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Network flow
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Midterm

• Midterm during class on May 5th in the usual lecture hall


• For with registered services with DRS for alternate testing


• Glerum Room CSE2 345 starting at 3:30


• Your responsibility to convey to the proctor your specific alterations


• You are allowed to bring XXXX resources with you. Pen and paper exam.


• Midterm will be 1 hour and starts promptly.
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Midterm

• Covers subjects up through the dynamic programming except Bellman-Ford


• Sample midterm for practice problems and length is posted


• Section this week will review problems and strategy


• I’ll host a Q&A section about the subject on XXXX.
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Communication disruption
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Communication disruption
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Communication disruption
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Communication disruption
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Communication disruption
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Maximum flow and minimum cut

• Two very rich algorithmic problems.


• Cornerstone problems in combinatorial optimization.


• Beautiful mathematical duality.
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The origin of the max flow/min cut problems

• Max Flow problem: Rail 
transportation for the Soviet 
Union


• Min Cut problem: Cold War 
attempts to cripple Soviet 
supply routes


• Ford & Fullerton prove (1955) 
that problems are equivalent
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Reference:  On the history of the transportation and maximum flow problems. 
Alexander Schrijver in Math Programming, 91: 3, 2002.



Flow network definition

• Imagine each edge in a graph is a 
directional water pipe


• Each edge has a capacity  for 



• There are two specified vertices  for 
source and sink


•  graph with no parallel edges


• The tuple  define a flow network

c(e)
c : E → ℝ≥0

s, t

G = (V, E)

(G, c, s, t)
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Graph cuts

• An s-t cut in a graph is a partition of the vertices into  such that 
 and .  The capacity of a s-t cut  is 

V = S ⊔ T
s ∈ S t ∈ T (S, T)
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The minimum cut problem

• Input: a flow network 


• Output: a s-t cut of minimum capacity 

(G, c, s, t)
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s-t flow

• A s-t flow in a flow network is a fn. 
 that satisfies:


• For each edge , 


• For every , 
 

.


• The value of a flow  is   

f : E → ℝ≥0

e ∈ E 0 ≤ f(e) ≤ c(e)

v ∈ V∖{s, t}

∑
e into v

f(e) = ∑
e outof v

f(e)

f v( f ) := ∑
e outofs

f(e)
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The maximum flow problem

• Input: a flow network 


• Output: a s-t flow of maximum value

(G, c, s, t)

23



Conservation of flow
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• Let .


• Then, .

S0 = {s}, T0 = V∖{s}

v( f ) = ∑
e from S0 to T0

f(e)



Conservation of flow
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• Let .


• Then, .


• Define 


• Claim: .


• Proof: Switching between sums requires 


• subtracting the flow  and 


• adding the flows , , .


• by flow conservation, these changes are net zero.

S0 = {s}, T0 = V∖{s}

v( f ) = ∑
e from S0 to T0

f(e)

S1 ← S0 ∪ {a}, T1 ← T0∖{a} .

v( f ) = ∑
e from S1 to T1

f(e)

f(s → a)

f(a → b) f(a → e) f(a → d)



Flow value lemma
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• Flow value lemma: Let  be a s-t flow 
and any s-t cut . Then 
 




• Proof (intuition):


• Add the vertices of  one by one until 
the set is generated.

f
(S, T)

v( f ) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

S



Flow value lemma
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Flow value proof (formal)

• Let  for a s-t cut Then,a ∈ T∖{t} (S, T) .
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The water intuition

• Imagine the edges as pipes and water is 
flowing from  at a steady rate of .


• The flow of water leaving  must equal 
the flow of water leaving .


• Water moving within  or  is 
inconsequential to the total flow

s v( f )

s
S

S T
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The relationship between flows and cuts

• Weak duality: For any s-t cut , .


• Proof intuition:  

• In order for water to flow (positively) from  to  it 
has to use one of the edges from  to . 


• The total capacity of which is .


• And the value of the flow is  the sum of the flow 
out of .

(S, T) v( f ) ≤ C(S, T)

S T
S T

C(S, T)

≤
S
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The relationship between flows and cuts

• Weak duality: For any s-t cut , .


• Proof:  

•  

•  

•  

•

(S, T) v( f ) ≤ C(S, T)

v( f ) = ∑
e from S to T

f(e) − ∑
e from T to S

f(e)

v( f ) ≤ ∑
e from S to T

f(e)

v( f ) ≤ ∑
e from S to T

c(e)

v( f ) = C(S, T)
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The relationship between flows and cuts

• Weak duality: For any s-t cut , 
.


• Corollary: As this is true for all s-t cuts and all s-t 
flows, for any flow network, 
 
The max flow is always  the min cut.


• Theorem: If there exists a flow  and a cut  
such that  then  must be a maximal 
flow and  must be a minimizing cut.

(S, T)
v( f ) ≤ C(S, T)

≤

f (S, T)
v( f ) = c(S, T) f

(S, T)
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Algorithms for max flow

• Greedy algorithm attempt: 

• Start with .


• While there is a s-t path  where each edge 
 has ,


• “Augment” the flow along  by adding  flow on each 
edge 


• Where 


• Each augmentation increases  by  and preserves a 
valid flow (capacity and conservation of flow constraints).

f(e) = 0

p : s ↝ t
e ∈ p f(e) < c(e)

p α
e ∈ p

α = min
e∈p

[c(e) − f(e)]
v( f ) α
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Greedy algorithm can get stuck…

Even if a larger flow exists:



Greedy algorithms get stuck

• What if there was a way to “undo” a choice made by a greedy algorithm and 
keep going?


• Residual graphs


• A graph that represents how much we can change for any edge


• If an edge has a capacity of  and is currently flow assigns it 


• Then we can either add up to  additional flow


• Or remove up to  flow from this edge.

c(e) f(e) ≤ c(e)

f(e) − c(e)

c(e)
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Augmenting paths through residual flow
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Residual network definition

• For  and flow , define  as the residual 
network with the same vertices, source  and sink 


• For every edge ,


• (Forward edge): Add an edge  of capacity 



• (Backward edge): Add an edge  of 
capacity 

(G, c, s, t) f Gf
s t

e = (u → v)

u → v
c(e) − f(e)

v → u
f(e)

41



Notation

• For a flow , let 


• Conservation of flow: . 

• Positivity of flow: .

f f out(v) = ∑
e outof v

f(e), f in(v) = ∑
e into v

f(e) .

f in(v) = f out(v)

0 ≤ f(e) ≤ c(e)
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Augmenting path

• An alternative (and mathematically equivalent) way to think about an augment flow  in the 
residual network   is that


• Capacity constraints: 


• Conservation of augmenting flow: 


• Claim: For flow  in  and augmenting flow  in ,  is a flow in .


• Proof: Adding up capacity constraints and conservation equations proves that  is a valid 
flow. 


•  so a positive augmenting flow increases the flow in the graph.

faug
Gf

−f(e) ≤ faug ≤ c(e) − f(e)

( faug)in(v) = ( faug)out(v)

f G faug Gf f + faug G

f + faug
∎

v( f + faug) = v( f ) + v( faug)
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New greedy algorithm (Ford-Fulkerson)

• Initialize a flow of  for all edges. Set residual network 


• While there is a simple path  in 


• Let  be the flow along  of weight 


• Augment 


• Update  along the edges of 

f(e) ← 0 Gf ← G

p : s ↝ t Gf

faug p min
e∈p

cGf
(e)

f ← f + p

Gf p
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Ford Fulkerson algorithm

• Lemma: Let  be a flow network with integer capacities:  
and .


• Then the previous greedy algorithm terminates in time .


• Proof:


• Each iteration of the while loop must increase  by at least 1. 


•  is a trivial bound on the max flow in the network.


• Therefore, at most  iterations each taking  time.

(G, c, s, t) c : E → ℤ≥0
C = cout(s)

O(Cm)

v( f )

C

C O(m)
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Ford Fulkerson algorithm correctness

• Lemma: Let  be a flow network with integer capacities: 
 and .


• Then the previous greedy algorithm computes the max flow.


• Proof:


• In next lecture!

(G, c, s, t)
c : E → ℤ≥0 C = cout(s)
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