Lecture 14 Dynamic programming IV: The Bellman-Ford algorithm

Chinmay Nirkhe | CSE 421 Spring 2025

Midterm

- Midterm during class on May 5th in the usual lecture hall
- For with registered services with DRS for alternate testing
 - Glerum Room CSE2 345 starting at 3:30
 - Your responsibility to convey to the proctor your specific alterations
- You are allowed to bring one page of notes with you. Pen and paper exam. Midterm will be 1 hour and starts promptly.
- Reducted to **50 points**.

Midterm

- Covers subjects up through the dynamic programming except Bellman-Ford
- Sample midterm for practice problems and length is posted
- Section this week will review problems and strategy
- I'll host a Q&A section about the subject on Thursday May 2nd.

Academic misconduct

- This week, me and my TAs identified a significant number of cases of academic misconduct.
- Most stemmed from using ChatGPT or other LLMs to solve problems.
- Clear policy: You are not allowed to use ChatGPT or other LLMs.
- We are now looking through solutions more carefully for academic misconduct and finding many more.
 - You have an obligation to come forward and declare any use.
 - If you do declare it, before I am inclined to not submit a case to CSSC.

Academic misconduct

- On problem set 3, we solved a new problem about independent sets. But I didn't
 explicitly state in the problem statement that d was the avg. degree.
 - That was contextually implied as it was a continuation problem.
 - Many of you understood that it meant avg. degree.
 - ChatGPT didn't. It thought d was max degree.
 - If you used ChatGPT for this, you will likely be getting an email from me real soon.
 It's best you email me (right now!) admitting your use before I email you.
- This is not the only example. We have others where we have really easily detected use of ChatGPT.

Previously in CSE 421...

Currency exchange

Set edge weight to $\log_2(1/r) = -\log_2(r)$

- Consider the highlighted path from USD to USD:
- Converts 1 USD to $2^{0.8} > 1$ USD
- Constitutes a negative cycle in the graph
- In the currency exchange problem, negative cycles represent arbitrage
- Since there is a negative cycle, any currency can be converted into any other for arbitrarily cheap as the graph is strongly connected

The Bellman-Ford algorithm

- Dijkstra's is a greedy algorithm and suffices to calculate shortest/lightest paths when all weights are non-negative
 - Distances will never need to be recalculated once set
- Bellman-Ford is a dynamic programming algorithm for computing shortest path in directed graphs
 - Will run slower than Dijkstra's: O(mn) time versus O(n + m) time
 - Will involve "resetting" distances as the algorithm goes along
 - Bellman-Ford will detect negative cycles as shortest paths are undefined if there are negative cycles

Failed attempt #1

- If a graph has negative weights, let
- What if we adjusted every edge weight to $w'(e) = w(e) w_{\min} \ge 0$?
- Can we just run standard Dijkstra's on the adjusted graph?
- No. Path weights adjust variably.
 - $w'(p) = w(p) w_{\min} \cdot |\# \text{ of edges in } p|$
- Why can we run MST algorithms with negative weights?

$$w_{\min} = \min_{e \in E} w(e)$$

Negative weight shortest path

- Input: Directed graph G = (V, E) and weights $w : E \to \mathbb{R}$ and a vertex t
- Output: For all vertices s, the weight of the shortest path d(s, t)
- Note, we are considering shortest paths with respect to the endpoint t
- Its easy enough to convert it to an algorithm for shortest paths with respect to the source

Negative weight shortest path

- Input: Directed graph G = (V, E) and weights $w : E \to \mathbb{R}$ and a vertex *t*
- Output: For all vertices s, the weight of the shortest path d(s, t)
- Observation: If a path s ~ t contains a negative weight cycle, then a shortest path doesn't exist.
- Observation: If G has no negative cycles then the shortest path $s \sim t$ is of length $\leq n 1$.
- **Proof:** A path of length $\ge n$ exists, it has a repeated vertex (i.e. a cycle). That cycle has weight ≥ 0 , so removing it only decreases weight. Repeat till path is of length $\le n 1$.

Dynamic programming algorithm

- **Definition.** For $i \in \{0, ..., n-1\}$, $s \in V$, let d(i, s) be the length of the shortest path $s \sim t$ consisting of at most i edges
 - Case 1: The shortest path uses $\leq i 1$ edges. Then

$$d(i,s) = d(i-1,s)$$

 Case 2: The shortest path uses exactly *i* edges. Let *u* be the first vertex on the path. Then

$$d(i, s) = w(s, u) + d(i - 1, u)$$

Dynamic programming algorithm

- **Definition.** For $i \in \{0, ..., n-1\}, s \in V$, let d(i, s) be the length of the shortest path $s \sim t$ consisting of at most *i* edges
- **DP recursive definition**:

$$d(i,s) = \begin{cases} 0 & \text{if } i = 0 \text{ and } s = \\ \infty & \text{if } i = 0 \text{ and } s \neq \\ \min\left\{d(i-1,s), \min_{u:s \to u} w(s,u) + d(i-1,u)\right\} & \text{otherwise} \end{cases}$$

Dynamic programming implementation (Assuming no negative cycles)

- Table generation:
 - Generate table d of size $(n 1) \times n$ and table next of size n
 - Set $d(0,s) \leftarrow \infty$ for $s \neq t$ and $d(0,t) \leftarrow 0$
 - For $i \leftarrow 1$ to n
 - Set $d(i, s) \leftarrow d(i 1, s)$.
 - For each edge $(s \rightarrow u) \in E$
 - If w(s, u) + d(i 1, u) < d(i 1, s),
 - Set $d(i, s) \leftarrow w(s, u) + d(i 1, u)$ and $next(s) \leftarrow u$
- Path recovery: Follow next(\cdot) from s until it reaches t.

Space saving techniques

- The end result is a DAG mapping paths from every vertex *s* to the sink *t*
- The entries of $next(\cdot)$ list the edges in the path
- d(i, s) only depends on entries $d(i 1, \cdot)$. Rows i 2, ..., 1 can be discarded.

Better DP implementation (Assuming no negative cycles)

- Table generation:
 - Generate table *d* of size *n* and table next of size *n*
 - Set $d(s) \leftarrow \infty$ for $s \neq t$ and $d(t) \leftarrow 0$
 - For $i \leftarrow 1$ to *n* and edge $(s \rightarrow u) \in E$
 - If w(s, u) + d(u) < d(s),
 - Set $d(s) \leftarrow w(s, u) + d(u)$ and $next(s) \leftarrow u$
- Path recovery: Follow next(\cdot) from s until it reaches t.

Even more trimming

- $s \rightarrow u$ in round i + 1 as the best paths through u have already been considered
- $s \rightarrow u$ if u was in Q

• If d(u) doesn't decrease in round i, then we don't need to consider any edges

• Keep a list Q of vertices updated in the previous round and only update edge

Even better DP implementation (Assuming no negative cycles)

- Compute the reverse adjacency list: For every $u \in V$, $pre(u) = \{s : s \to u\}$.
- Generate tables d, next of size n with $d(s) \leftarrow \infty \forall s \neq t$ and $d(t) \leftarrow 0$
- Initialize counter $i \leftarrow 0$ and generate a queue $Q \leftarrow \{t, \bot\}$.
- While i < n
 - Pop u off the queue Q.
 - If $u = \bot$, increment $i \leftarrow i + 1$ and push \bot to Q.
 - Else, for each $s \in \text{pre}(u)$,
 - If w(s, u) + d(u) < d(s), set $d(s) \leftarrow w(s, u) + d(u)$ and next $(s) \leftarrow u$
 - Push s into queue Q.

Bellman-Ford properties

- **Theorem**: Throughout the algorithm, d(s) is the length of some path and that path has weight less than the lightest path of $\leq i$ edges after *i* rounds of updates
- Impact: Space decreases to O(n + m) but runtime is still O(nm) in the worst case. In practice, the runtime is much faster!

t

€ ⊥

Ł

× L

× L

32

Detecting negative cycles

- Bellman-Ford is correct on final iteration.
- Assume (for L Adding up the **Proof:** By contradiction. ulletLet G have a negative cycle. . d(n-1 i=0 $\sum_{i=1}^{k-1} w(v_{i}, v_{i+1}) < 0.$ (1) cnd (2 (1)

• Lemma: If every vertex s can reach t, and G has a negative cycle, then there is some edge $u \rightarrow v$ so that d(n-1,u) > d(n-1,v) + w(u,v). If G has no negative cycles, then output of

by that
$$\forall$$
 edges $u \rightarrow v$, $d(n-1,u) \leq d(n-1,v) + W(u_1)$
we equations for the cycle,
 $1, V_i) \leq \sum_{i=0}^{k-1} d(n-1, V_{i+1}) + \sum_{i=0}^{k-1} W(V_{i,1} V_{i+1})$
Same term $\rightarrow 0 \leq \sum_{i=0}^{k-1} W(V_{i,1} V_{i+1})$ (2)
are inconsistent, proving
34 the contradiction.

Detecting negative cycles

- Lemma: If every vertex *s* can reach *t*, and *G* has a negative cycle, then there is some edge $u \rightarrow v$ so that d(n 1, u) > d(n 1, v) + w(u, v). If *G* has no negative cycles, then output of Bellman-Ford is correct on final iteration.
- **Proof:** The previous slide proves the first part of the statement.
 - If there are no negative cycles, the shortest path *s* → *t* consists of unique vertices and has length ≤ *n* − 1.
 - We previously proved that d(i, s) was optimal length of path $s \sim t$ of length $\leq i$.
 - Together, concludes proof.

Negative cycle detection

Negative cycle detection algorithm:

- Run Bellman-Ford assuming there are no negative cycles
- For each edge $u \to v$, verify that $d(u) \leq d(v) + w(u, v)$. Else, report "negative cycle detected".
- This will only detective negative cycles amongst vertices that have paths to t. Will not detect negative cycles in the entire graph for a poorly connected choice of t.
- Solution: Add a new "sink" t to the graph and add edge $v \rightarrow t$ of weight 0 for all vertices. Run detection algorithm w.r.t this sink.

Queue A 6 d

Queue 6 d 6

Queue E L A d ط C

Queue E L Q d 6 C

4 iterations completed. Now checking edges, ne notice that d(a) > d(c) + w(a, c)-3 > -9 + 5 So a negative cycle exists (a-sc-sb)

Observe what would

Once more

Shortest paths with negative weights on a DAG

- No cycles by definition
- One pass through the vertices in reverse topological order suffices
- Runtime: O(n + m)

Under topological sort, edges only go from low to high numbered vertices

