Lecture 14

Dynamic programming IV: The Bellman-Ford algorithm

Chinmay Nirkhe | CSE 421 Spring 2025 w

Midterm

 Midterm during class on May 5th in the usual lecture hall
* For with registered services with DRS for alternate testing
* Glerum Room CSE2 345 starting at 3:30
* Your responsibility to convey to the proctor your specific alterations
* You are allowed to bring one page of notes with you. Pen and paper exam.
 Midterm will be 1 hour and starts promptly.

 Reducted to 50 points.

Midterm

* Covers subjects up through the dynamic programming except Bellman-Ford
 Sample midterm for practice problems and length is posted
» Section this week will review problems and strategy

* I’ll host a Q&A section about the subject on Thursday May 2nd.

Academic misconduct

* This week, me and my TAs identified a significant number of cases of
academic misconduct.

 Most stemmed from using ChatGPT or other LLMs to solve problems.
e Clear policy: You are not allowed to use ChatGPT or other LLMs.

* We are now looking through solutions more carefully for academic
misconduct and finding many more.

* You have an obligation to come forward and declare any use.

* |If you do declare it, before | am inclined to not submit a case to CSSC.

4

Academic misconduct

* On problem set 3, we solved a new problem about independent sets. But | didn’t
explicitly state in the problem statement that d was the avg. degree.

* That was contextually implied as it was a continuation problem.

 Many of you understood that it meant avg. degree.

» ChatGPT didn’t. It thought d was max degree.

 |f you used ChatGPT for this, you will likely be getting an email from me real soon.
It’s best you email me (right now!) admitting your use before | email you.

* This is not the only example. We have others where we have really easily detected use
of ChatGPT.

Previously in CSE 421...

Currency exchange

Set edge weight to log,(1/r) = — log,(r)

* Consider the highlighted path from USD to
USD:

. Converts 1 USD to 2% > 1 USD
* Constitutes a negative cycle in the graph

* |In the currency exchange problem, negative
cycles represent arbitrage

e Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

«f/ .um
¥
o
ko

/%6.5

[S
: -2.3
°
®.
‘™
o
oy

3
R
™ i o
%
.
N
N
o
. By
.
X
”* .

The Bellman-Ford algorithm

* Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

e Distances will never need to be recalculated once set

* Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

« Will run slower than Dijkstra’s: O(mn) time versus O(n + m) time
* Will involve “resetting” distances as the algorithm goes along

* Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

Today

Failed attempt #1

. If a graph has negative weights, let w_. . = min w(e)
eck

» What if we adjusted every edge weight to w'(e) = w(e) —w_ ;. > 07?

1n

 Can we just run standard Dijkstra’s on the adjusted graph?

 No. Path weights adjust variably.
* W,(p) — W(p) — Whin |# of edges In p‘

 Why can we run MST algorithms with negative weights?

10

Negative weight shortest path

e Input: Directed graph G = (V, E) and weights w : E — R and a vertex ¢
» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Note, we are considering shortest paths with respect to the endpoint ¢

* |ts easy enough to convert it to an algorithm for shortest paths with respect to
the source

11

Negative weight shortest path

¢ Input: Directed graph G = (V, E) and weights w : £ — R and a
vertex 1

» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Observation: If a path s ~ 7 contains a negative weight cycle, then
a shortest path doesn’t exist.

« Observation: If G has no negative cycles then the shortest path
s ~ tis of length <n — 1.

 Proof: A path of length > n exists, it has a repeated vertex (i.e. a S
cycle). That cycle has weight > 0, so removing it only decreases
weight. Repeat till path is of length < n — 1.

12

./>.\"'%’/\\

Dynamic programming algorithm

e Definition. Fori € {0,...,n—1},5 € V, letd(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

» Case 1: The shortest path uses <1 — 1 edges. Then
d(i,s) =d(i — 1,)

« Case 2: The shortest path uses exactly 1 edges. Let 1 be the first vertex on
the path. Then

d(i,s) =w(s,u)+d@i— 1,u)

13

Dynamic programming algorithm

» Definition. Fori € {0,....n—1},5 € V, let d(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

e DP recursive definition:

O fi=0and s =1t
00 ifi=0and s # ¢

d(i,s) =
min {d(i — 1,5), min w(s, u) + d(i — l,u)} otherwise

u.s—u

14

Dynamic programming implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size (n — 1) X n and table next of size n
e Set d(0,s) « oo fors # tand d(0,r) < 0
e Fori « lton
e Setd(i,s) « d(i —1,s).
 Foreachedge (s »> u) € E
e fw(s,u)+di—1,u) <d(i-1,s),
e Setd(i,s) <« w(s,u)+ d(i — 1,u) and next(s) < u
« Path recovery: Follow next(-) from s until it reaches .

15

Space saving techniques

 The end result is a DAG mapping paths from every vertex s to the sink ¢
» The entries of next(-) list the edges in the path

» d(i,s) only depends on entries d(i — 1,-). Rows i — 2,...,1 can be discarded.

16

Better DP implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size n and table next of size n
e Setd(s) « oofors #tandd(t) « O
e« Fori « ltonandedge (s - u) € E
o If w(s,u)+d(u) < d(s),
e Set d(s) « w(s,u)+d(u)and next(s) <« u

» Path recovery: Follow next(-) from s until it reaches .

17

Even more trimming

 If d(u) doesn’t decrease in round i, then we don’t need to consider any edges

s — uinround i + 1 as the best paths through © have already been
considered

» Keep a list O of vertices updated in the previous round and only update edge
s — uif u wasin Q

18

Even better DP implementation

(Assuming no negative cycles)

« Compute the reverse adjacency list: Foreveryu € V,pre(u) = {s : s — uj}.
» Generate tables d, next of size n with d(s) < oo V s # rand d(t) « O

e Initialize counter i « O and generate a queue Q « {¢, L }.

« Whilei <n

« Pop u off the queue O. ‘—"‘1‘7‘]""“' L s seenin 9{'“’“’|
/ WeVe done one itetion o"\ BF

e fu=_1,incrementi « i+ 1 and push 1L to Q. W A b o v-1
L Whee N-L.

» Else, for each s € pre(u),
o Ifw(s,u)+d(u) < d(s), setd(s) <« w(s,u)+d(u) and next(s) <« u

» Push s into queue Q.

19

Bellman-Ford properties

« Theorem: Throughout the algorithm, d(s) is the length of some path and that

path has weight less than the lightest path of < 17 edges after 1 rounds of
updates

» Impact: Space decreases to O(n + m) but runtime is still O(nm) in the worst
case. In practice, the runtime is much faster!

20

Bellman-Ford example

O 4/ \ b
®\ s @\
4 =) . 2 s

Bellman-Ford example

O 4/ \ b
®\ s @\
4 =) . 2 s

Bellman-Ford example

)N 4/ \ b
®\ s @\
4 =) . 2 .

Bellman-Ford example

)N 4/ \ b
®\ s @\
4 =) . 2 .

Bellman-Ford example

)N 4/ \ b
®\ s @\
4 =) . 2 .

Bellman-Ford example

Cueue

b = T~ b /E
@\ s A @4\) 6 /Z/
o 4 %\>@t .
¢

Bellman-Ford example

(Ruewe

Bellman-Ford example

)N 4/ \ b
®\ s @\
1 =) o 2 .

Bellman-Ford example

(Ruewe

Bellman-Ford example

(Ruewe

Bellman-Ford example

Bellman-Ford example

(Ruewe

o B AR RS bR

Bellman-Ford example

Detecting negative cycles

 Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: By contradiction.

Assiona. (Pe L) e ¥ chgs w2, Aln-13u) £ d(n-1)+ W(wy)

p e,
A,,u_ﬂs up Toone cquadions for dhe ycle,

-

T;"‘uz Vo ™ \/|> 2 0(@ \\'\IL) Z dQ’\ |+\\ zﬂ W(‘V\ |’\I,H
Vi _) 2 SRy) -
. k|\ . 4_/ L Same. e " ;> O < i W (‘\/'\ VVie

'O
« =0

Cl\d Are 'l/\QOI\S.\S\'E.Y\’\-, ?ﬂm
34 Hree eadradichon.

Detecting negative cycles

« Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: The previous slide proves the first part of the statement.

 |f there are no negative cycles, the shortest path s ~ ¢ consists of unique vertices and has
length < n — 1.

 We previously proved that d(i, s) was optimal length of path s ~ ¢ of length < i.

* Jogether, concludes proof.

35

Negative cycle detection

 Negative cycle detection algorithm:

 Run Bellman-Ford assuming there are no negative cycles

e For each edge u — v, verify that d(u) < d(v) + w(u, v). Else,
report “negative cycle detected”.

* This will only detective negative cycles amongst vertices that
have paths to 7. Will not detect negative cycles in the entire
graph for a poorly connected choice of 7.

e Solution: Add a new “sink” f to the graph and add edge v — 1 of
weight O for all vertices. Run detection algorithm w.r.t this sink.

36

Bellman-Ford with negative cycles example

> ®

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

Bellman-Ford with negative cycles example

3R s -

Bellman-Ford with negative cycles example

3R cen e

Bellman-Ford with negative cycles example

M RN NN

Bellman-Ford with negative cycles example

M RO N M o

O
)/
b@ﬁoo @oﬂ

Bellm
an-Ford
wit
h negative cycle
S exam
ple

|

R Q
SRR R R R R 2

Bellman-Ford with negative cycles example

/ 0 @Mﬁ\k'&
-
o/ ~_ jf: Obsene. What woulel
D O R e vl
\ > /7 T 2 //g N, wre
S -3 2 Y g '
-4 S @ £ &
7 3
AT
l 9 >? 0 f;
\ A
e
AL
a

Shortest paths with negative weights on a DAG

* No cycles by definition
 Under topological sort, edges only go from low to high numbered vertices

* One pass through the vertices in reverse topological order suffices

» Runtime: O(n + m) @‘@ @
D O
D) &
@ -------------

) ‘4 A

