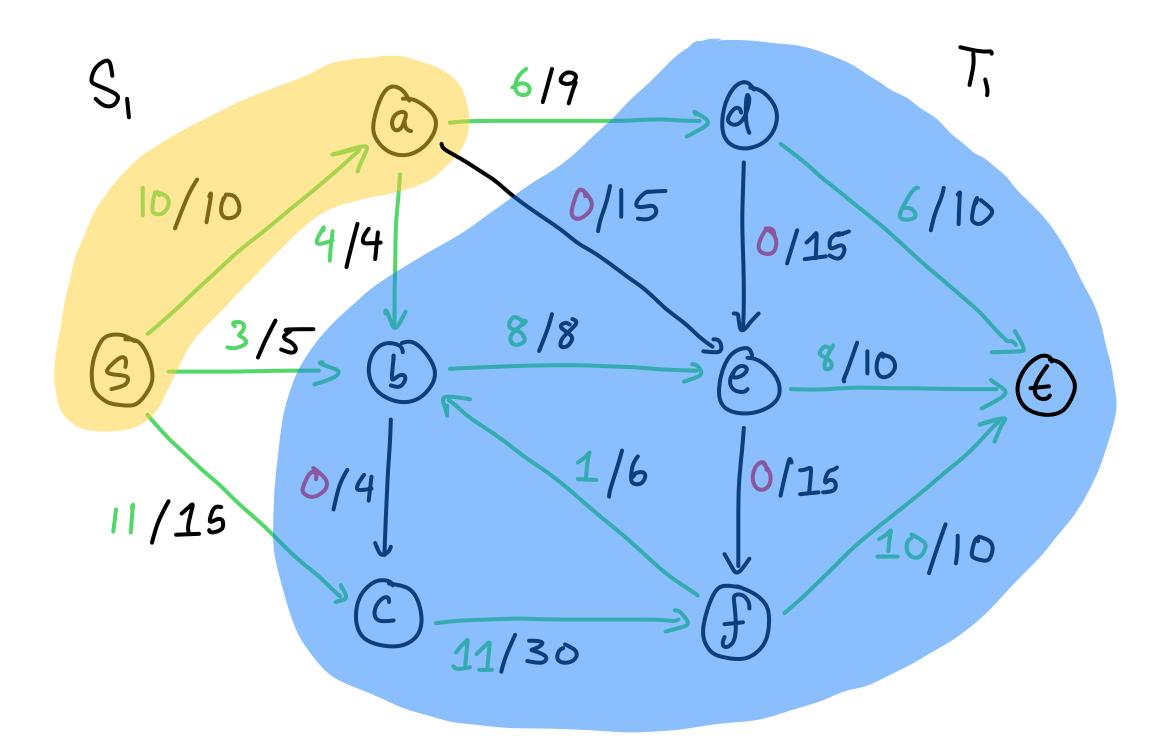
• Let
$$S_0 = \{s\}, T_0 = V \setminus \{s\}$$
.
Then, $v(f) = \sum_{e \text{ from } S_0 \text{ to } T_0} f(e)$.

• Define $S_1 \leftarrow S_0 \cup \{a\}, T_1 \leftarrow T_0 \setminus \{a\}$.

Claim:
$$v(f) = \sum_{e \text{ from } S_1 \text{ to } T_1} f(e).$$

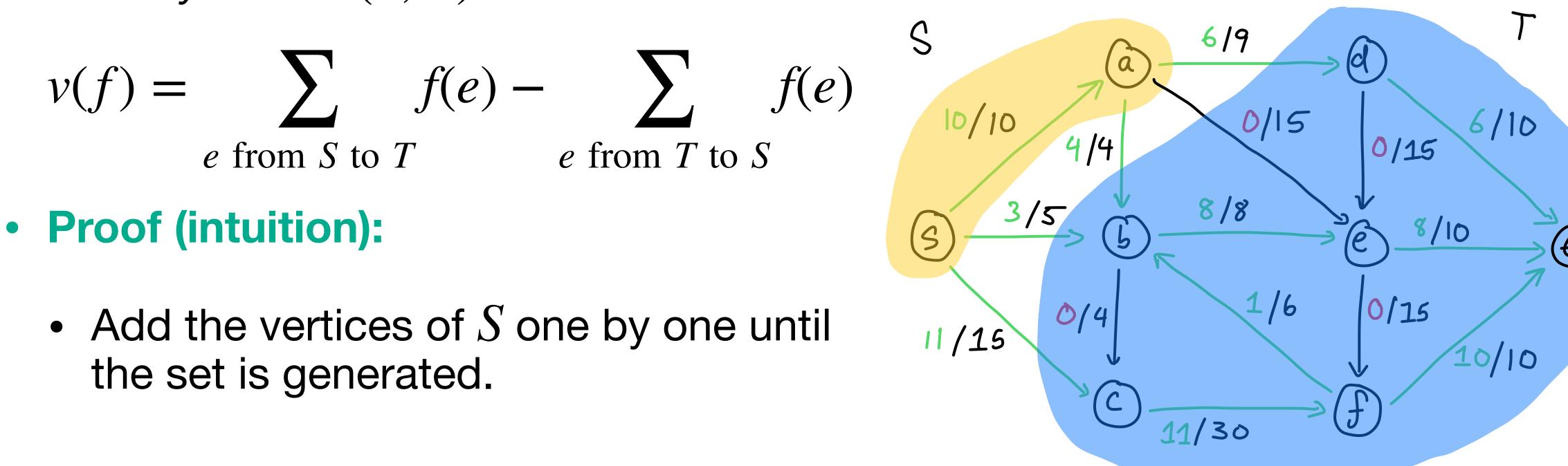
- **Proof:** Switching between sums requires
 - subtracting the flow $f(s \rightarrow a)$ and
 - adding the flows $f(a \rightarrow b)$, $f(a \rightarrow e)$, $f(a \rightarrow d)$.
 - by flow conservation, these changes are net zero.





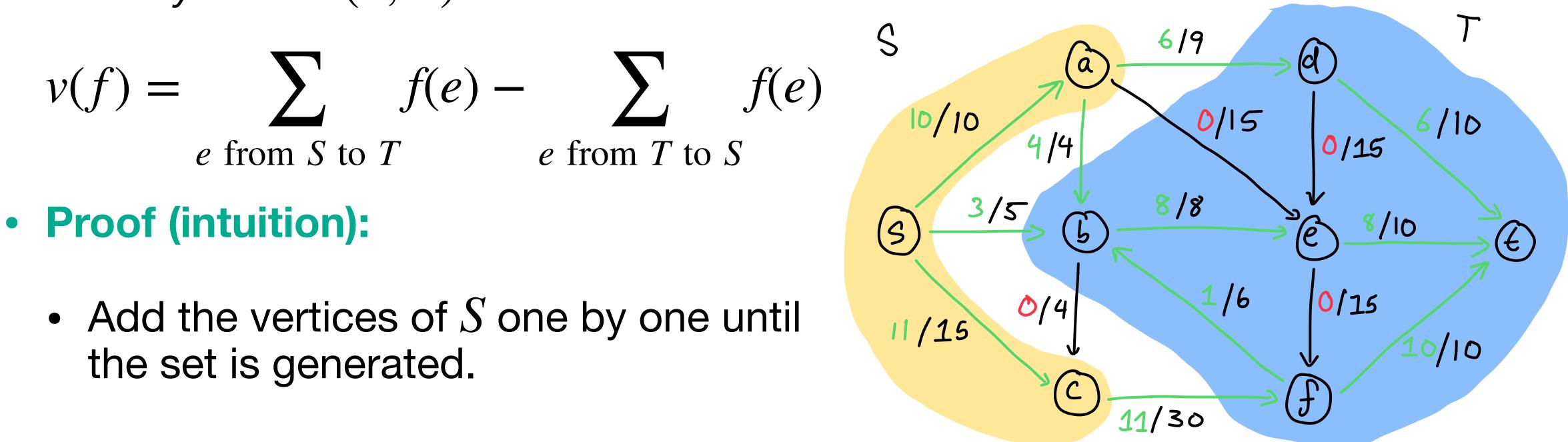
Flow value lemma

• Flow value lemma: Let f be a s-t flow and any s-t cut (S, T). Then



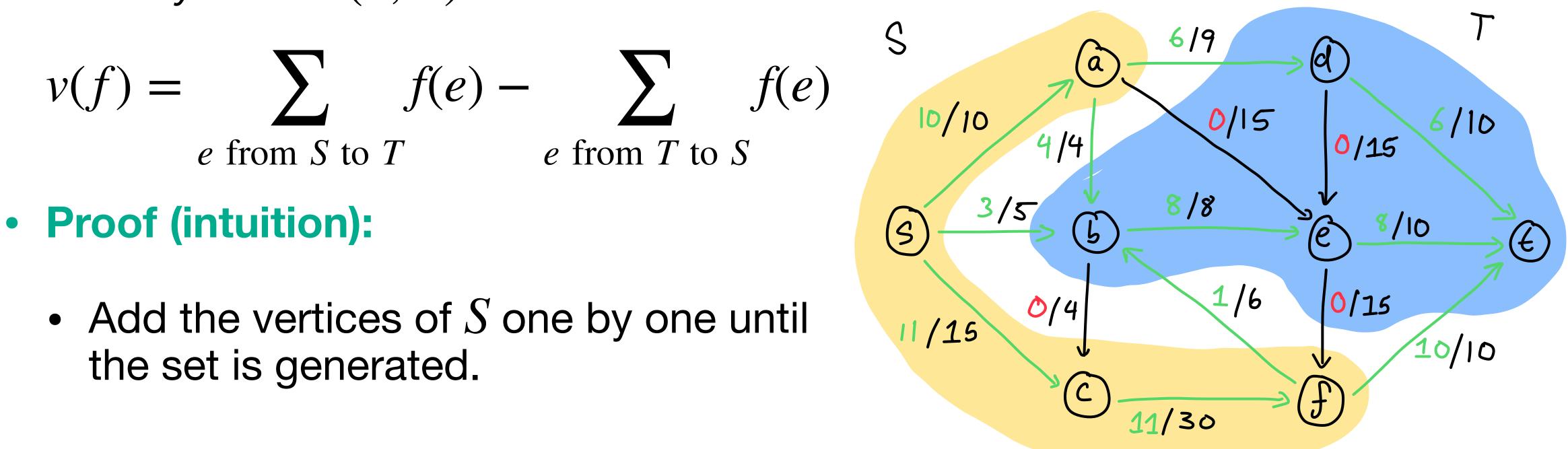
Flow value lemma

• Flow value lemma: Let f be a s-t flow and any s-t cut (S, T). Then



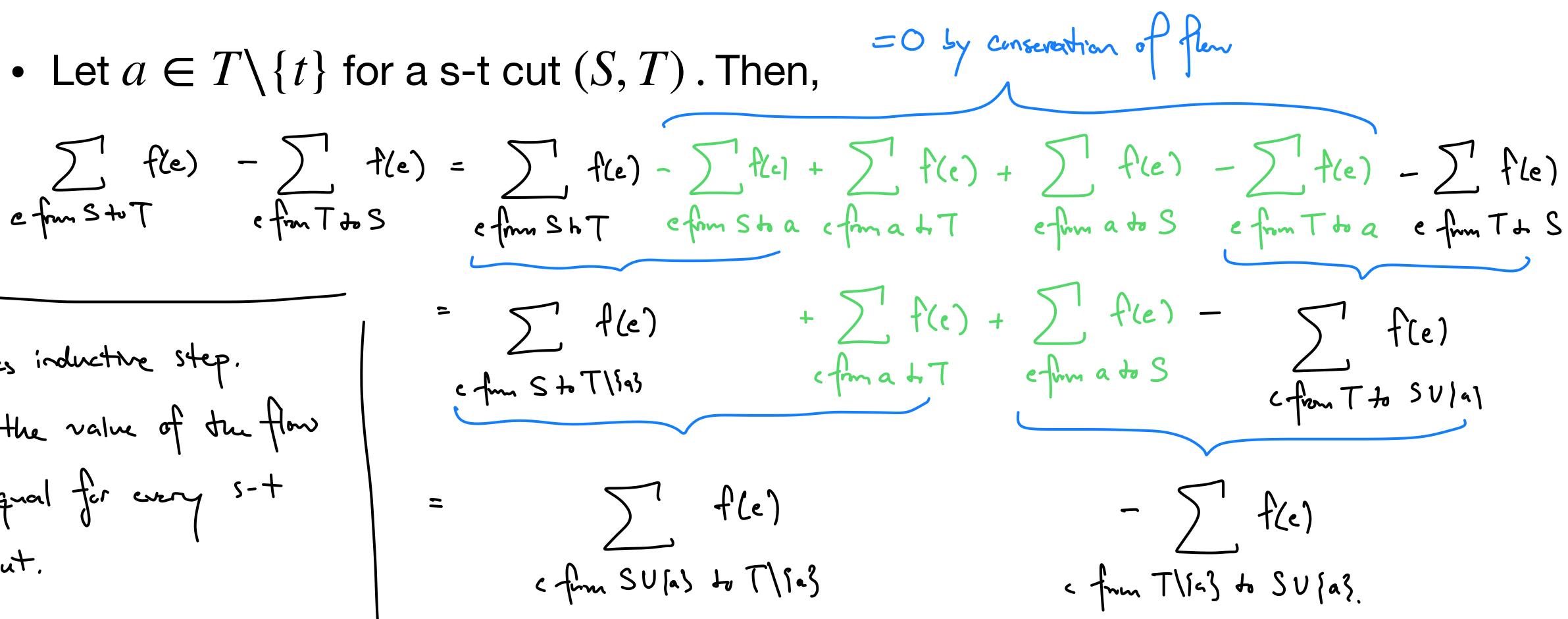
Flow value lemma

• Flow value lemma: Let f be a s-t flow and any s-t cut (S, T). Then



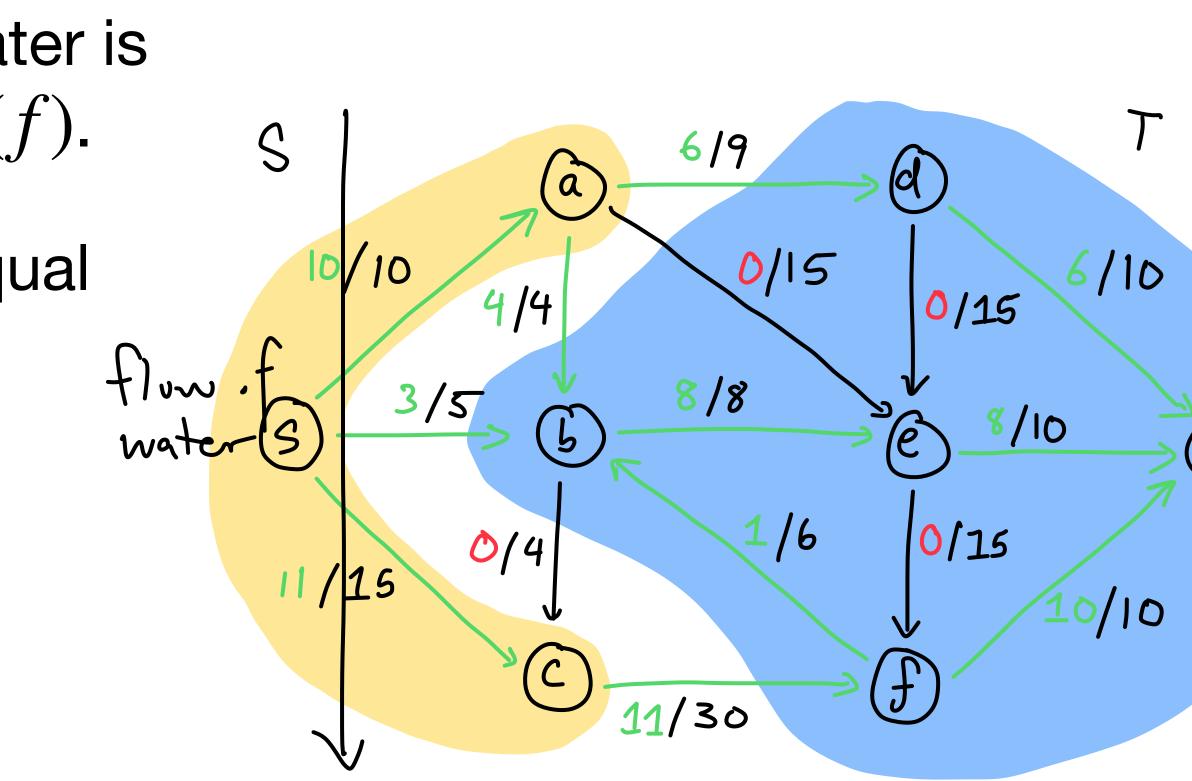
Flow value proof (formal)

• Let $a \in T \setminus \{t\}$ for a s-t cut (S, T). Then, $= \sum f(e)$ Proves inductive step. c from S to T\\$93 So the value of the flow is equal for every s-t 5 fle) [] cut. c fim SU[a] du T\sa}

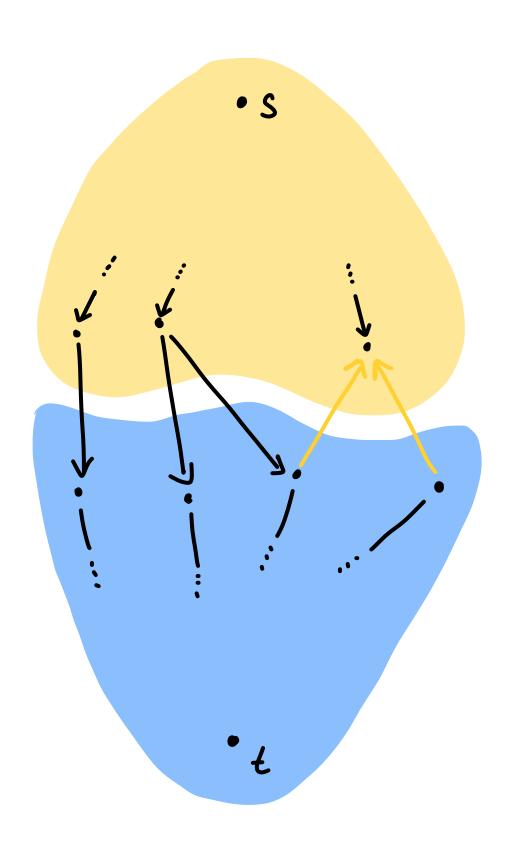


The water intuition

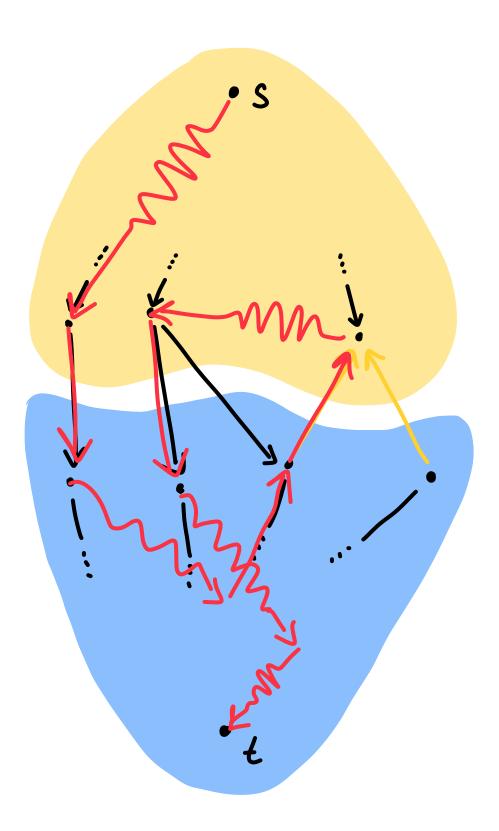
- Imagine the edges as pipes and water is flowing from *s* at a steady rate of v(f).
- The flow of water leaving *s* must equal the flow of water leaving *S*.
- Water moving within S or T is inconsequential to the total flow



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof intuition:**
 - In order for water to flow (positively) from S to T it has to use one of the edges from S to T.
 - The total capacity of which is C(S, T).
 - And the value of the flow is \leq the sum of the flow out of S.

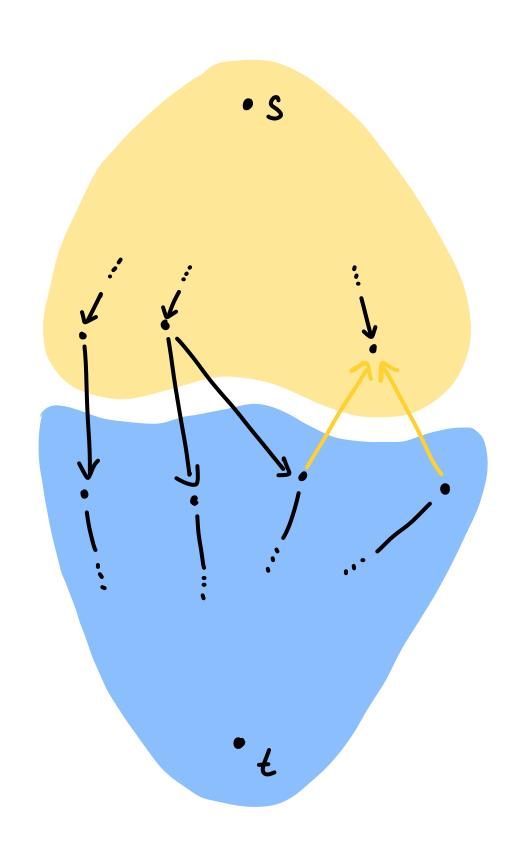


- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof intuition:**
 - In order for water to flow (positively) from S to T it has to use one of the edges from S to T.
 - The total capacity of which is C(S, T).
 - And the value of the flow is \leq the sum of the flow out of S.



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S, T)$.
- **Proof**:

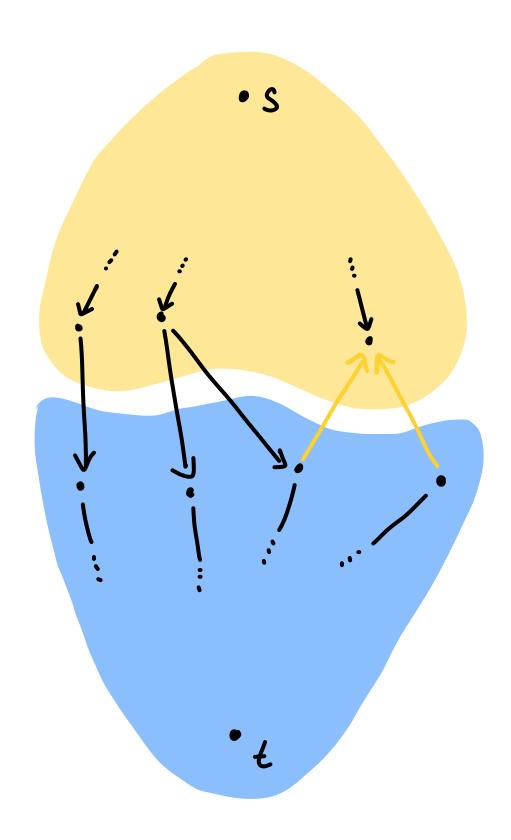
• $v(f) = \sum_{e \text{ from } S \text{ to } T} f(e) - \sum_{e \text{ from } T \text{ to } S} f(e)$ $\leq \int f(e) = f(e) \int f(e$ e from S to T $\leq C(e) \leftarrow since f(e) \in c(e)$ for all edges e from S to T = C(S, T)



- Weak duality: For any s-t cut (S, T), $v(f) \leq C(S,T).$
- Corollary: As this is true for all s-t cuts and all s-t flows, for any flow network,

The max flow is always \leq the min cut.

• Theorem: If there exists a flow f and a cut (S, T)such that v(f) = c(S, T) then f must be a maximal flow and (S, T) must be a minimizing cut.



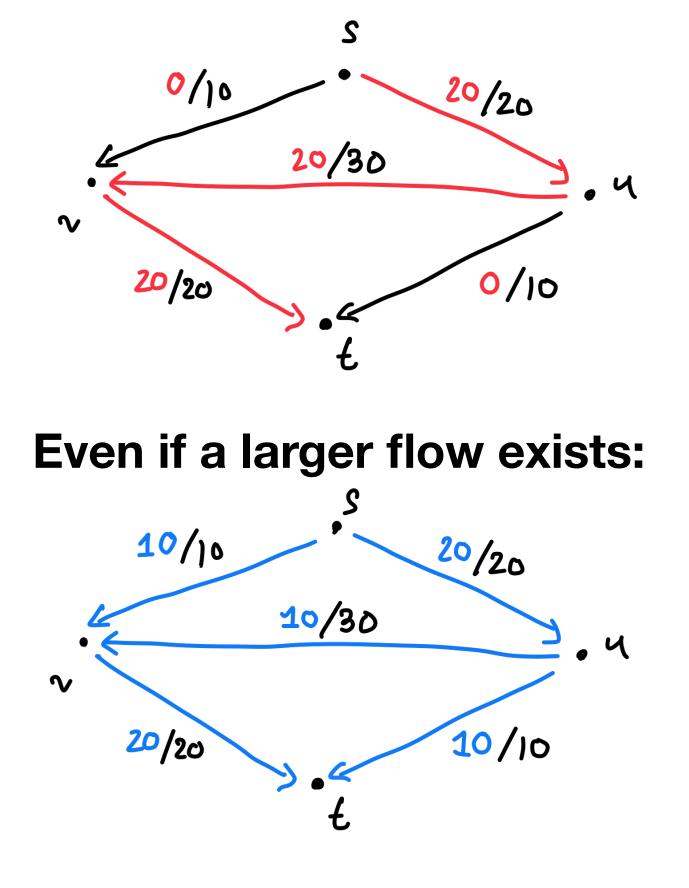
Algorithms for max flow

- **Greedy algorithm attempt:**
 - Start with f(e) = 0.
 - While there is a s-t path $p : s \sim t$ where each edge $e \in p$ has f(e) < c(e),
 - "Augment" the flow along p by adding α flow on each edge $e \in p$

• Where
$$\alpha = \min_{e \in p} \left[c(e) - f(e) \right]$$

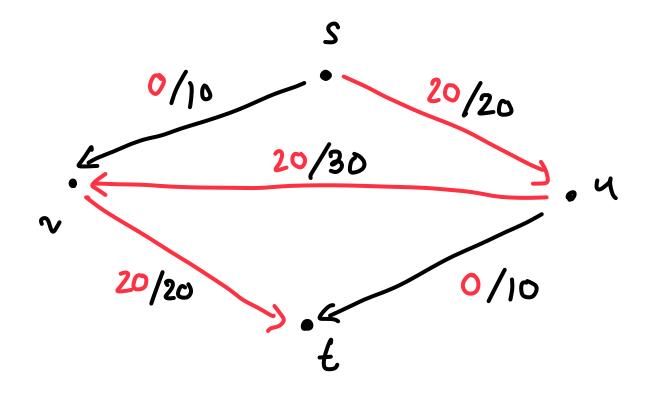
Each augmentation increases v(f) by α and preserves a valid flow (capacity and conservation of flow constraints).

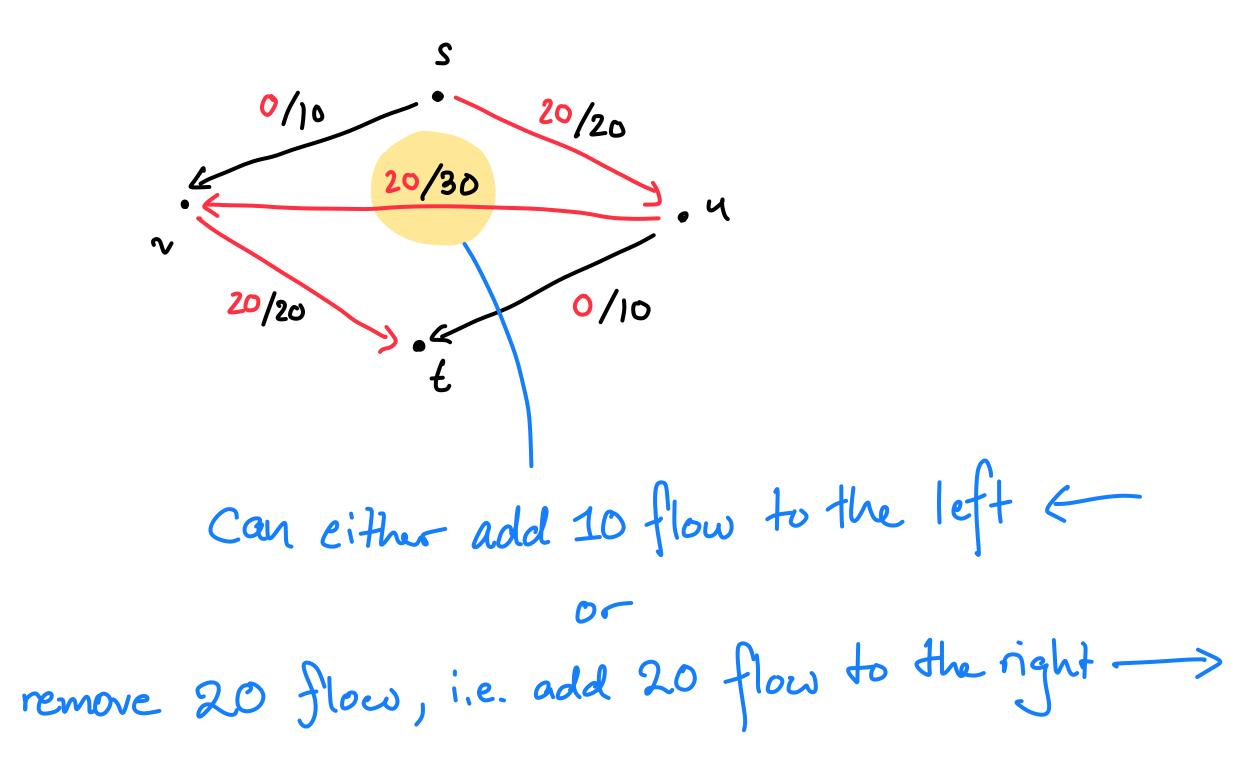
Greedy algorithm can get stuck...



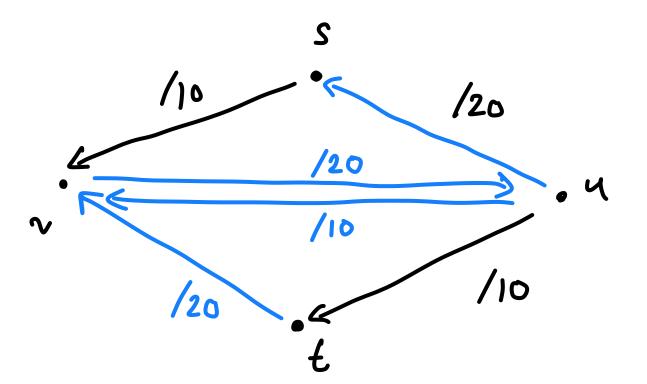
Greedy algorithms get stuck

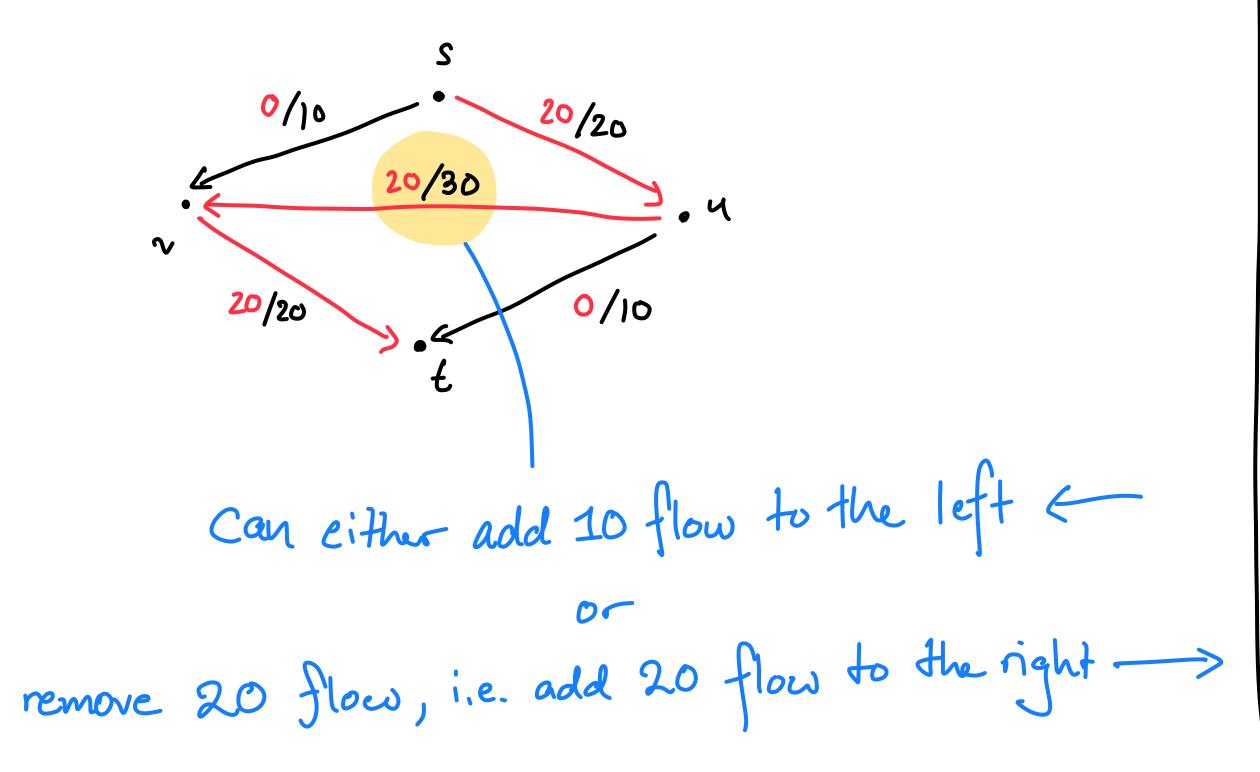
- What if there was a way to "undo" a choice made by a greedy algorithm and keep going?
- Residual graphs
 - A graph that represents how much we can change for any edge
 - If an edge has a capacity of c(e) and is currently flow assigns it $f(e) \leq c(e)$
 - Then we can either add up to f(e) c(e) additional flow
 - Or remove up to c(e) flow from this edge.

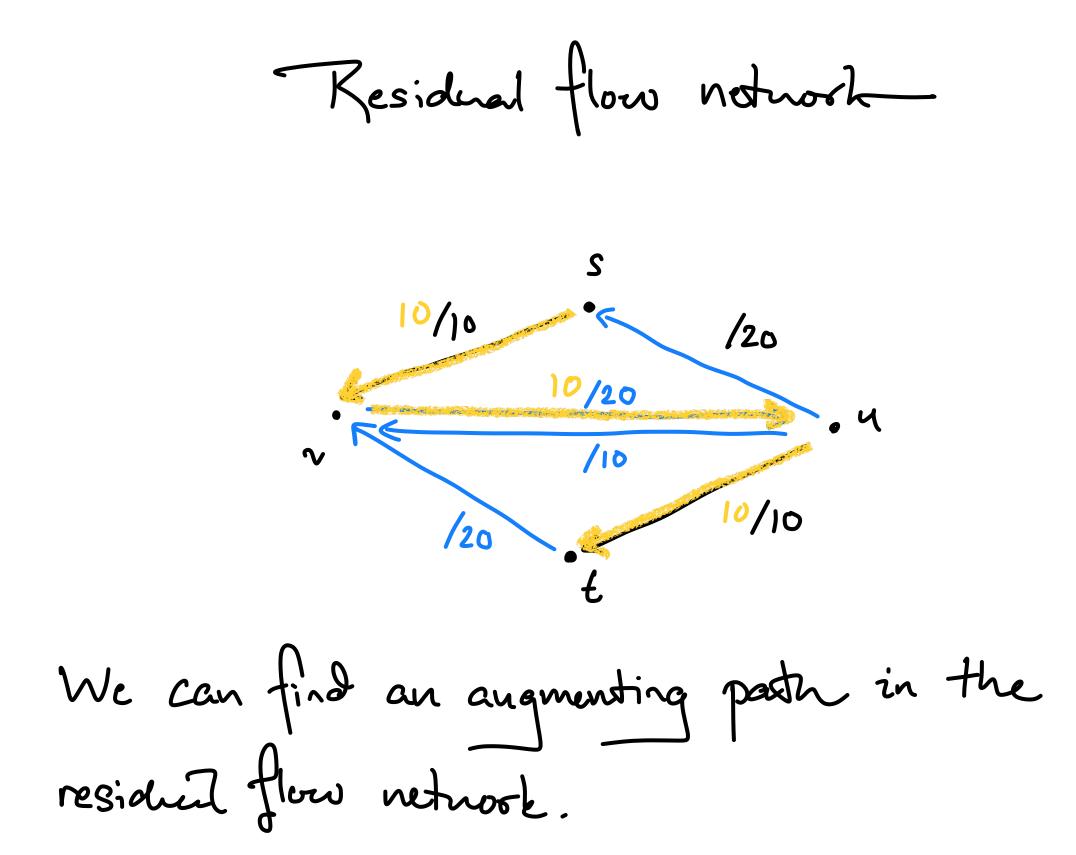


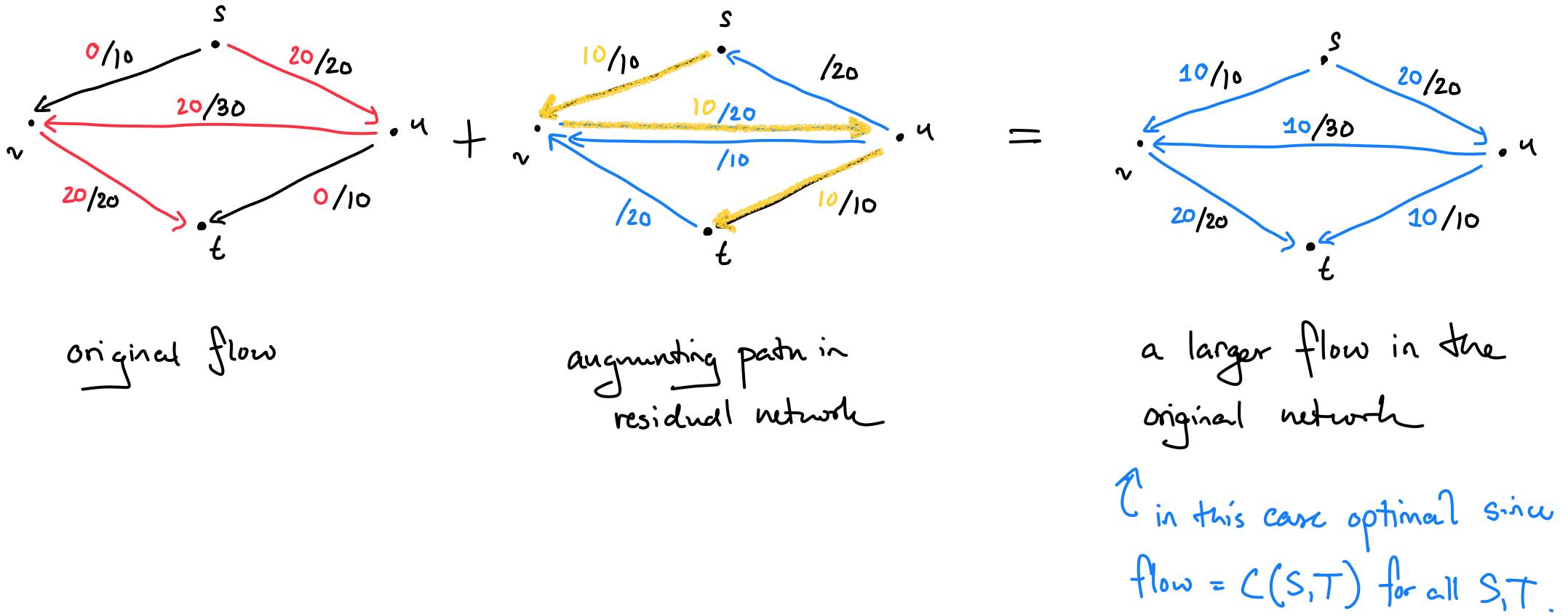


Residual flow notwork



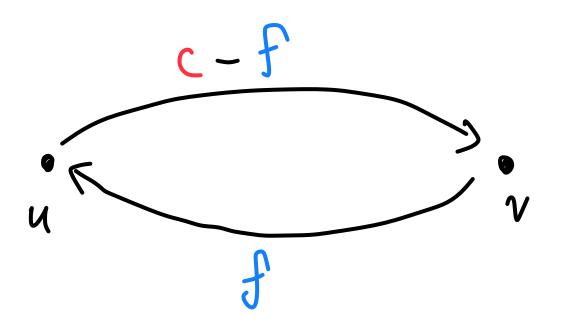






Residual network definition

- For (G, c, s, t) and flow f, define G_f as the **residual network** with the same vertices, source s and sink t
 - For every edge $e = (u \rightarrow v)$,
 - (Forward edge): Add an edge $u \rightarrow v$ of capacity c(e) f(e)
 - (Backward edge): Add an edge $v \rightarrow u$ of capacity f(e)



Notation

• For a flow
$$f$$
, let $f^{out}(v) = \sum_{e \text{ outof } v} f(e)$

- Conservation of flow: $f^{in}(v) = f^{out}(v)$.
- Positivity of flow: $0 \le f(e) \le c(e)$.

 $f(e), \quad f^{\text{in}}(v) = \sum f(e).$ *e* into *v*

Augmenting path

- An alternative (and mathematically equivalent) way to think about an augment flow f_{aug} in the residual network G_f is that • Capacity constraints: $-f(e) \le f_{aug} \le c(e) - f(e)$
- - Conservation of augmenting flow: $(f_{aug})^{in}(v) = (f_{aug})^{out}(v)$
- Claim: For flow f in G and augmenting flow f_{aug} in G_f , $f + f_{aug}$ is a flow in G.
- flow.
- $v(f + f_{aug}) = v(f) + v(f_{aug})$ so a positive augmenting flow increases the flow in the graph.

• **Proof:** Adding up capacity constraints and conservation equations proves that $f + f_{aug}$ is a valid

New greedy algorithm (Ford-Fulkerson)

- Initialize a flow of $f(e) \leftarrow 0$ for all edges. Set residual network $G_f \leftarrow G$
- While there is a simple path $p: s \sim t$ in G_f

 - Augment $f \leftarrow f + p$ \longleftrightarrow O(n) time. Update G_f along the edges of p

While there is a simple path $p: s \sim t$ in G_f . Let f_{aug} be the flow along p of weight $\min_{e \in p} c_{G_f}(e)$ How do ne find such a path? $e \in p$ from s to t using the edges of positive capacity. O(n+m) time.

Ford Fulkerson algorithm

- Lemma: Let (G, c, s, t) be a flow network with integer capacities: $c : E \to \mathbb{Z}_{\geq 0}$ and $C = c^{\text{out}}(s)$.
- Then the previous greedy algorithm terminates in time O(Cm).
- Proof:
 - Each iteration of the while loop must increase v(f) by at least 1.
 - C is a trivial bound on the max flow in the network.
 - Therefore, at most C iterations each taking O(m) time.

Ford Fulkerson algorithm correctness

- Lemma: Let (G, c, s, t) be a flow network with integer capacities: $c: E \to \mathbb{Z}_{>0}$ and $C = c^{\text{out}}(s)$.
- Then the previous greedy algorithm computes the max flow.
- **Proof:**
 - In next lecture!