
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 13
Dynamic programming III

1

Previously in CSE 421…

2

General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

• Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

• Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

• Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

3

General dynamic programming runtime

4

Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)

Knapsack overview

• Input: items of integer values and weights and weight threshold .

• Input length:

• Output: optimal maximizing s.t.

• Various algorithms:

• Brute force alg: Runtime of

• DP alg: Runtime or

• -approx. alg: Runtime

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O (n3 log VW
ϵ)

5

Today

6

RNA secondary structure

• RNA is expressed as a sequence of nucleotides: a string where
each for adenine, cytosine, guanine, and uracil.

• RNA tends to not be linear in a molecule and forms secondary structures

• Secondary structures cause the molecule to loop back and forth

• These are bonds between the base pairs

B = b1…bn
bi ∈ {A, C, G, U}

7

RNA secondary structure hypothesis

• Definition. A secondary structure for an RNA seq.
 is a set of pairs such that

• WC condition: is a matching and pairs are
Watson-Crick complements i.e.

• No sharp bends: only if

• Non-crossing: If and then the
intervals and are either disjoint or one
contains the other.

B = b1…bn S = {(bi, bj)}

S

(bi, bj) ∈ WC := {(A, U), (U, A), (G, C), (C, G)}

(bi, bj) ∈ S 4 < | i − j |

(bi, bj) (bk, bℓ)
[i, j] [k, ℓ]

8

RNA secondary structure problem

• Input: an RNA seq.

• Output: a secondary structure of maximal size for .

• Dynamic programming attempt 1: For define as the
maximal secondary structure using bases only . Let

.

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(j)
b1, b2, …, bj

f(j) = |S(j) |

9

RNA secondary structure problem

• Consider if in the optimal solution

• Splits problem into smaller problems but they aren’t subproblems.

• Problem: Our choice of subproblem was not expressive enough.

(bk, bj) ∈ S

10

RNA secondary structure problem

• Input: an RNA seq.

• Output: a secondary structure of maximal size for .

• Dynamic programming intuition: For define as the
maximal secondary structure using bases only . Let

.

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(i, j)
bi, bi+1, …, bj

f(i, j) = |S(i, j) |

11

RNA secondary structure DP algorithm

• Dynamic programming intuition: For define
 as the maximal secondary structure using bases only

. Let .

• Recursive definition:

• In optimal solution, either is not in a SS or is in
the SS

• In first case, and

• In second case,

• Optimal solution can be calculated as a recursive
minimization

1 ≤ i ≤ j ≤ n
S(i, j)
bi, bi+1, …, bj f(i, j) = |S(i, j) |

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

12

RNA secondary structure DP algorithm

• Recursive definition:

• In optimal solution, either is not in a SS or is in the SS

• In first case, and

• In second case,

• Observation: The recursive definition of only depends on for
.

• Therefore, we fill memo from bottom-to-top w.r.t .

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

f(i, j) f(i′ , j′)
| j′ − i′ | < | j − i |

| j − i |
13

RNA secondary structure DP algorithm

• Filling memoization tables:

• Construct tables and initialized as

• Set for all .

• For and

• Let

• Compute and let be its argmin.

• If , set and set

• Else, set and keep .

n × n M f ⊥

f(i, i) ← 0 i

i ← 1 to n z ← 1 ← n − i

j ← i + z

V ← min
k∈{i,…,j−5}∧(bj,bk)∈WC

1 + f(i, k − 1) + f(k + 1,j − 1) k

V > f(i, j − 1) f(i, j) ← V M(i, j) ← k

f(i, j) ← V M(i, j) = ⊥

14

RNA secondary structure DP algorithm

• Computing optimal secondary structure:

• If this means that . Else is not included in .

• To calculate optimal secondary structure run where

• :

• If output

• Else, output

• Can be made to run faster in practice using DFS or BFS instead of recursion

• Runtime: sized table with each recursive computation taking time. Print runs in time after
the table is computed. Total runtime: .

M(i, j) = k (bk, bj) ∈ S j S

Print(1,n)

Print(i, j)

M(i, j) ← k (k, j) ∪ Print(i, k − 1) ∪ Print(k + 1,j − 1)

Print(i, j − 1)

O(n2) O(n) O(n)
O(n3)

15

Dynamic programming patterns

16

Top-down vs bottom-up DP algorithms

• So far we have seen that the recursive subproblems in DP algorithms are
always smaller. Examples

• Knapsack: depends on for

• RNA SS: depends on where

• Yields a “bottom-up” ordering for filling the memoization table

• Instead we could fill up the table “top-down”

f(n, W′) f(n − 1,W′ ′) W′ ′ ≤ W′

f(i, j) f(i′ , j′) | j′ − i′ | < | j − i |

17

Top-down vs bottom-up DP algorithms

• In a “top-down” DP algorithm

• Conclude that can be defined recursively based on

• For each , check if has been previously calculated

• If yes, use the value of

• If not, recursive compute

• Overall, runtime is asymptotically the same! Each square of the memo is only
computed once.

f(x)

f(x) f(y1), f(y2), …f(yk)

yj f(yj)

f(yj)

f(yj)

18

Top-down vs bottom-up DP tradeoffs

• In top-down approaches, not all squares may get calculated

• Can yield constant factor savings in terms of runtime

• However, the recursion stack usually scales poorly in top-down approaches

• For example, in Tribonacci, recursion stack would be in depth

• Recursion stack is often in computer’s memory while data being manipulated is expressed on the hard
drive

• Can yield memory overflow errors if not carefully programmed

• Top-down is better when the order of filling out squares isn’t well defined

• Occurs in graph DP algorithms like Bellman-Ford which we see soon

• In such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical

Ω(n)

19

Graph dynamic programming

20

Currency exchange

• USD to BTC: 0.00001

• BTC to EUR: 70,240

• INR to USD: 0.0127

• EUR to INR: 97.01

• EUR to HKD: 9.85

• HKD to INR: 11.31

• USD to HKD: 6.96

21

Currency exchange

• USD to BTC: 0.00001

• BTC to EUR: 70,240

• INR to USD: 0.0127

• EUR to INR: 97.01

• EUR to HKD: 9.85

• HKD to INR: 11.31

• USD to HKD: 6.96

22

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• A path of net weight implies a
currency conversion from 1 unit of to
units of

• Finding a path of least weight from to
yields the best seq. of currency exchanges

• Direct conversion of USD to HKD yields
 HKD per USD

• USD BTC EUR HKD yields
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9

23

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• A path of net weight implies a
currency conversion from 1 unit of to
units of

• Finding a path of least weight from to
yields the best seq. of currency exchanges

• Direct conversion of USD to HKD yields
 HKD per USD

• USD BTC EUR HKD yields
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9

24

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• What happens if HKD to INR rate
changes from to ?23.5 24.0

25

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• What happens if HKD to INR rate
changes from to ?23.5 24.0

26

Set edge weight to log2(1/r) = − log2(r)

Currency exchange

• Consider the highlighted path from USD to
USD:

• Converts 1 USD to USD

• Constitutes a negative cycle in the graph

• In the currency exchange problem, negative
cycles represent arbitrage

• Since there is a negative cycle, any currency
can be converted into any other for
arbitrarily cheap as the graph is strongly
connected

20.8 > 1

27

Set edge weight to log2(1/r) = − log2(r)

Negative weights shortest paths

• Input: A directed graph with weights and a vertex

• Output: For every vertex , the distance of the lightest directed path
where a path’s weight is the sum of its weights

• Why not just run Dijkstra’s?

• Dijkstra’s will incorrectly calculate distances  
when negative weights are involved

G = (V, E) w : E → ℝ r

v r ↝ v

28

Negative weights shortest paths

• Dijkstra’s property: Once a vertex is visited, the distance
 never needs updating again

• This does not hold with negative weights

• Need a slower but more careful algorithm that accounts for
negative weights

• In this example,

• Dijkstra’s would set distance of as with path in
its first step

• However, need to update the distance of to after is
visited.

v
d(r, v)

u 2 r → v

u −5 v

29

Negative weights shortest paths
Applications

• Trade routes: each vertex is a commodity and edge of weight means unit of can be
exchanged for units of

• Multiplicative gains can be converted to linear gains by taking logarithms

• Negative weights imply multiplicative losses

• Chemical networks: cost represent the excess energy required or released when a transformation
is made

• Subsidies offered by governments for certain trades being performed

• Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines
to fly to this market. (Annually, about $4 million for just this route)

• How can an airline design its route network to maximize revenue in light of subsidies?

x → y w 1 x
2−w y

30

The Bellman-Ford algorithm

• Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when
all weights are non-negative

• Distances will never need to be recalculated once set

• Bellman-Ford is a dynamic programming algorithm for computing shortest path in
directed graphs

• Will run slower than Dijkstra’s: time versus time

• Will involve “resetting” distances as the algorithm goes along

• Bellman-Ford will detect negative cycles as shortest paths are undefined if there
are negative cycles

O(mn) O(n + m)

31

Failed attempt #1

• If a graph has negative weights, let

• What if we adjusted every edge weight to ?

• Can we just run standard Dijkstra’s on the adjusted graph?

• No. Path weights adjust variably.

•

wmin = min
e∈E

w(e)

w′ (e) = w(e) − wmin ≥ 0

w′ (p) = w(p) − wmin ⋅ |# of edges in p |

32

Negative weight shortest path

• Input: Directed graph and weights and a vertex

• Output: For all vertices , the weight of the shortest path

• Note, we are considering shortest paths with respect to the endpoint

• Its easy enough to convert it to an algorithm for shortest paths with respect to
the source

G = (V, E) w : E → ℝ t

s d(s, t)

t

33

Negative weight shortest path

• Input: Directed graph and weights and a
vertex

• Output: For all vertices , the weight of the shortest path

• Observation: If a path contains a negative weight cycle, then
a shortest path doesn’t exist.

• Observation: If has no negative cycles then the shortest path
 is of length .

• Proof: A path of length exists, it has a repeated vertex (i.e. a
cycle). That cycle has weight , so removing it only decreases
weight. Repeat till path is of length .

G = (V, E) w : E → ℝ
t

s d(s, t)

s ↝ t

G
s ↝ t ≤ n − 1

≥ n
≥ 0

≤ n − 1

34

Dynamic programming algorithm

• Definition. For , let be the length of the
shortest path consisting of at most edges

• Case 1: The shortest path uses edges. Then 
 

• Case 2: The shortest path uses exactly edges. Let be the first the first
vertex on the path. Then 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

≤ i − 1

d(i, s) = d(i − 1,s)

i u

d(i, s) = w(s, u) + d(i − 1,u)

35

Dynamic programming algorithm

• Definition. For , let be the length of the
shortest path consisting of at most edges

• DP recursive definition: 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

d(i, s) =

0 if i = 0 and s = t
∞ if i = 0 and s ≠ t

min {d(i − 1,s), min
u:s→u

w(s, u) + d(i − 1,u)} otherwise

36

Dynamic programming implementation
(Assuming no negative cycles)

• Table generation:

• Generate table of size and table of size

• Set for and

• For to and edge

• If ,

• Set and

• Else, set .

• Path recovery: Follow from until it reaches .

d (n − 1) × n next n

d(0,s) ← ∞ s ≠ t d(0,t) ← 0

i ← 1 n (s → u) ∈ E

w(s, u) + d(i − 1,u) < d(i − 1,s)

d(i, s) ← w(s, u) + d(i − 1,u) next(s) ← u

d(i, s) ← d(i − 1,s)

next(⋅) s t

37

Space saving techniques

• The end result is a DAG mapping paths from every vertex to the sink

• The entries of list the edges in the path

• only depends on entries . Rows can be discarded.

s t

next(⋅)

d(i, s) d(i − 1,⋅) i − 2,…,1

38

Better DP implementation
(Assuming no negative cycles)

• Table generation:

• Generate table of size and table of size

• Set for and

• For to and edge

• If ,

• Set and

• Path recovery: Follow from until it reaches .

d n next n

d(s) ← ∞ s ≠ t d(t) ← 0

i ← 1 n (s → u) ∈ E

w(s, u)+d(u) < d(s)

d(s) ← w(s, u)+d(u) next(s) ← u

next(⋅) s t

39

Even more trimming (in practice)

• If doesn’t decrease in round , then we don’t need to consider any edges
 in round as the best paths through have already been

considered

• Keep a list of vertices updated in the previous round and only update edge
 if was in

d(u) i
s → u i + 1 u

Q
s → u u Q

40

Even better DP implementation
(Assuming no negative cycles)

• Compute the reverse adjacency list: For every , .

• Generate tables , of size with and

• Initialize counter and generate a queue .

• While

• Pop off the queue .

• If , increment and push to .

• Else, for each ,

• If , set and

• Push into queue .

u ∈ V pre(u) = {s : s → u}

d next n d(s) ← ∞ ∀ s ≠ t d(t) ← 0

i ← 0 Q ← {t, ⊥ }

i < n

u Q

u = ⊥ i ← i + 1 ⊥ Q

s ∈ pre(u)

w(s, u)+d(u) < d(s) d(s) ← w(s, u)+d(u) next(s) ← u

s Q

41

Bellman-Ford properties

• Theorem: Throughout the algorithm, is the length of some path and that
path has weight less than the lightest path of edges after rounds of
updates

• Impact: Space decreases to but runtime is still in the worst
case. In practice, the runtime is much faster!

• New: [S.Rao, ’25] Bellman-Ford in time , first major upgrade in half a
century

d(s)
≤ i i

O(n + m) O(nm)

O(n2/3m)

42

Bellman-Ford example

43

Bellman-Ford example

44

Bellman-Ford example

45

Bellman-Ford example

46

Bellman-Ford example

47

Bellman-Ford example

48

Bellman-Ford example

49

Bellman-Ford example

50

Bellman-Ford example

51

Bellman-Ford example

52

Bellman-Ford example

53

Bellman-Ford example

54

Bellman-Ford example

55

Detecting negative cycles

• Lemma: If every vertex can reach , and has a negative cycle, then there is some edge
 so that . If has no negative cycles, then output of

Bellman-Ford is correct on final iteration.

• Proof: By contradiction.

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G

56

Detecting negative cycles

• Lemma: If every vertex can reach , and has a negative cycle, then there is some edge
 so that . If has no negative cycles, then output of

Bellman-Ford is correct on final iteration.

• Proof: The previous slide proves the first part of the statement.

• If there are no negative cycles, the shortest path consists of unique vertices and has
length .

• We previously proved that was optimal length of path of length .

• Together, concludes proof.

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G

s ↝ t
≤ n − 1

d(i, s) s ↝ t ≤ i

57

Negative cycle detection

• Negative cycle detection algorithm:

• Run Bellman-Ford assuming there are no negative cycles

• For each edge , verify that . Else,
report “negative cycle detected”.

• This will only detective negative cycles amongst vertices that
have paths to . Might not be the entire graph for bad choice of .

• Solution: Add a new “sink” to the graph and add edge of
weight 0 for all vertices. Run detection algorithm w.r.t this sink.

u → v d(u) ≤ d(v) + w(u, v)

t t

t v → t

58

Bellman-Ford with negative cycles example

59

Bellman-Ford with negative cycles example

60

Bellman-Ford with negative cycles example

61

Bellman-Ford with negative cycles example

62

Bellman-Ford with negative cycles example

63

Bellman-Ford with negative cycles example

64

Bellman-Ford with negative cycles example

65

Bellman-Ford with negative cycles example

66

Bellman-Ford with negative cycles example

67

Bellman-Ford with negative cycles example

68

Bellman-Ford with negative cycles example

69

Bellman-Ford with negative cycles example

70

Bellman-Ford with negative cycles example

71

Bellman-Ford with negative cycles example

72

Shortest paths with negative weights on a DAG

• No cycles by definition

• Under topological sort, edges only go from low to high numbered vertices

• One pass through the vertices in reverse topological order suffices

• Runtime: O(n + m)

73

