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General dynamic programming algorithm

o |terate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

* Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

* Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

« Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.



General dynamic programming runtime

Time 1t takes to solve problems
Runtime = (Total number of subproblems) x ( P )

given solutions to subproblems



Knapsack overview

e Input: n items of integer values v; and weights w; and weight threshold W.
e Input length: O(nlog VW)

e Output: optimal § C [n] maximizing value(S) s.t. weight(S) < W

* Various algorithms:

» Brute force alg: Runtime of O(n2" log VW)
» DP alg: Runtime O(nW log VW) or O(nV log VW)

n°log VW)

c-approx. alg: Runtime O (
€
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RNA secondary structure

» RNA is expressed as a sequence of nucleotides: a string B = b,...b, where
each b, € {A, C, G, U} for adenine, cytosine, guanine, and uracil.

* RNA tends to not be linear in a molecule and forms secondary structures
 Secondary structures cause the molecule to loop back and forth

cC— A

 These are bonds between the base pairs NS




RNA secondary structure hypothesis

hot auoww[:
» Definition. A secondary structure for an RNA seq. ¢ —

B =b,...b,is asetof pairs S = {(b;, b))} such that g

\

« WC condition: § is a matching and pairs are A{‘“:,f:'.'-
Watson-Crick complements i.e. ""
(b.b) € WC := {(A, U). (U, A).(G.C).(C.G))

. No sharp bends: (b, bj) eSonlyifd < |i—j] "(A

|

» Non-crossing: If (b;, b;) and (b, b,) then the ) a
intervals [i, j] and [k, £'] are either disjoint or one ?/ Ne—e—c—u
contains the other. c. 6—C—6—A—6

N |
G




RNA secondary structure problem

o Input:an RNAseq. B = b,...b,

e Output: a secondary structure S of maximal size for B.

« Dynamic programming attempt 1: For 1 <1 < j < n define §(j) as the
maximal secondary structure using bases only by, b,, ..., bj. Let

SO =15 1.



RNA secondary structure problem

» Consider if in the optimal solution (b, b;) € S

o Splits problem into smaller problems but they aren’t subproblems.

 Problem: Our choice of subproblem was not expressive enough.
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RNA secondary structure problem

o Input:an RNAseq. B = b,...b,

e Output: a secondary structure S of maximal size for B.

« Dynamic programming intuition: For 1 <1 < j < n define 5(i, ) as the
maximal secondary structure using bases only b;, b, y, ..., b;. Let

J@, ) =153, )1
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RNA secondary structure DP algorithm

» Dynamic programming intuition: For 1 <1 < j < n define
S5(i, ) as the maximal secondary structure using bases only

bi’ bi-l—l’ ceos b] Letf(l,]) —_ |S(l,]) ‘ .

e Recursive definition:

umatched
+ In optimal solution, either b; is not in a SS or (b, b;) is in b; b, b ... b, b.
(K +2

the SS
e Infirstcase, f(i,j) =f(i,j— 1)and S(,j) = S, 7 — 1) /
e Insecondcase, f(i,j) =1+ fi,k—1)+f(k+1,j—1) /\

 Optimal solution can be calculated as a recursive (
minimization y
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RNA secondary structure DP algorithm

e Recursive definition:

. In optimal solution, either bj is not in a SS or (b,, bj) is in the SS

o Infirst case, f(i,7) = f(i,j— 1) and 5(i,7) = 5@, 7 — 1)
e Insecondcase, f(i,7)) =1+fi,k—1)+f(k+17—1)

« Observation: The recursive definition of f(i, 7) only depends on f(i’, j) for
=i <lj—il.

» Therefore, we fill memo from bottom-to-top w.r.t [j —i].
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RNA secondary structure DP algorithm

* Filling memoization tables:

« Construct n X n tables M and f initialized as L

e Set f(i,1) « O forall i. - Herate Over |ﬂ.,\j<m of indenm| 2

e Fori<— ltonandz«< 1 «<n—i

¢ let] «— 142 valid ‘Fm’\Mf L vl We ond S\AAC‘F conner  Condidions

/

. Compute V « min 1 +f(i,k—1)+f(k+1,j — 1) and let k be its argmin.
KELi,....j=5 I A(byb)EWC

c V> f(i,j—1),setf(i,j) « Vandset M(i,j) < k
 Else, set f(i,j) « Vand keep M(i,j) = JL_/_\r
— <\'\ Necoersl %concﬂwx/ shw;\we, (A or‘ﬁ*m\ Sl




RNA secondary structure DP algorithm

« Computing optimal secondary structure:

« It M(i, j) = k this means that (b, b;) € S. Else j is not included in S.

 To calculate optimal secondary structure run Print(1,7n) where
e Print(i, j):
« IfM(i,j) < koutput (k,j) UPrint(i,k — 1)U Print(k + 1,/ — 1)
* Else, output Print(i,j — 1)
 Can be made to run faster in practice using DFS or BFS instead of recursion

. Runtime: O(n?) sized table with each recursive computation taking O(n) time. Print runs in O(n) time after
the table is computed. Total runtime: O(n°).
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Dynamic programming patterns
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Top-down vs bottom-up DP algorithms

* So far we have seen that the recursive subproblems in DP algorithms are
always smaller. Examples

« Knapsack: f(n, W’) depends on f(n — 1,W”) for W’ < W'
« RNA SS: f(i,j) depends on f(i’,j") where |j'—i'| < |j —i]
* Yields a “bottom-up” ordering for filling the memoization table

* |nstead we could fill up the table “top-down”

17



Top-down vs bottom-up DP algorithms

e In a “top-down” DP algorithm f(x)
» Conclude that f(x) can be defined recursively based on f(y,), f(,), -..f(V;)

. For each y;, check if f(y;) has been previously calculated
. If yes, use the value of f(yj)

+ If not, recursive compute f(y;)

* Qverall, runtime is asymptotically the same! Each square of the memo is only
computed once.
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Top-down vs bottom-up DP tradeoffs

* |n top-down approaches, not all squares may get calculated
* Can yield constant factor savings in terms of runtime

 However, the recursion stack usually scales poorly in top-down approaches

« For example, in Tribonacci, recursion stack would be £2(n) in depth

* Recursion stack is often in computer’'s memory while data being manipulated is expressed on the hard
drive

* Can yield memory overflow errors if not carefully programmed
* Top-down is better when the order of filling out squares isn’t well defined
e Occurs in graph DP algorithms like Bellman-Ford which we see soon

* |n such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical
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Graph dynamic programming



Currency exchange

« USD to BTC: 0.00001

« BTC to EUR: 70,240

+ INR to USD: 0.0127 % “‘\W

+ EUR to INR: 97.01 L

+ EUR to HKD: 9.85 o\ /
#0240

« HKD to INR: 11.31

 USD to HKD: 6.96
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Currency exchange

. USD to BTC: 0.00001 Set edge weight to log,(1/r) = — log,(r)

« BTC to EUR: 70,240 o

» INR to USD: 0.0127 / |

* EURto INR: 97.01

» EUR to HKD: 9.85 \ /

« HKD to INR: 11.31

 USD to HKD: 6.96
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Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a

currency conversion from 1 unit of u to 27" -m,h
. -6.6
units of v +6.5 3.5
p
» Finding a path of least weight from u to v @ \ @ -3.3
yields the best seq. of currency exchanges -2.8  ~ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

23



Currency exchange

Set edge weight to log,(1/r) = — log,(r)

« Apathp : u ~ v of net weight w implies a
currency conversion from 1 unit of u to 27"
| -6.6
units of v %S iy
&

* Finding a path of least weight from u to v . 2.3
yields the best seq. of currency exchanges @ 2.8 ~ @ < @

* Direct conversion of USD to HKD vyields F14.C
228 HKD per USD 216,

« USD—BTC—EUR—HKD vyields
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Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate

changes from 2 to 2+92 / A \
+\ /
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Currency exchange

Set edge weight to log,(1/r) = — log,(r)

 What happens if HKD to INR rate

changes from 23~ to 2497 / A \
+16.S /
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Currency exchange

Set edge weight to log,(1/r) = — log,(r)

* Consider the highlighted path from USD to
USD:

. Converts 1 USD to 2% > 1 USD
* Constitutes a negative cycle in the graph

* |In the currency exchange problem, negative
cycles represent arbitrage

e Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

[ S
: -2.3
°
®.
‘™
o
oy
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Negative weights shortest paths

o Input: A directed graph G = (V, E) with weights w : E — R and a vertex r

e Output: For every vertex v, the distance of the lightest directed path r ~ v
where a path’s weight is the sum of its weights

 Why not just run Dijkstra’s?

e Dijkstra’s will incorrectly calculate distances
when negative weights are involved

28



Negative weights shortest paths

e Dijkstra’s property: Once a vertex v is visited, the distance
d(r, v) never needs updating again

e This does not hold with negative weights

 Need a slower but more careful algorithm that accounts for
negative weights

e |n this example,

» Dijkstra’s would set distance of u as 2 with path r — v in
its first step

» However, need to update the distance of u to —35 after v is
visited.

29




Negative weights shortest paths

Applications

 Trade routes: each vertex is a commodity and edge x — y of weight w means 1 unit of x can be
exchanged for 27" units of y

 Multiplicative gains can be converted to linear gains by taking logarithms
* Negative weights imply multiplicative losses

 Chemical networks: cost represent the excess energy required or released when a transformation
IS made

e Subsidies offered by governments for certain trades being performed

 Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines
to fly to this market. (Annually, about $4 million for just this route)

* How can an airline design its route network to maximize revenue in light of subsidies”?

30



The Bellman-Ford algorithm

* Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

e Distances will never need to be recalculated once set

* Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

« Will run slower than Dijkstra’s: O(mn) time versus O(n + m) time
* Will involve “resetting” distances as the algorithm goes along

* Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

31



Failled attempt #1

. If a graph has negative weights, let w_. . = min w(e)
eck

» What if we adjusted every edge weight to w'(e) = w(e) —w_ ;. > 07?

1n

 Can we just run standard Dijkstra’s on the adjusted graph?

 No. Path weights adjust variably.

+ Wi(p) =w(p) — Win | # of edges in p‘

32



Negative weight shortest path

e Input: Directed graph G = (V, E) and weights w : E — R and a vertex ¢
» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Note, we are considering shortest paths with respect to the endpoint ¢

* |ts easy enough to convert it to an algorithm for shortest paths with respect to
the source

33



Negative weight shortest path

¢ Input: Directed graph G = (V, E) and weights w : £ — R and a
vertex 1

» Output: For all vertices s, the weight of the shortest path d(s, 1)

 Observation: If a path s ~ 7 contains a negative weight cycle, then
a shortest path doesn’t exist.

« Observation: If G has no negative cycles then the shortest path
s ~ tis of length <n — 1.

 Proof: A path of length > n exists, it has a repeated vertex (i.e. a S
cycle). That cycle has weight > 0, so removing it only decreases
weight. Repeat till path is of length < n — 1.

34
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Dynamic programming algorithm

e Definition. Fori € {0,...,n—1},5 € V, letd(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

» Case 1: The shortest path uses <1 — 1 edges. Then
d(i,s) =d(i — 1,)

« Case 2: The shortest path uses exactly 1 edges. Let u be the first the first
vertex on the path. Then

d(i,s) =w(s,u)+d@i— 1,u)

35



Dynamic programming algorithm

» Definition. Fori € {0,....n—1},5 € V, let d(i, s) be the length of the
shortest path s ~ t consisting of at most 1 edges

e DP recursive definition:

O fi=0and s =1t
00 ifi=0and s # ¢

d(i,s) =
min {d(i — 1,5), min w(s, u) + d(i — l,u)} otherwise

u.s—u

36



Dynamic programming implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size (n — 1) X n and table next of size n
e Set d(0,s) « oo fors # tand d(0,t) <« 0
e Fori <« ltonandedge (s - u) € E
e fw(s,u)+di—1u) <d@i-1,s),
e Setd(i,s) <« w(s,u)+ d(i — 1,u) and next(s) <« u
» Else, setd(i,s) « d(i — 1,s).
« Path recovery: Follow next( - ) from s until it reaches t.

37



Space saving techniques

 The end result is a DAG mapping paths from every vertex s to the sink ¢
» The entries of next( - ) list the edges in the path

» d(i,s) only depends on entries d(i — 1,-). Rows i — 2,...,1 can be discarded.

38



Better DP implementation

(Assuming no negative cycles)

 Table generation:
» Generate table d of size n and table next of size n
e Setd(s) « oofors #tandd(t) « O
e« Fori « ltonandedge (s - u) € E
o If w(s,u)+d(u) < d(s),
e Set d(s) « w(s,u)+d(u)and next(s) <« u

» Path recovery: Follow next( - ) from s until it reaches .

39



Even more trimming (in practice)

 If d(u) doesn’t decrease in round i, then we don’t need to consider any edges

s — uinround i + 1 as the best paths through © have already been
considered

» Keep a list O of vertices updated in the previous round and only update edge
s — uif u wasin Q

40



Even better DP implementation

(Assuming no negative cycles)

« Compute the reverse adjacency list: Foreveryu € V,pre(u) = {s : s — uj}.
» Generate tables d, next of size n with d(s) < oo V s # rand d(t) « O

e Initialize counter i « O and generate a queue Q « {¢, L }.

« Whilei <n

« Pop u off the queue O. ‘—"‘1‘7‘]""“' L s seenin 9{'“’“’|
/ WeVe done one itetion o"\ BF

e fu=_1,incrementi « i+ 1 and push 1L to Q. W A b o v-1
L Whee N-L.

» Else, for each s € pre(u),
o Ifw(s,u)+d(u) < d(s), setd(s) <« w(s,u)+d(u) and next(s) <« u

» Push s into queue Q.

41



Bellman-Ford properties

« Theorem: Throughout the algorithm, d(s) is the length of some path and that

path has weight less than the lightest path of < 17 edges after 1 rounds of
updates

» Impact: Space decreases to O(n + m) but runtime is still O(nm) in the worst
case. In practice, the runtime is much faster!

« New: [S.Rao, 25| Bellman-Ford in time O(n2/3m), first major upgrade in half a
century

42



Bellman-Ford example

O 4/ \ b
®\ s @\
4 =) . 2 s




Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example




Bellman-Ford example
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Bellman-Ford example




Detecting negative cycles

 Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: By contradiction.

Assiona. (Pe L) e ¥ chgs w2, Aln-13u) £ d(n-1 )+ W(wy)

p e,
A,,u_ﬂs up Toone cquadions for dhe ycle,

-

T;"‘uz Vo ™ \/|> 2 0(@ \\'\IL) Z dQ’\ |+\\ zﬂ W(‘V\ |’\I,H
Vi _ ) 2 SRy ) -
. k|\ . 4_/ L Same. e " ;> O < i W (‘\/'\ VVie

'O
« =0

Cl\d Are 'l/\QOI\S.\S\'E.Y\’\-, ?ﬂm
56 Hra. Canbradichon .



Detecting negative cycles

« Lemma: If every vertex s can reach 7, and G has a negative cycle, then there is some edge

u — vsothatd(n — 1,u) > d(n — 1,v) + w(u, v). If G has no negative cycles, then output of
Bellman-Ford is correct on final iteration.

* Proof: The previous slide proves the first part of the statement.

 |f there are no negative cycles, the shortest path s ~ ¢ consists of unique vertices and has
length < n — 1.

 We previously proved that d(i, s) was optimal length of path s ~ ¢ of length < i.

* Jogether, concludes proof.
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Negative cycle detection

 Negative cycle detection algorithm:

 Run Bellman-Ford assuming there are no negative cycles

e For each edge u — v, verify that d(u) < d(v) + w(u, v). Else,
report “negative cycle detected”.

* This will only detective negative cycles amongst vertices that
have paths to 7. Might not be the entire graph for bad choice of 7.

» Solution: Add a new “sink” 7 to the graph and add edge v — 1 of
weight O for all vertices. Run detection algorithm w.r.t this sink.

58




Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example




Bellman-Ford with negative cycles example




Bellman-Ford with negative cycles example




Bellman-Ford with negative cycles example




Bellman-Ford with negative cycles example




Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Shortest paths with negative weights on a DAG

* No cycles by definition
 Under topological sort, edges only go from low to high numbered vertices

* One pass through the vertices in reverse topological order suffices

» Runtime: O(n + m) @‘@ @
D O
D) &
@ -------------
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