
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 14
Dynamic programming IV: The Bellman-Ford algorithm

 1

Midterm

• Midterm during class on May 5th in the usual lecture hall

• For with registered services with DRS for alternate testing

• Glerum Room CSE2 345 starting at 3:30

• Your responsibility to convey to the proctor your specific alterations

• You are allowed to bring one page of notes with you. Pen and paper exam.

• Midterm will be 1 hour and starts promptly.

• Reducted to 50 points.

2

Midterm

• Covers subjects up through the dynamic programming except Bellman-Ford

• Sample midterm for practice problems and length is posted

• Section this week will review problems and strategy

• I’ll host a Q&A section about the subject on Thursday May 2nd.

3

Academic misconduct

• This week, me and my TAs identified a significant number of cases of
academic misconduct.

• Most stemmed from using ChatGPT or other LLMs to solve problems.

• Clear policy: You are not allowed to use ChatGPT or other LLMs.

• We are now looking through solutions more carefully for academic
misconduct and finding many more.

• You have an obligation to come forward and declare any use.

• If you do declare it, before I am inclined to not submit a case to CSSC.
4

Academic misconduct

• On problem set 3, we solved a new problem about independent sets. But I didn’t
explicitly state in the problem statement that was the avg. degree.

• That was contextually implied as it was a continuation problem.

• Many of you understood that it meant avg. degree.

• ChatGPT didn’t. It thought was max degree.

• If you used ChatGPT for this, you will likely be getting an email from me real soon.
It’s best you email me (right now!) admitting your use before I email you.

• This is not the only example. We have others where we have really easily detected use
of ChatGPT.

d

d

5

Previously in CSE 421…

6

Currency exchange

• Consider the highlighted path from USD to
USD:

• Converts 1 USD to USD

• Constitutes a negative cycle in the graph

• In the currency exchange problem, negative
cycles represent arbitrage

• Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

20.8 > 1

7

Set edge weight to log2(1/r) = − log2(r)

The Bellman-Ford algorithm

• Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

• Distances will never need to be recalculated once set

• Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

• Will run slower than Dijkstra’s: time versus time

• Will involve “resetting” distances as the algorithm goes along

• Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

O(mn) O(n + m)

8

Today

9

Failed attempt #1

• If a graph has negative weights, let

• What if we adjusted every edge weight to ?

• Can we just run standard Dijkstra’s on the adjusted graph?

• No. Path weights adjust variably.

•

• Why can we run MST algorithms with negative weights?

wmin = min
e∈E

w(e)

w′ (e) = w(e) − wmin ≥ 0

w′ (p) = w(p) − wmin ⋅ |# of edges in p |

10

Negative weight shortest path

• Input: Directed graph and weights and a vertex

• Output: For all vertices , the weight of the shortest path

• Note, we are considering shortest paths with respect to the endpoint

• Its easy enough to convert it to an algorithm for shortest paths with respect to
the source

G = (V, E) w : E → ℝ t

s d(s, t)

t

11

Negative weight shortest path

• Input: Directed graph and weights and a
vertex

• Output: For all vertices , the weight of the shortest path

• Observation: If a path contains a negative weight cycle, then
a shortest path doesn’t exist.

• Observation: If has no negative cycles then the shortest path
 is of length .

• Proof: A path of length exists, it has a repeated vertex (i.e. a
cycle). That cycle has weight , so removing it only decreases
weight. Repeat till path is of length .

G = (V, E) w : E → ℝ
t

s d(s, t)

s ↝ t

G
s ↝ t ≤ n − 1

≥ n
≥ 0

≤ n − 1

12

Dynamic programming algorithm

• Definition. For , let be the length of the
shortest path consisting of at most edges

• Case 1: The shortest path uses edges. Then 
 

• Case 2: The shortest path uses exactly edges. Let be the first vertex on
the path. Then 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

≤ i − 1

d(i, s) = d(i − 1,s)

i u

d(i, s) = w(s, u) + d(i − 1,u)

13

Dynamic programming algorithm

• Definition. For , let be the length of the
shortest path consisting of at most edges

• DP recursive definition: 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

d(i, s) =

0 if i = 0 and s = t
∞ if i = 0 and s ≠ t

min {d(i − 1,s), min
u:s→u

w(s, u) + d(i − 1,u)} otherwise

14

Dynamic programming implementation
(Assuming no negative cycles)

• Table generation:

• Generate table of size and table of size

• Set for and

• For to

• Set .

• For each edge

• If ,

• Set and

• Path recovery: Follow from until it reaches .

d (n − 1) × n next n

d(0,s) ← ∞ s ≠ t d(0,t) ← 0

i ← 1 n

d(i, s) ← d(i − 1,s)

(s → u) ∈ E

w(s, u) + d(i − 1,u) < d(i − 1,s)

d(i, s) ← w(s, u) + d(i − 1,u) next(s) ← u

next(⋅) s t

15

Space saving techniques

• The end result is a DAG mapping paths from every vertex to the sink

• The entries of list the edges in the path

• only depends on entries . Rows can be discarded.

s t

next(⋅)

d(i, s) d(i − 1,⋅) i − 2,…,1

16

Better DP implementation
(Assuming no negative cycles)

• Table generation:

• Generate table of size and table of size

• Set for and

• For to and edge

• If ,

• Set and

• Path recovery: Follow from until it reaches .

d n next n

d(s) ← ∞ s ≠ t d(t) ← 0

i ← 1 n (s → u) ∈ E

w(s, u)+d(u) < d(s)

d(s) ← w(s, u)+d(u) next(s) ← u

next(⋅) s t

17

Even more trimming

• If doesn’t decrease in round , then we don’t need to consider any edges
 in round as the best paths through have already been

considered

• Keep a list of vertices updated in the previous round and only update edge
 if was in

d(u) i
s → u i + 1 u

Q
s → u u Q

18

Even better DP implementation
(Assuming no negative cycles)

• Compute the reverse adjacency list: For every , .

• Generate tables , of size with and

• Initialize counter and generate a queue .

• While

• Pop off the queue .

• If , increment and push to .

• Else, for each ,

• If , set and

• Push into queue .

u ∈ V pre(u) = {s : s → u}

d next n d(s) ← ∞ ∀ s ≠ t d(t) ← 0

i ← 0 Q ← {t, ⊥ }

i < n

u Q

u = ⊥ i ← i + 1 ⊥ Q

s ∈ pre(u)

w(s, u)+d(u) < d(s) d(s) ← w(s, u)+d(u) next(s) ← u

s Q

19

Bellman-Ford properties

• Theorem: Throughout the algorithm, is the length of some path and that
path has weight less than the lightest path of edges after rounds of
updates

• Impact: Space decreases to but runtime is still in the worst
case. In practice, the runtime is much faster!

d(s)
≤ i i

O(n + m) O(nm)

20

Bellman-Ford example

21

Bellman-Ford example

22

Bellman-Ford example

23

Bellman-Ford example

24

Bellman-Ford example

25

Bellman-Ford example

26

Bellman-Ford example

27

Bellman-Ford example

28

Bellman-Ford example

29

Bellman-Ford example

30

Bellman-Ford example

31

Bellman-Ford example

32

Bellman-Ford example

33

Detecting negative cycles

• Lemma: If every vertex can reach , and has a negative cycle, then there is some edge
 so that . If has no negative cycles, then output of

Bellman-Ford is correct on final iteration.

• Proof: By contradiction.

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G

34

Detecting negative cycles

• Lemma: If every vertex can reach , and has a negative cycle, then there is some edge
 so that . If has no negative cycles, then output of

Bellman-Ford is correct on final iteration.

• Proof: The previous slide proves the first part of the statement.

• If there are no negative cycles, the shortest path consists of unique vertices and has
length .

• We previously proved that was optimal length of path of length .

• Together, concludes proof.

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G

s ↝ t
≤ n − 1

d(i, s) s ↝ t ≤ i

35

Negative cycle detection

• Negative cycle detection algorithm:

• Run Bellman-Ford assuming there are no negative cycles

• For each edge , verify that . Else,
report “negative cycle detected”.

• This will only detective negative cycles amongst vertices that
have paths to . Will not detect negative cycles in the entire
graph for a poorly connected choice of .

• Solution: Add a new “sink” to the graph and add edge of
weight 0 for all vertices. Run detection algorithm w.r.t this sink.

u → v d(u) ≤ d(v) + w(u, v)

t
t

t v → t

36

Bellman-Ford with negative cycles example

37

Bellman-Ford with negative cycles example

38

Bellman-Ford with negative cycles example

39

Bellman-Ford with negative cycles example

40

Bellman-Ford with negative cycles example

41

Bellman-Ford with negative cycles example

42

Bellman-Ford with negative cycles example

43

Bellman-Ford with negative cycles example

44

Bellman-Ford with negative cycles example

45

Bellman-Ford with negative cycles example

46

Bellman-Ford with negative cycles example

47

Bellman-Ford with negative cycles example

48

Bellman-Ford with negative cycles example

49

Bellman-Ford with negative cycles example

50

Shortest paths with negative weights on a DAG

• No cycles by definition

• Under topological sort, edges only go from low to high numbered vertices

• One pass through the vertices in reverse topological order suffices

• Runtime: O(n + m)

51

