# Lecture 13 Dynamic programming III

Chinmay Nirkhe | CSE 421 Spring 2025



1

# Previously in CSE 421...

# General dynamic programming algorithm

- Iterate through subproblems: Starting from the "smallest" and building up to the "biggest." For each one:
  - Find the optimal value, using the previously-computed optimal values to smaller subproblems.
  - Record the choices made to obtain this optimal value. (If many smaller subproblems were considered as candidates, record which one was chosen.)
- Compute the solution: We have the value of the optimal solution to this
  optimization problem but we don't have the actual solution itself. Use the
  recorded information to actually reconstruct the optimal solution.



#### General dynamic programming runtime

Runtime = (Total number of subproblems)  $\times \begin{pmatrix} \text{Time it takes to solve problems} \\ \text{given solutions to subproblems} \end{pmatrix}$ 

#### Knapsack overview

- Input: n items of integer values  $v_i$  and weights  $w_i$  and weight threshold W.
- Input length:  $O(n \log VW)$
- Output: optimal  $S \subseteq [n]$  maximizing value(S) s.t. weight(S)  $\leq W$
- Various algorithms:
  - Brute force alg: Runtime of  $O(n2^n \log VW)$
  - DP alg: Runtime  $O(nW \log VW)$  or  $O(nV \log VW)$

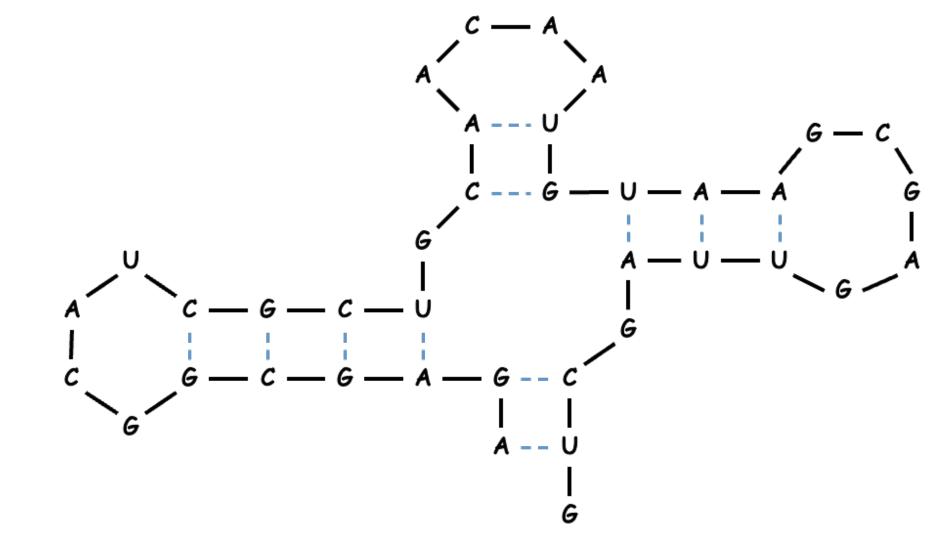
 $\epsilon$ -approx. alg: Runtime  $O\left(\frac{n^3 \log VW}{\epsilon}\right)$ 



#### **RNA secondary structure**

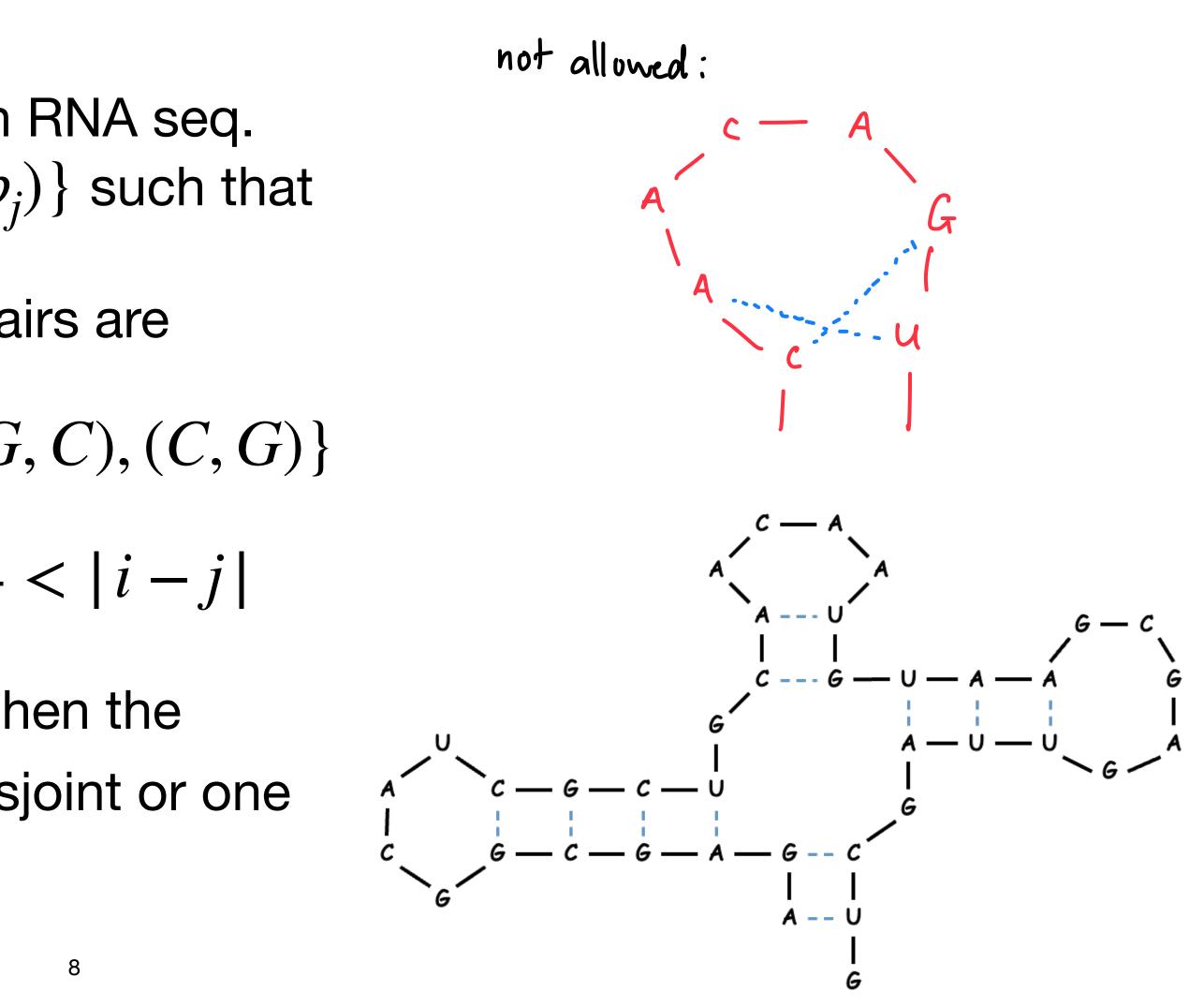
- RNA is expressed as a sequence of nucleotides: a string  $B = b_1 \dots b_n$  where each  $b_i \in \{A, C, G, U\}$  for adenine, cytosine, guanine, and uracil.
- RNA tends to not be linear in a molecule and forms secondary structures
  - Secondary structures cause the molecule to loop back and forth
  - These are bonds between the base pairs





# **RNA secondary structure hypothesis**

- **Definition.** A secondary structure for an RNA seq.  $B = b_1...b_n$  is a set of pairs  $S = \{(b_i, b_j)\}$  such that
  - WC condition: *S* is a matching and pairs are Watson-Crick complements i.e.  $(b_i, b_j) \in WC := \{(A, U), (U, A), (G, C), (C, G)\}$
  - No sharp bends:  $(b_i, b_j) \in S$  only if 4 < |i j|
  - Non-crossing: If  $(b_i, b_j)$  and  $(b_k, b_\ell)$  then the intervals [i, j] and  $[k, \ell]$  are either disjoint or one contains the other.



#### **RNA secondary structure problem**

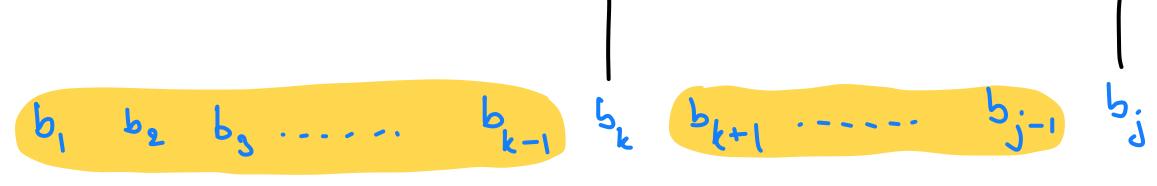
- Input: an RNA seq.  $B = b_1 \dots b_n$
- Output: a secondary structure S of maximal size for B.

maximal secondary structure using bases only  $b_1, b_2, \ldots, b_i$ . Let f(j) = |S(j)|.

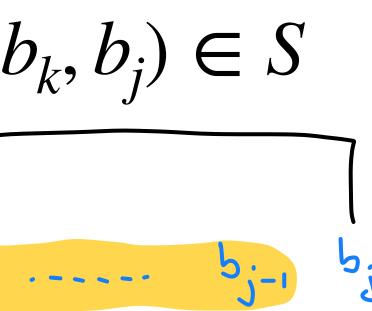
• Dynamic programming attempt 1: For  $1 \le i \le j \le n$  define S(j) as the

#### **RNA secondary structure problem**

• Consider if in the optimal solution  $(b_k, b_j) \in S$ 



- Splits problem into smaller problems but they aren't subproblems.
- Problem: Our choice of subproblem was not expressive enough.



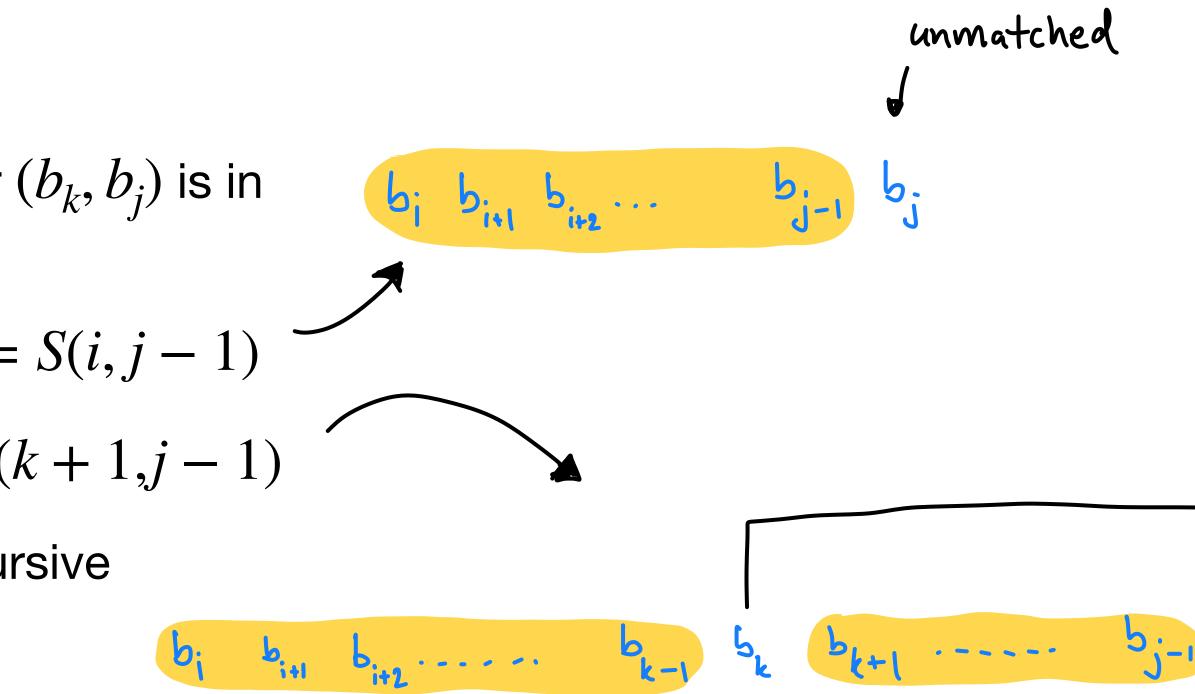
#### **RNA secondary structure problem**

- Input: an RNA seq.  $B = b_1 \dots b_n$
- Output: a secondary structure S of maximal size for B.

maximal secondary structure using bases only  $b_i, b_{i+1}, \ldots, b_i$ . Let f(i, j) = |S(i, j)|.

• Dynamic programming intuition: For  $1 \le i \le j \le n$  define S(i, j) as the

- **Dynamic programming intuition:** For  $1 \le i \le j \le n$  define S(i, j) as the maximal secondary structure using bases only  $b_i, b_{i+1}, \dots, b_j$ . Let f(i, j) = |S(i, j)|.
- **Recursive definition:** 
  - In optimal solution, either  $b_i$  is not in a SS or  $(b_k, b_i)$  is in the SS
  - In first case, f(i, j) = f(i, j 1) and S(i, j) = S(i, j 1)
  - In second case, f(i, j) = 1 + f(i, k 1) + f(k + 1, j 1)
  - Optimal solution can be calculated as a recursive minimization





- Recursive definition:
  - In optimal solution, either  $b_i$  is not in a SS or  $(b_k, b_j)$  is in the SS
  - In first case, f(i,j) = f(i,j-1) and S(i,j) = S(i,j-1)
  - In second case, f(i,j) = 1 + f(i,k)
- Observation: The recursive definition of f(i, j) only depends on f(i', j') for |i' - i'| < |i - i|.
  - Therefore, we fill memo from bottom-to-top w.r.t |j i|.

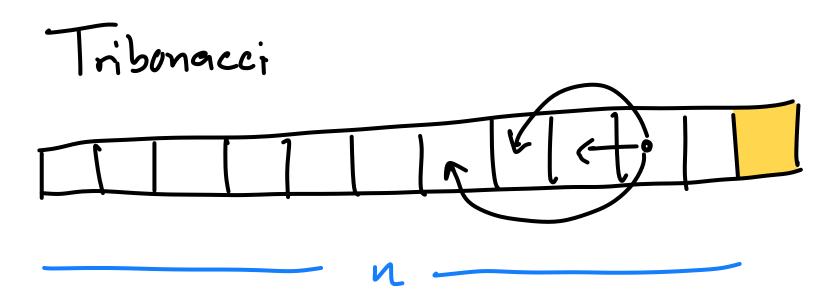
$$(-1) + f(k + 1, j - 1)$$

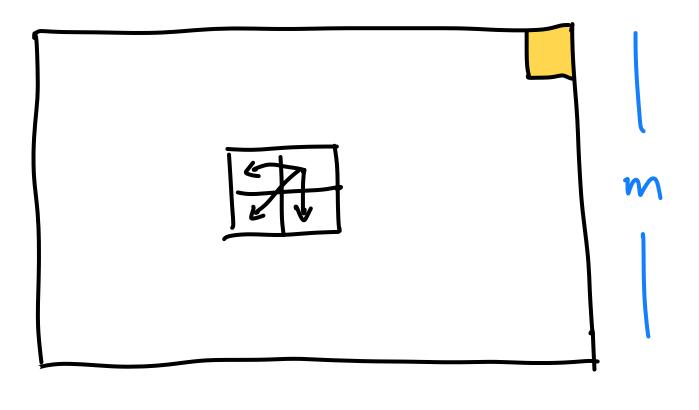
- Filling memoization tables:
  - Construct  $n \times n$  tables M and f initialized as  $\perp$
  - Set  $f(i, i) \leftarrow 0$  for all i. For  $i \leftarrow 1$  to n and  $z \leftarrow 1 \leftarrow n i$
  - - Let  $j \leftarrow i + z$  valid partner
    - Compute  $V \leftarrow \min_{k \in \{i,\dots,j-5\} \land (b_i,b_k) \in WC} 1 + f(i,k-1) + f(k+1,j-1)$  and let k be its argmin.
    - If V > f(i, j 1), set  $f(i, j) \leftarrow V$  and set A
    - Else, set  $f(i, j) \leftarrow V$  and keep  $M(i, j) = \bot$

- Computing optimal secondary structure:
- If M(i, j) = k this means that  $(b_k, b_j) \in S$ . Else j is not included in S.
- To calculate optimal secondary structure run Print(1,n) where
- **Print**(*i*, *j*):
  - If  $M(i, j) \leftarrow k$  output  $(k, j) \cup Print(i, k 1) \cup Print(k + 1, j 1)$
  - Else, output Print(i, j 1)
- Can be made to run faster in practice using DFS or BFS instead of recursion
- Runtime:  $O(n^2)$  sized table with each recursive computation taking O(n) time. Print runs in O(n) time after the table is computed. Total runtime:  $O(n^3)$ .

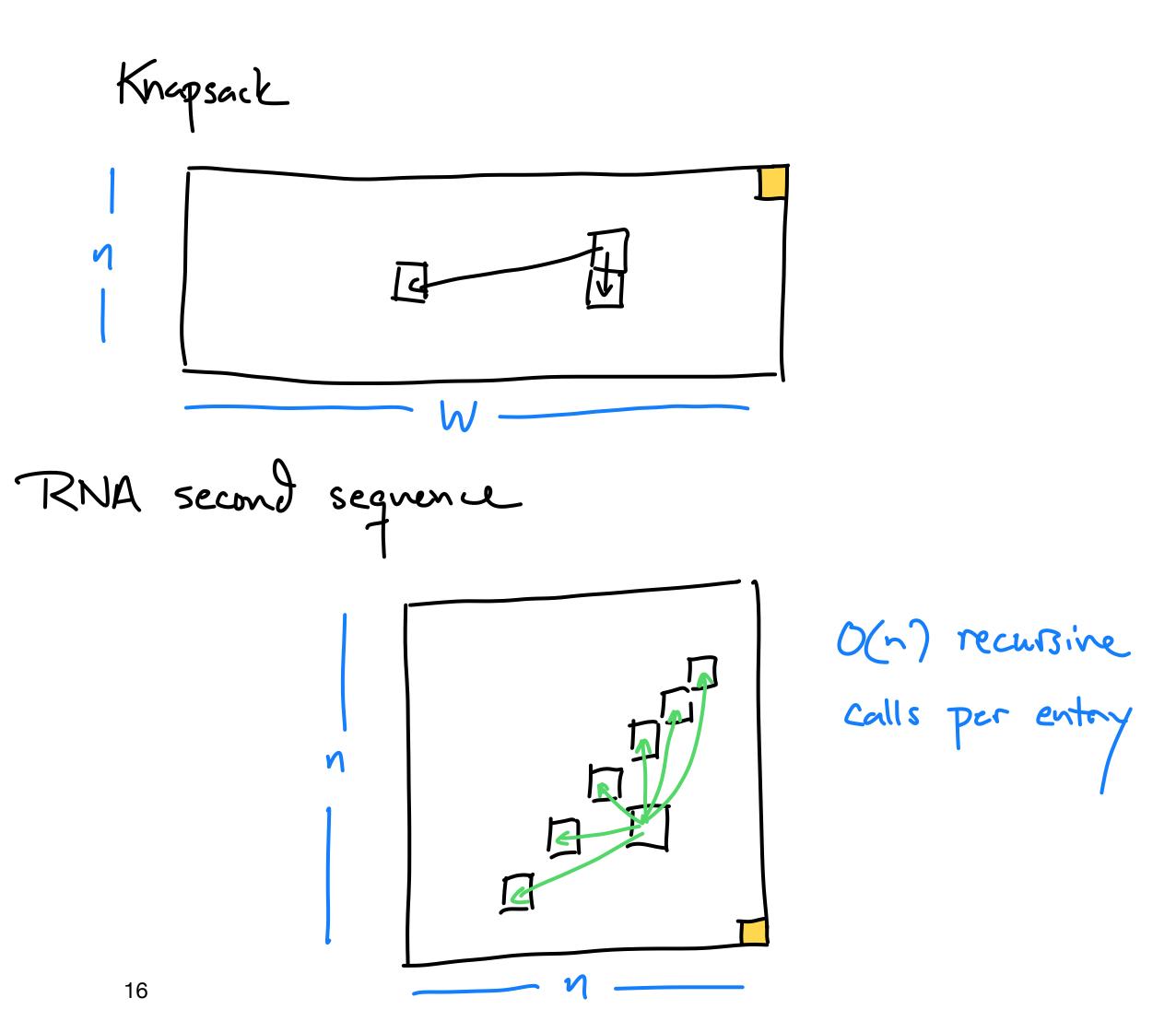


# Dynamic programming patterns





V



### **Top-down vs bottom-up DP algorithms**

- So far we have seen that the recursive subproblems in DP algorithms are always smaller. Examples
  - Knapsack: f(n, W') depends on f(n, W')
  - RNA SS: f(i,j) depends on f(i',j') where |j'-i'| < |j-i|
- Yields a "bottom-up" ordering for filling the memoization table
- Instead we could fill up the table "top-down"

$$(n-1,W'')$$
 for  $W'' \leq W'$ 

#### Top-down vs bottom-up DP algorithms

- In a "top-down" DP algorithm f(x)
  - Conclude that f(x) can be defined recursively based on  $f(y_1), f(y_2), \dots, f(y_k)$
  - For each  $y_j$ , check if  $f(y_j)$  has been previously calculated
    - If yes, use the value of  $f(y_i)$
    - If not, recursive compute  $f(y_i)$
- Overall, runtime is asymptotically the computed once.

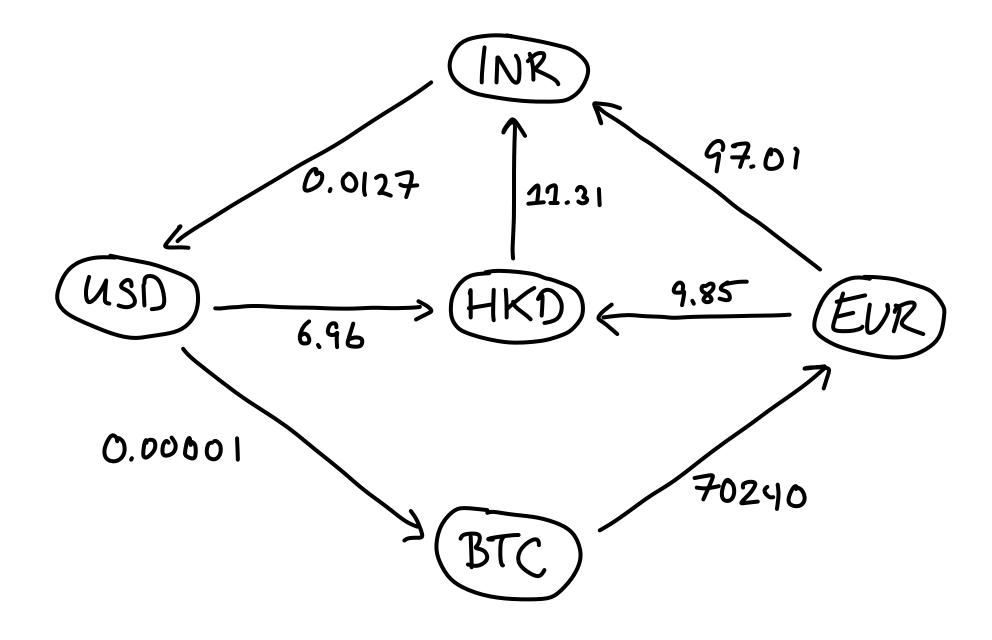
Overall, runtime is asymptotically the same! Each square of the memo is only

# Top-down vs bottom-up DP tradeoffs

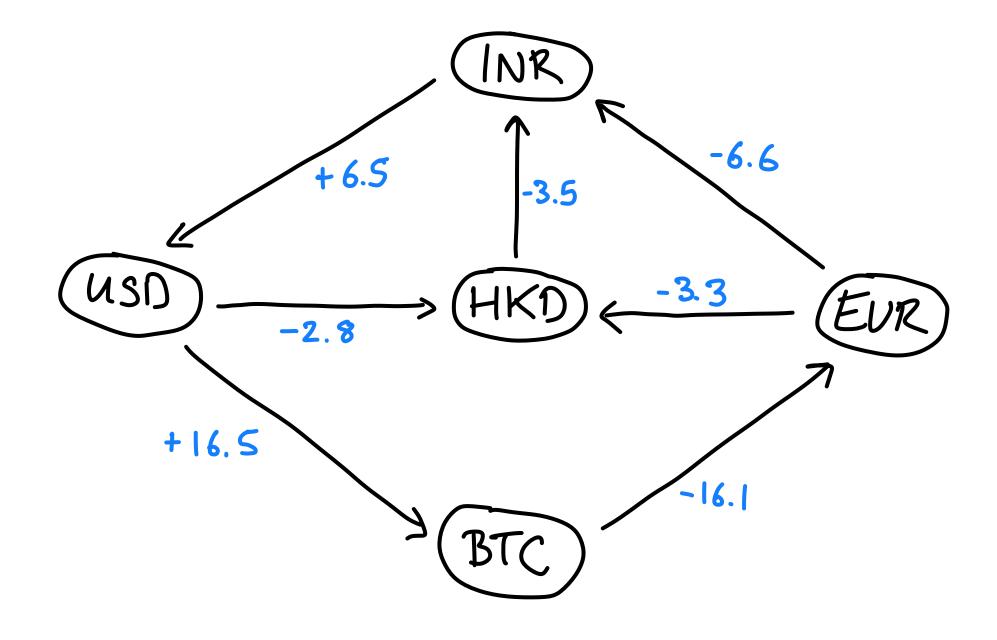
- In top-down approaches, not all squares may get calculated
  - Can yield constant factor savings in terms of runtime
- However, the recursion stack usually scales poorly in top-down approaches
  - For example, in Tribonacci, recursion stack would be  $\Omega(n)$  in depth
  - Recursion stack is often in computer's memory while data being manipulated is expressed on the hard drive
  - Can yield memory overflow errors if not carefully programmed
- Top-down is better when the order of filling out squares isn't well defined
  - Occurs in graph DP algorithms like Bellman-Ford which we see soon
  - In such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical

# Graph dynamic programming

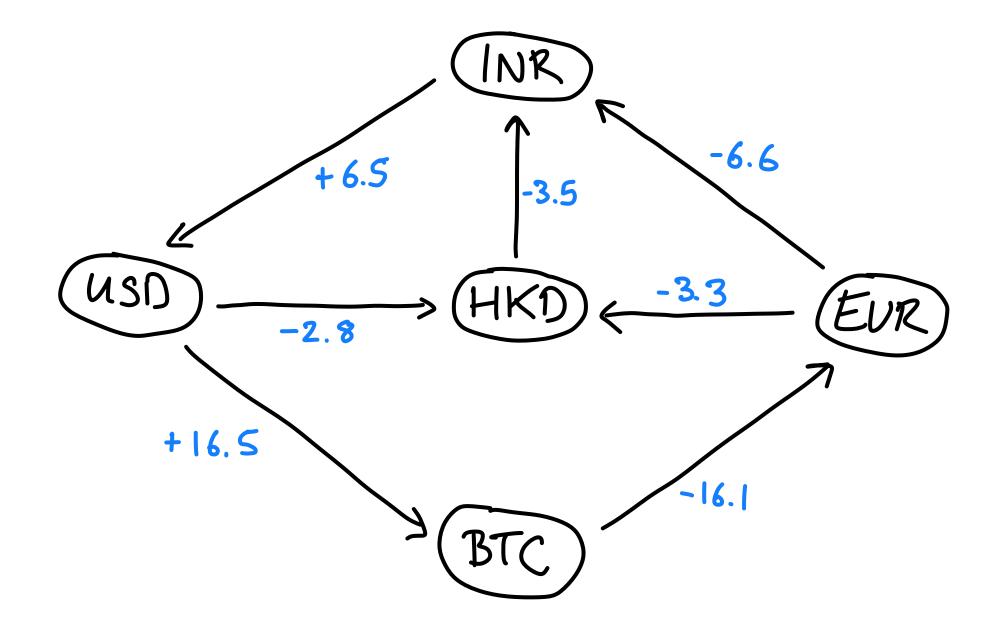
- USD to BTC: 0.00001
- BTC to EUR: 70,240
- INR to USD: 0.0127
- EUR to INR: 97.01
- EUR to HKD: 9.85
- HKD to INR: 11.31
- USD to HKD: 6.96



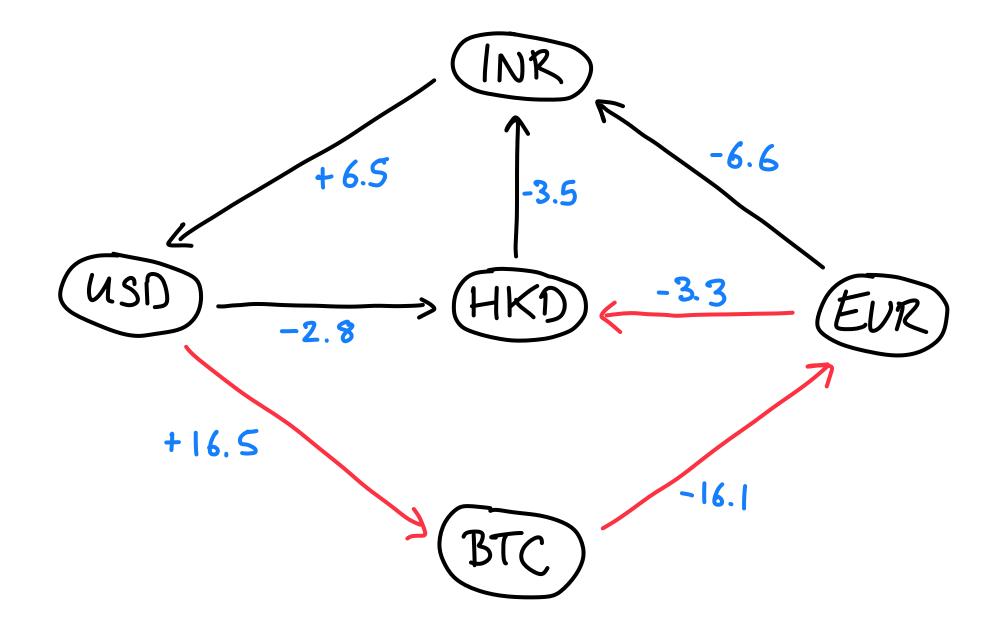
- USD to BTC: 0.00001
- BTC to EUR: 70,240
- INR to USD: 0.0127
- EUR to INR: 97.01
- EUR to HKD: 9.85
- HKD to INR: 11.31
- USD to HKD: 6.96



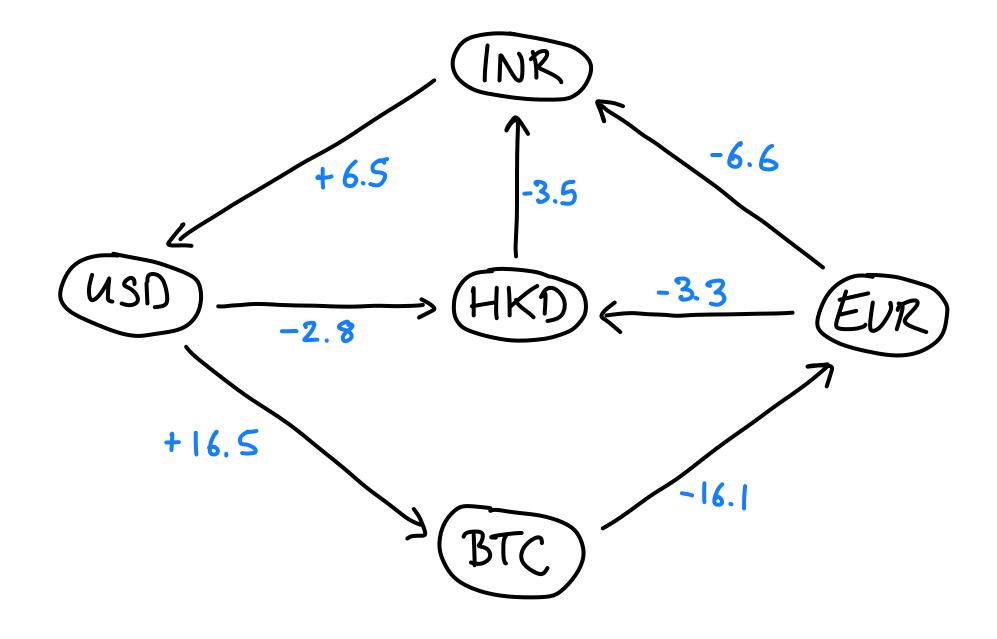
- A path *p* : *u* → *v* of net weight *w* implies a currency conversion from 1 unit of *u* to 2<sup>-w</sup> units of *v*
- Finding a path of least weight from *u* to *v* yields the best seq. of currency exchanges
- Direct conversion of USD to HKD yields  $2^{2.8}$  HKD per USD



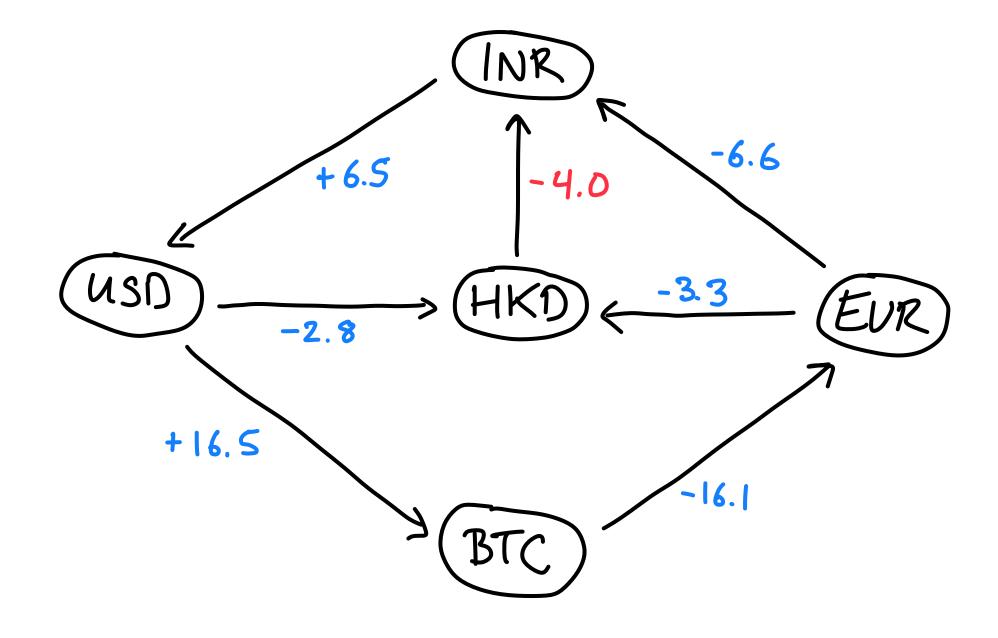
- A path *p* : *u* → *v* of net weight *w* implies a currency conversion from 1 unit of *u* to 2<sup>-w</sup> units of *v*
- Finding a path of least weight from *u* to *v* yields the best seq. of currency exchanges
- Direct conversion of USD to HKD yields  $2^{2.8}$  HKD per USD
- USD $\rightarrow$ BTC $\rightarrow$ EUR $\rightarrow$ HKD yields 2<sup>-(16.5-16.1-3.3)</sup> = 2<sup>2.9</sup> HKD per USD



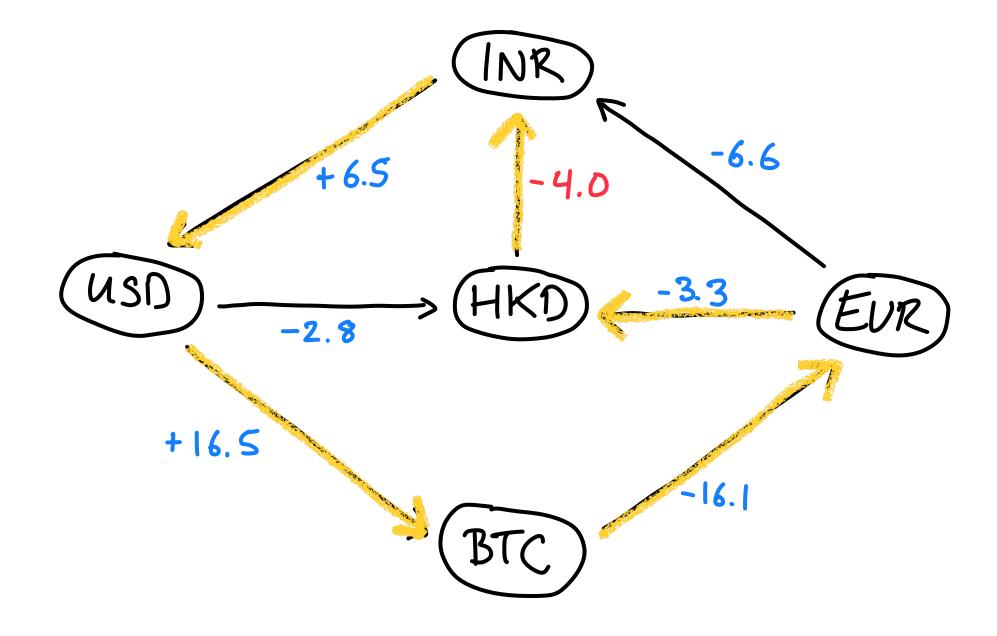
- What happens if HKD to INR rate changes from  $2^{3.5}$  to  $2^{4.0}?$



- What happens if HKD to INR rate changes from  $2^{3.5}$  to  $2^{4.0}?$



- Consider the highlighted path from USD to USD:
- Converts 1 USD to  $2^{0.8} > 1$  USD
- Constitutes a negative cycle in the graph
- In the currency exchange problem, negative cycles represent arbitrage
- Since there is a negative cycle, any currency can be converted into any other for arbitrarily cheap as the graph is strongly connected



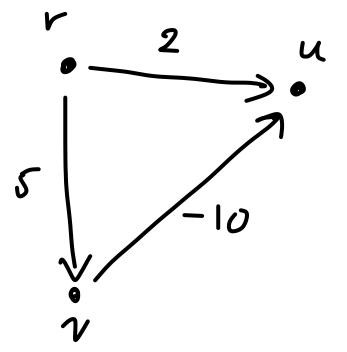
#### Negative weights shortest paths

- Input: A directed graph G = (V, E) with weights  $w : E \to \mathbb{R}$  and a vertex r
- Output: For every vertex v, the distance of the lightest directed path  $r \sim v$ where a path's weight is the sum of its weights

- Why not just run Dijkstra's?
- Dijkstra's will incorrectly calculate distances  $\bullet$ when negative weights are involved

# **Negative weights shortest paths**

- **Dijkstra's property:** Once a vertex v is visited, the distance d(r, v) never needs updating again
  - This does not hold with negative weights
  - Need a slower but more careful algorithm that accounts for negative weights
- In this example, ullet
  - Dijkstra's would set distance of u as 2 with path  $r \rightarrow v$  in its first step
  - However, need to update the distance of u to -5 after v is visited.



#### **Negative weights shortest paths Applications**

- exchanged for  $2^{-w}$  units of y
  - Multiplicative gains can be converted to linear gains by taking logarithms
  - Negative weights imply multiplicative losses
- is made
- Subsidies offered by governments for certain trades being performed
  - to fly to this market. (Annually, about \$4 million for just this route)
  - How can an airline design its route network to maximize revenue in light of subsidies?

• Trade routes: each vertex is a commodity and edge  $x \to y$  of weight w means 1 unit of x can be

• Chemical networks: cost represent the excess energy required or released when a transformation

• Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines

# The Bellman-Ford algorithm

- Dijkstra's is a greedy algorithm and suffices to calculate shortest/lightest paths when all weights are non-negative
  - Distances will never need to be recalculated once set
- Bellman-Ford is a dynamic programming algorithm for computing shortest path in directed graphs
  - Will run slower than Dijkstra's: O(mn) time versus O(n + m) time
  - Will involve "resetting" distances as the algorithm goes along
  - Bellman-Ford will detect negative cycles as shortest paths are undefined if there are negative cycles

#### Failed attempt #1

- If a graph has negative weights, let
- What if we adjusted every edge weight to  $w'(e) = w(e) w_{\min} \ge 0$ ?
- Can we just run standard Dijkstra's on the adjusted graph?
- No. Path weights adjust variably.
  - $w'(p) = w(p) w_{\min} \cdot |\# \text{ of edges in } p|$

$$w_{\min} = \min_{e \in E} w(e)$$

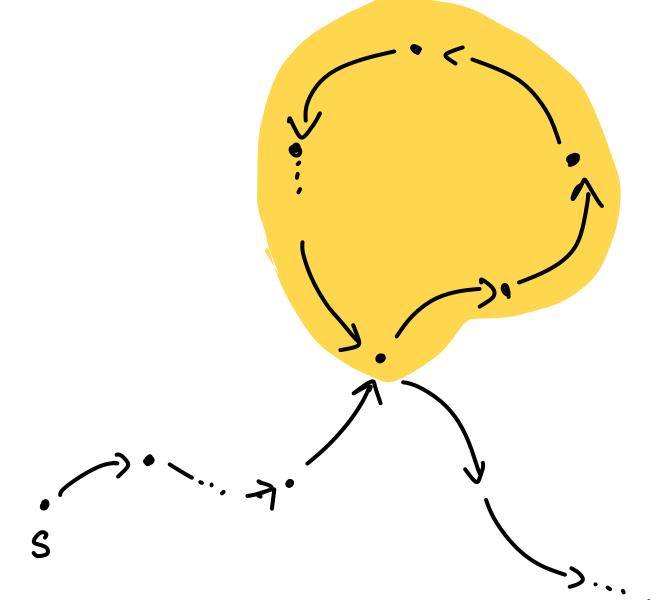
#### Negative weight shortest path

- Input: Directed graph G = (V, E) and weights  $w : E \to \mathbb{R}$  and a vertex t
- Output: For all vertices s, the weight of the shortest path d(s, t)
- Note, we are considering shortest paths with respect to the endpoint t
- Its easy enough to convert it to an algorithm for shortest paths with respect to the source



#### Negative weight shortest path

- Input: Directed graph G = (V, E) and weights  $w : E \to \mathbb{R}$  and a vertex *t*
- Output: For all vertices s, the weight of the shortest path d(s, t)
- Observation: If a path s ~ t contains a negative weight cycle, then a shortest path doesn't exist.
- Observation: If G has no negative cycles then the shortest path  $s \sim t$  is of length  $\leq n 1$ .
- **Proof:** A path of length  $\ge n$  exists, it has a repeated vertex (i.e. a cycle). That cycle has weight  $\ge 0$ , so removing it only decreases weight. Repeat till path is of length  $\le n 1$ .





### Dynamic programming algorithm

- **Definition.** For  $i \in \{0, ..., n-1\}$ ,  $s \in V$ , let d(i, s) be the length of the shortest path  $s \sim t$  consisting of at most i edges
  - Case 1: The shortest path uses  $\leq i 1$  edges. Then

$$d(i,s) = d(i-1,s)$$

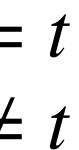
Case 2: The shortest path uses exactly *i* edges. Let *u* be the first the first vertex on the path. Then

$$d(i, s) = w(s, u) + d(i - 1, u)$$

#### **Dynamic programming algorithm**

- **Definition.** For  $i \in \{0, ..., n-1\}, s \in V$ , let d(i, s) be the length of the shortest path  $s \sim t$  consisting of at most *i* edges
- **DP recursive definition**:

$$d(i,s) = \begin{cases} 0 & \text{if } i = 0 \text{ and } s = \\ \infty & \text{if } i = 0 \text{ and } s \neq \\ \min\left\{d(i-1,s), \min_{u:s \to u} w(s,u) + d(i-1,u)\right\} & \text{otherwise} \end{cases}$$



#### **Dynamic programming implementation** (Assuming no negative cycles)

- Table generation:
  - Generate table d of size  $(n 1) \times n$  and table next of size n
  - Set  $d(0,s) \leftarrow \infty$  for  $s \neq t$  and  $d(0,t) \leftarrow 0$
  - For  $i \leftarrow 1$  to *n* and edge  $(s \rightarrow u) \in E$ 
    - If w(s, u) + d(i 1, u) < d(i 1, s).
      - Set  $d(i, s) \leftarrow w(s, u) + d(i 1, u)$  and next $(s) \leftarrow u$
      - Else, set  $d(i, s) \leftarrow d(i 1, s)$ .
- Path recovery: Follow next(  $\cdot$  ) from s until it reaches t.

## Space saving techniques

- The end result is a DAG mapping paths from every vertex *s* to the sink *t*
- The entries of  $next(\cdot)$  list the edges in the path
- d(i, s) only depends on entries  $d(i 1, \cdot)$ . Rows i 2, ..., 1 can be discarded.

#### **Better DP implementation** (Assuming no negative cycles)

- Table generation:
  - Generate table *d* of size *n* and table next of size *n*
  - Set  $d(s) \leftarrow \infty$  for  $s \neq t$  and  $d(t) \leftarrow 0$
  - For  $i \leftarrow 1$  to *n* and edge  $(s \rightarrow u) \in E$ 
    - If w(s, u) + d(u) < d(s),
      - Set  $d(s) \leftarrow w(s, u) + d(u)$  and  $next(s) \leftarrow u$
- Path recovery: Follow next(  $\cdot$  ) from s until it reaches t.

# Even more trimming (in practice)

- If d(u) doesn't decrease in round i, then we don't need to consider any edges  $s \rightarrow u$  in round i + 1 as the best paths through u have already been considered
- Keep a list Q of vertices updated in the previous round and only update edge  $s \to u$  if u was in Q

#### **Even better DP implementation** (Assuming no negative cycles)

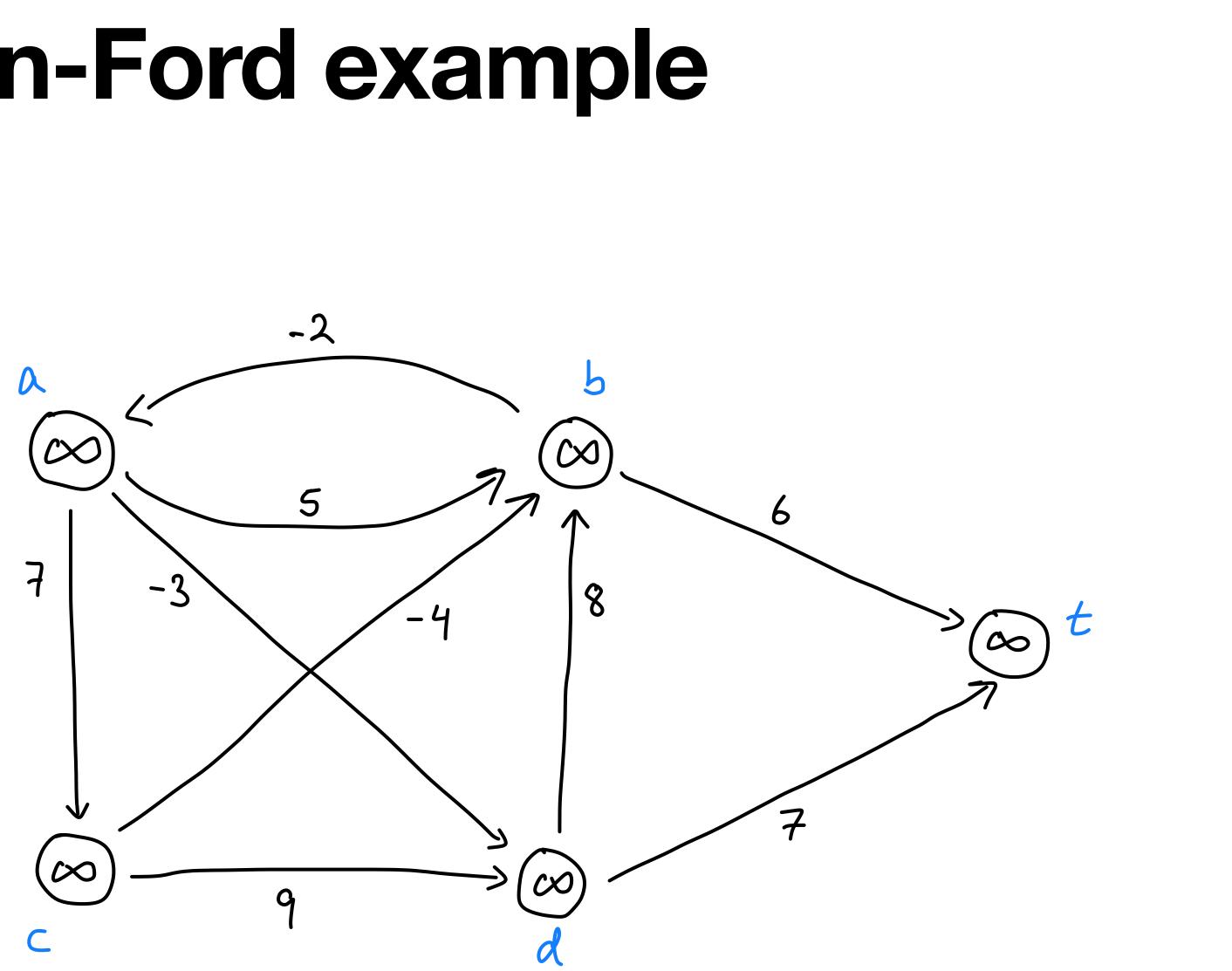
- Compute the reverse adjacency list: For every  $u \in V$ ,  $pre(u) = \{s : s \to u\}$ .
- Generate tables d, next of size n with  $d(s) \leftarrow \infty \forall s \neq t$  and  $d(t) \leftarrow 0$
- Initialize counter  $i \leftarrow 0$  and generate a queue  $Q \leftarrow \{t, \bot\}$ .
- While i < n
  - Pop u off the queue Q.
  - If  $u = \bot$ , increment  $i \leftarrow i + 1$  and push  $\bot$  to Q.
  - Else, for each  $s \in \text{pre}(u)$ ,
    - If w(s, u) + d(u) < d(s), set  $d(s) \leftarrow w(s, u) + d(u)$  and next $(s) \leftarrow u$
    - Push s into queue Q.

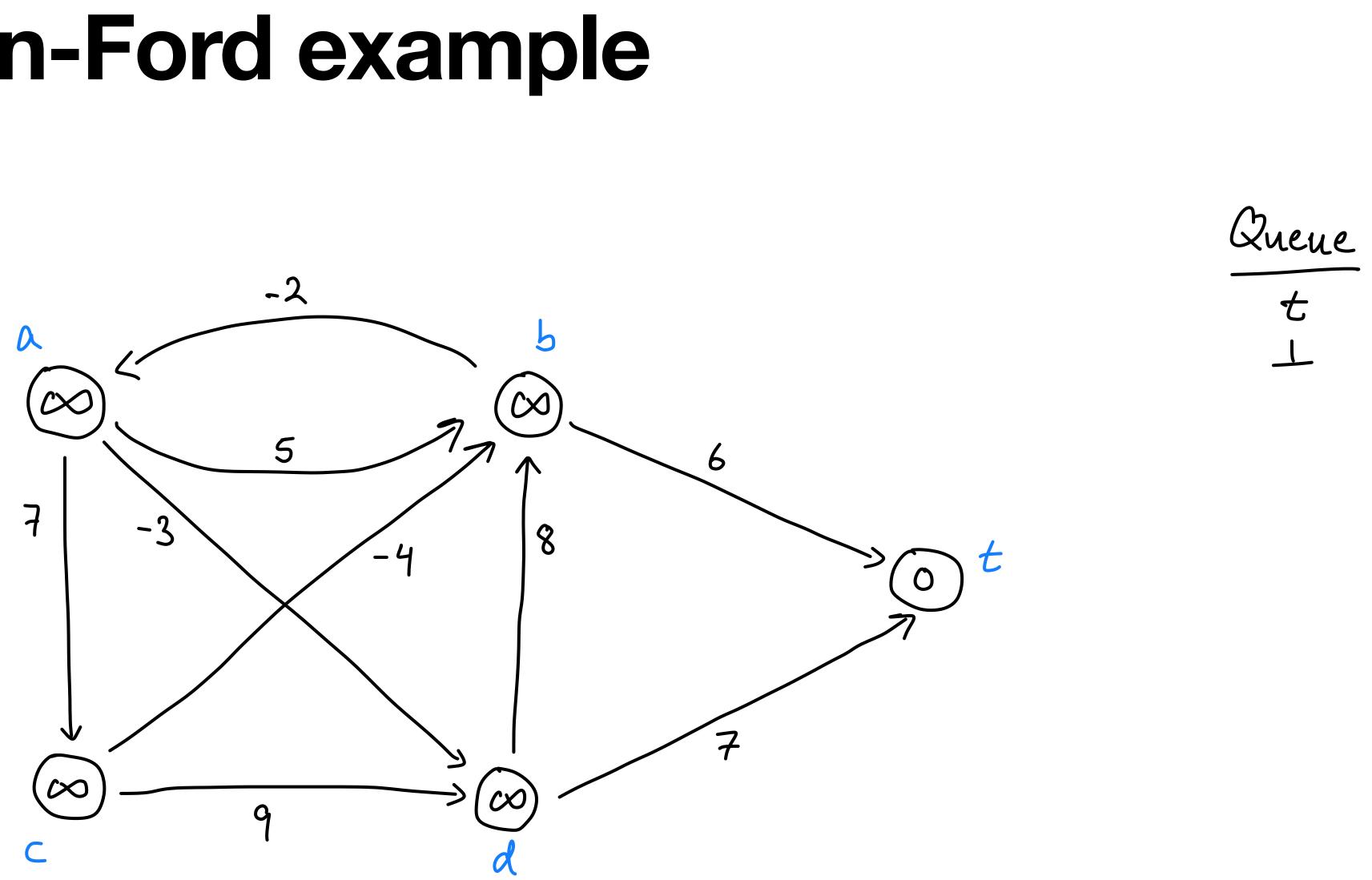
everytime 
$$\bot$$
 is seen in queue,  
we've done one iteration of BF.  
We need to do N-1.

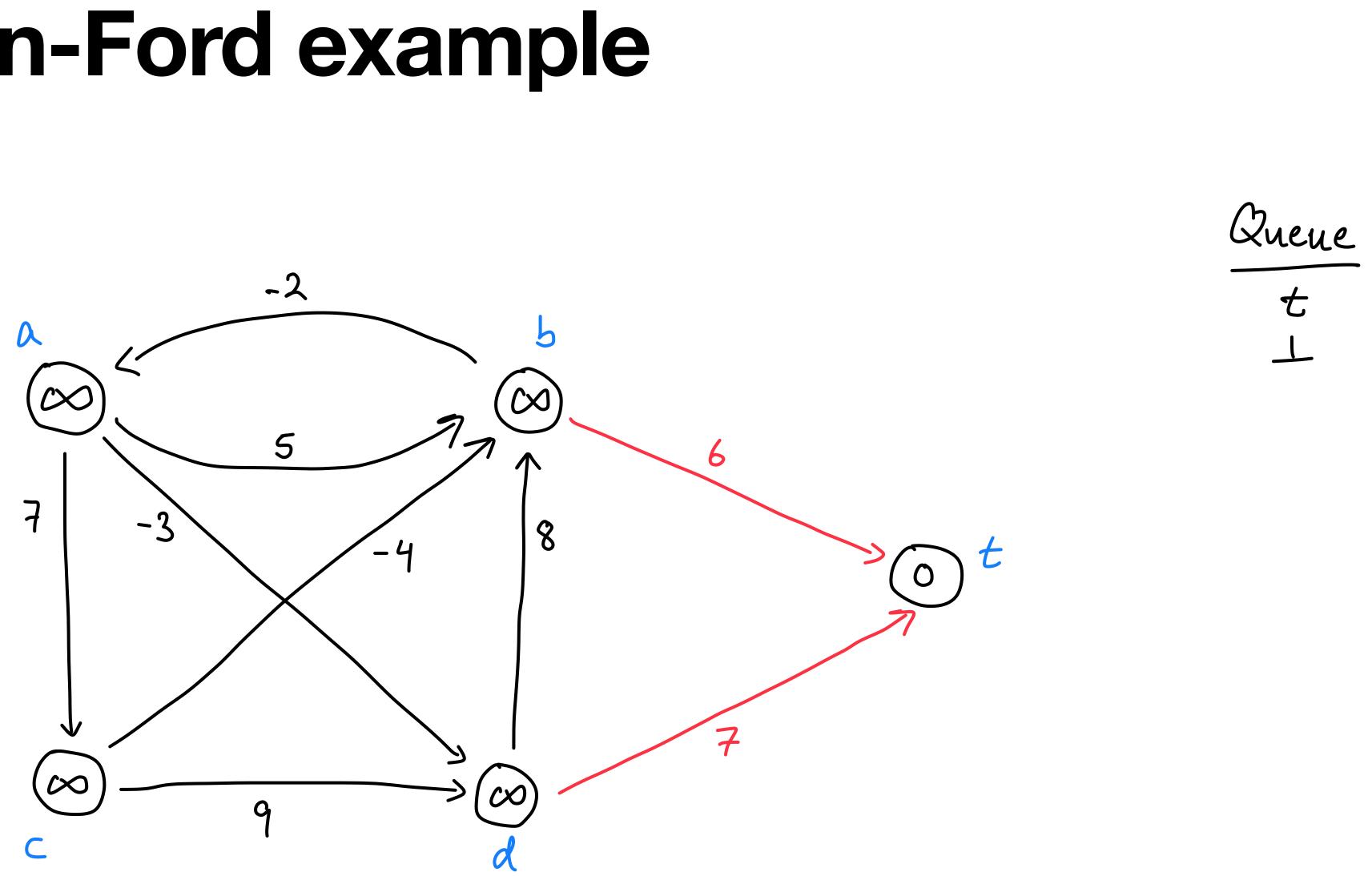
## **Bellman-Ford properties**

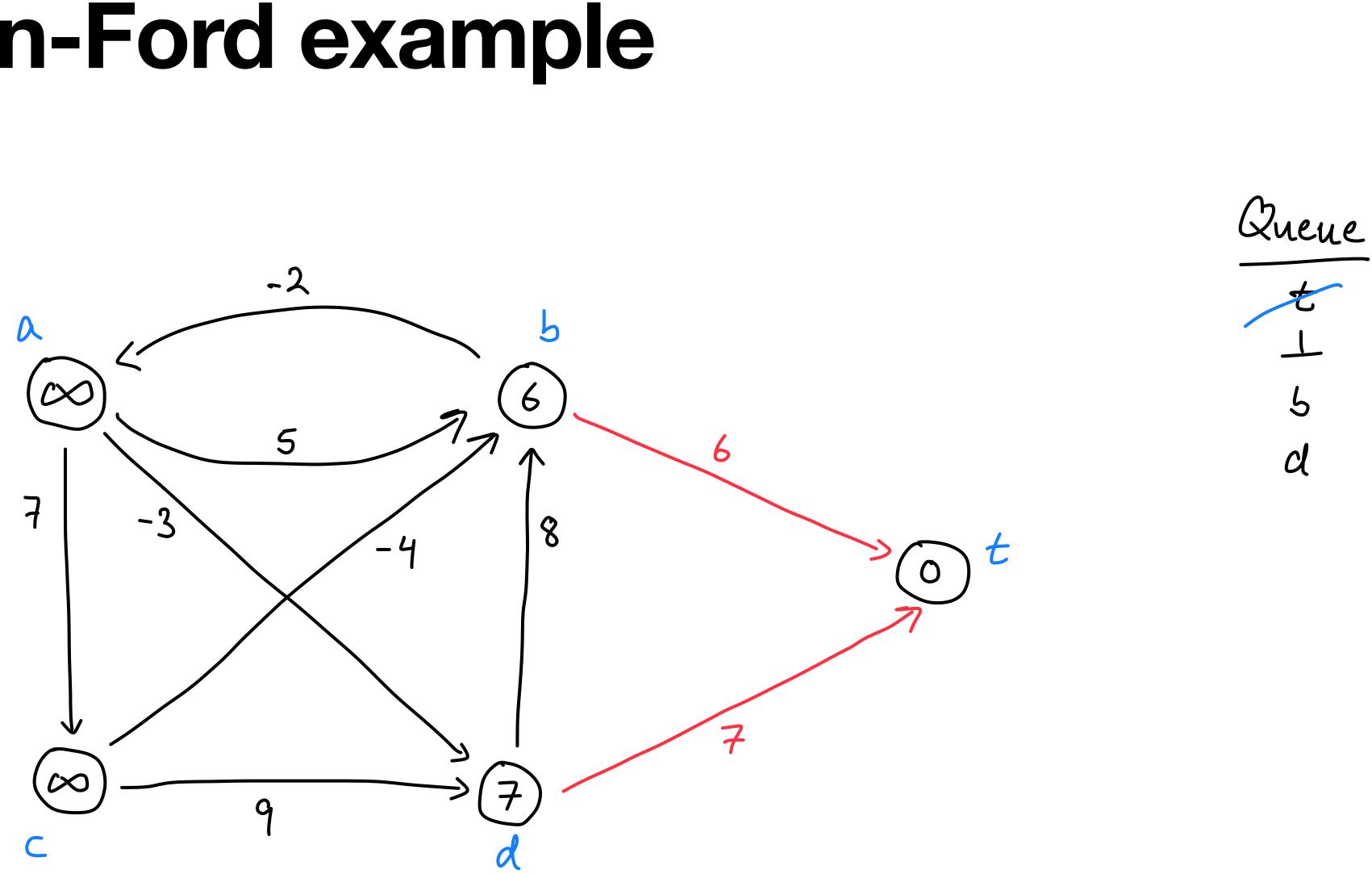
- **Theorem**: Throughout the algorithm, d(s) is the length of some path and that path has weight less than the lightest path of  $\leq i$  edges after *i* rounds of updates
- Impact: Space decreases to O(n + m) but runtime is still O(nm) in the worst case. In practice, the runtime is much faster!
- New: [S.Rao, '25] Bellman-Ford in time  $O(n^{2/3}m)$ , first major upgrade in half a century

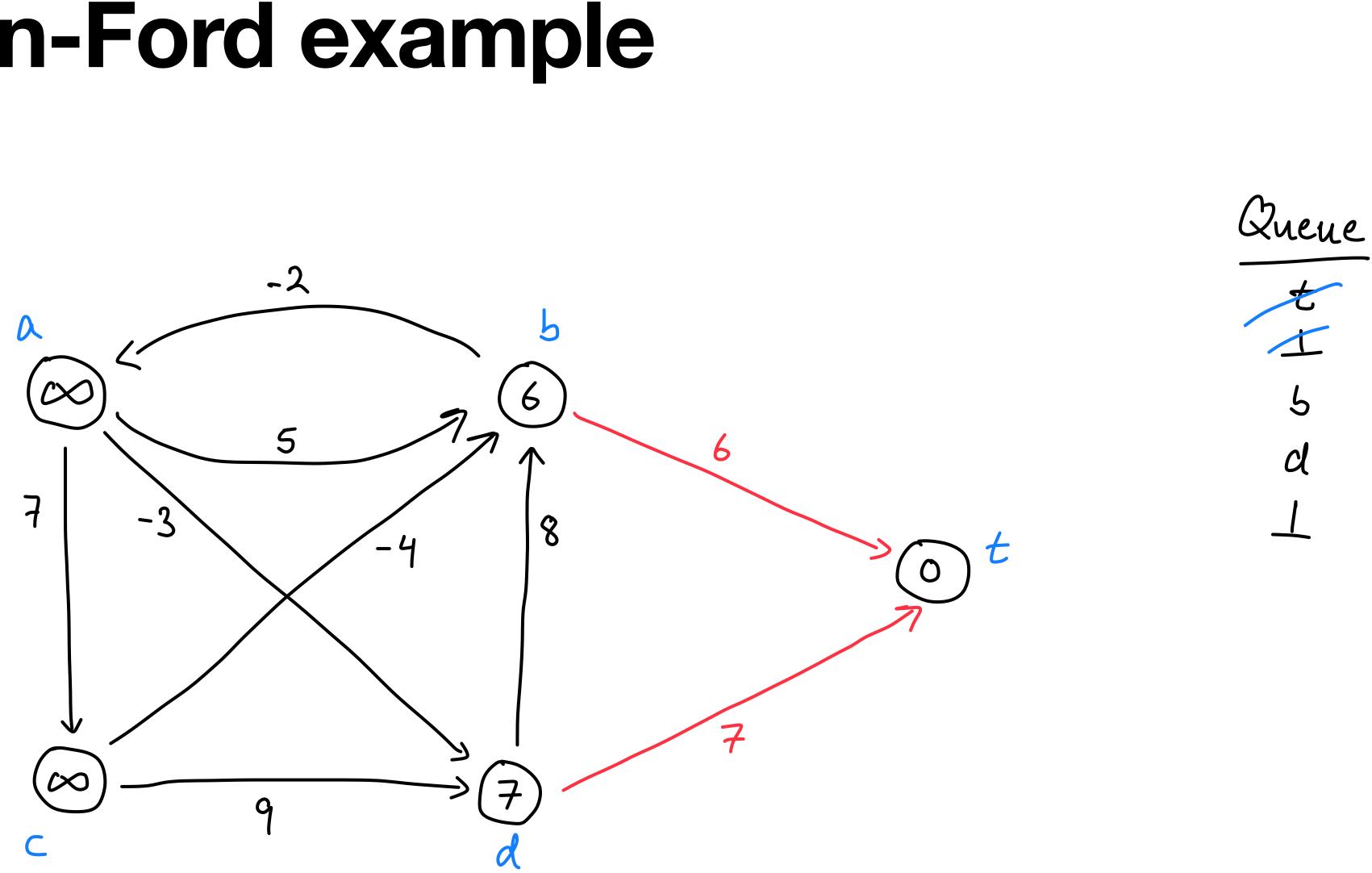




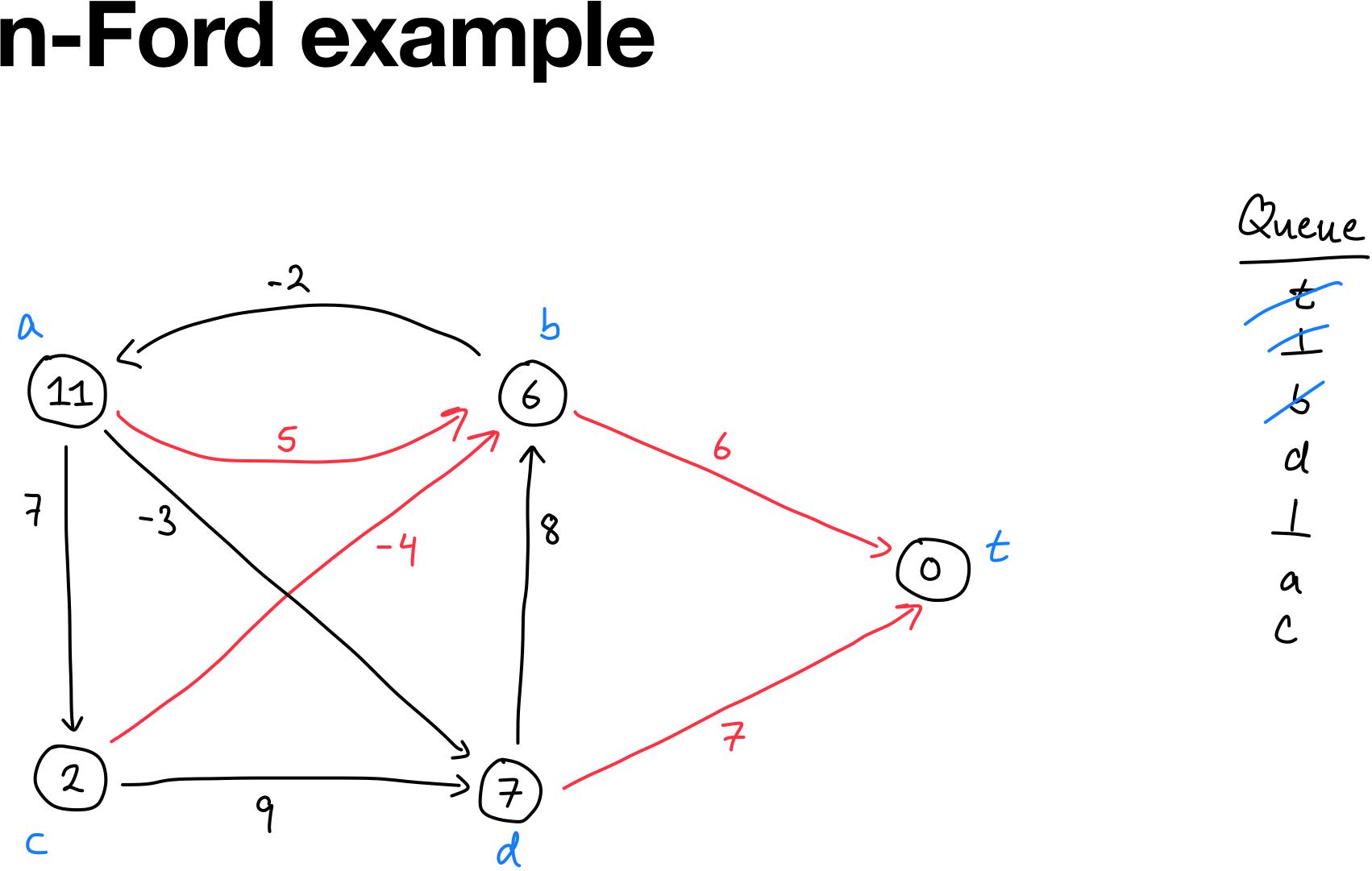




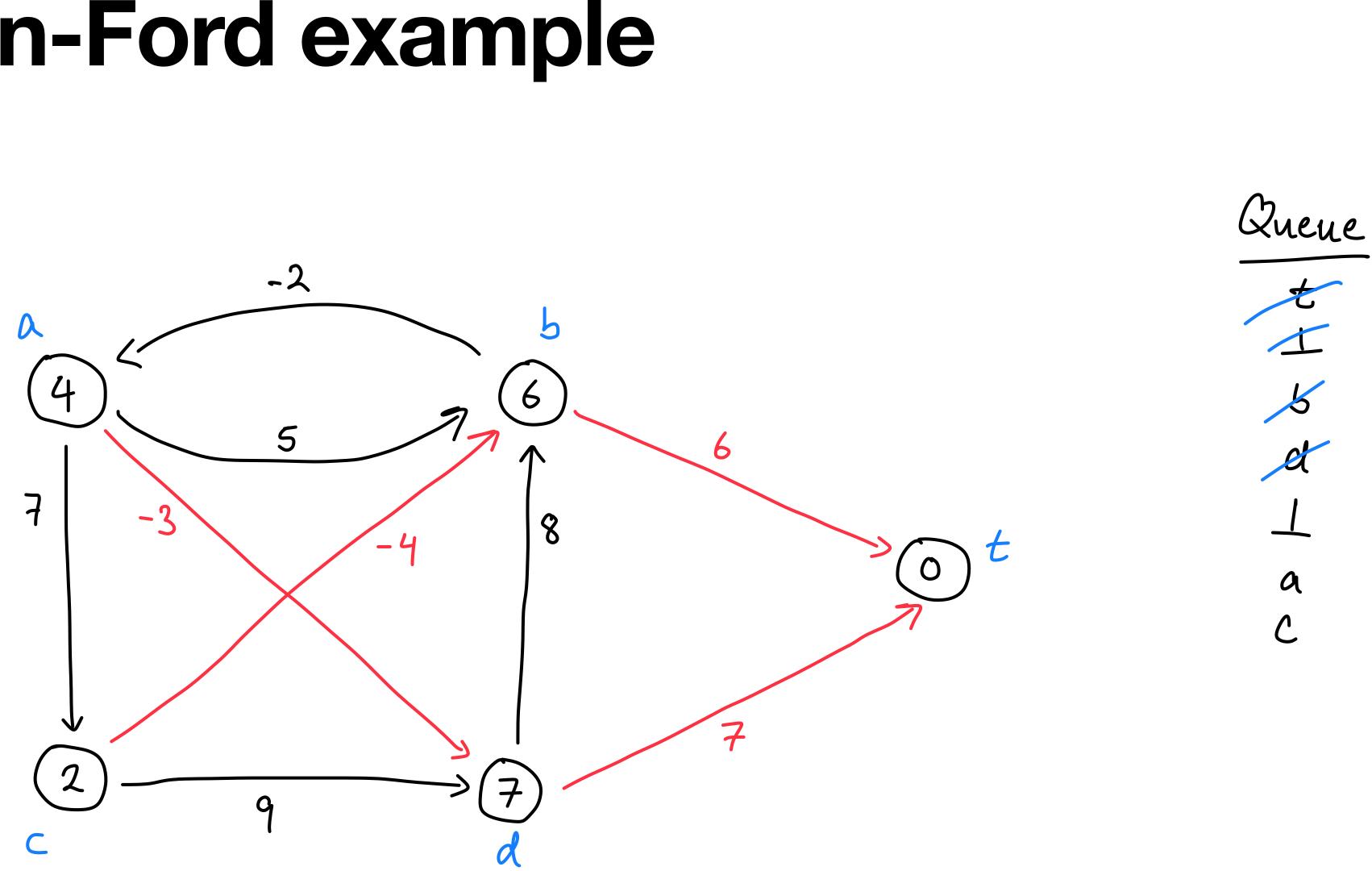


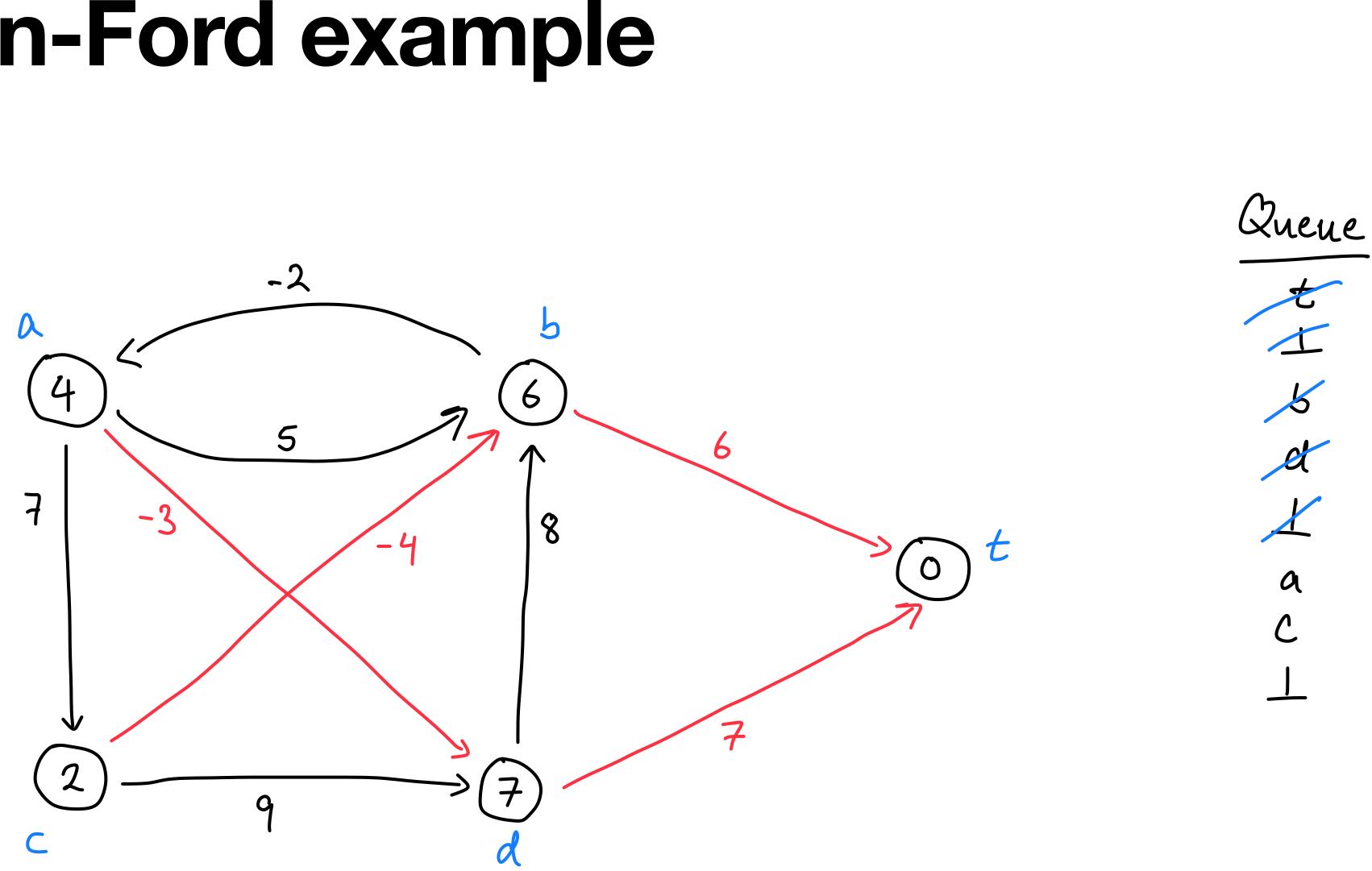


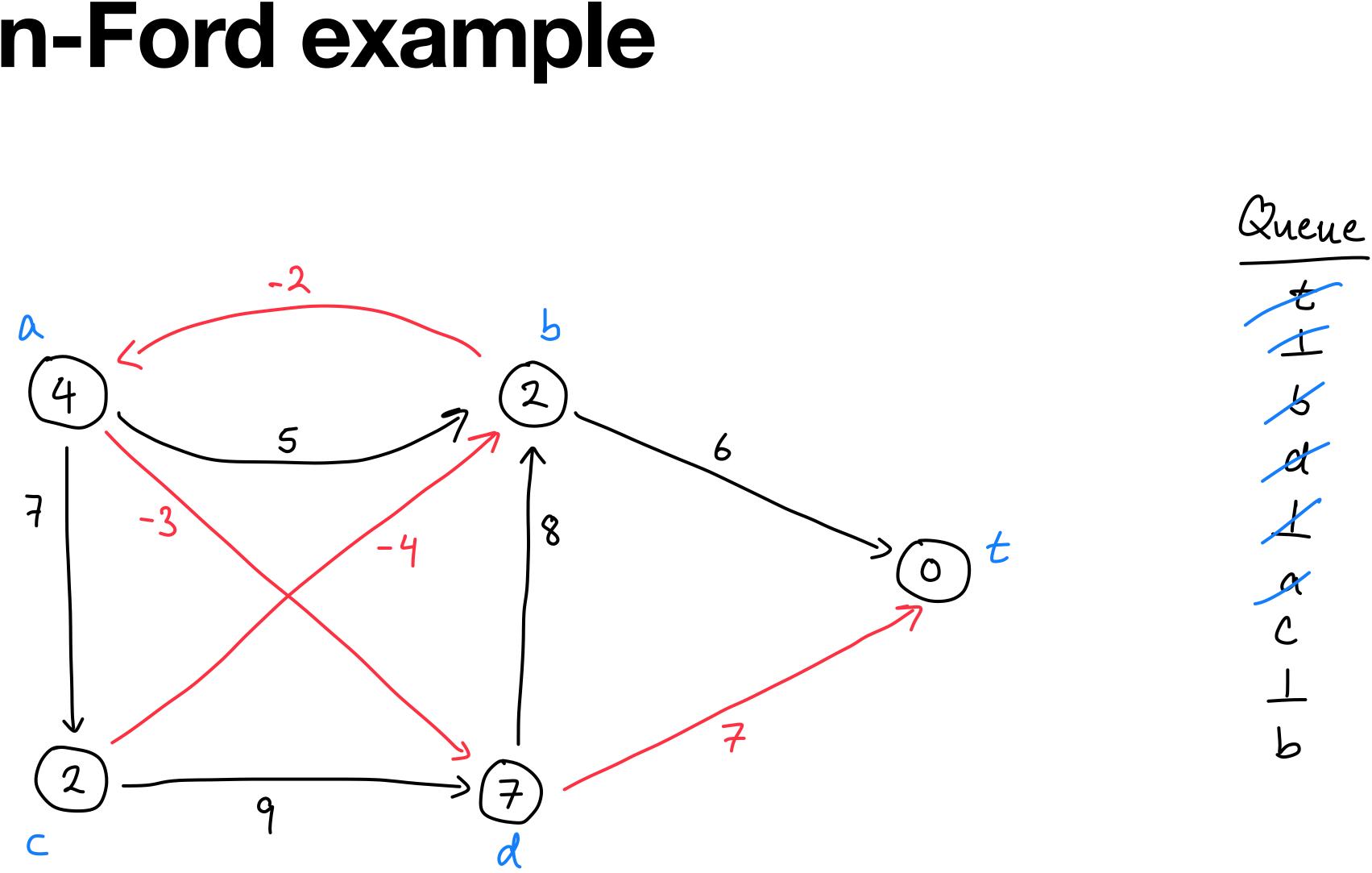
47



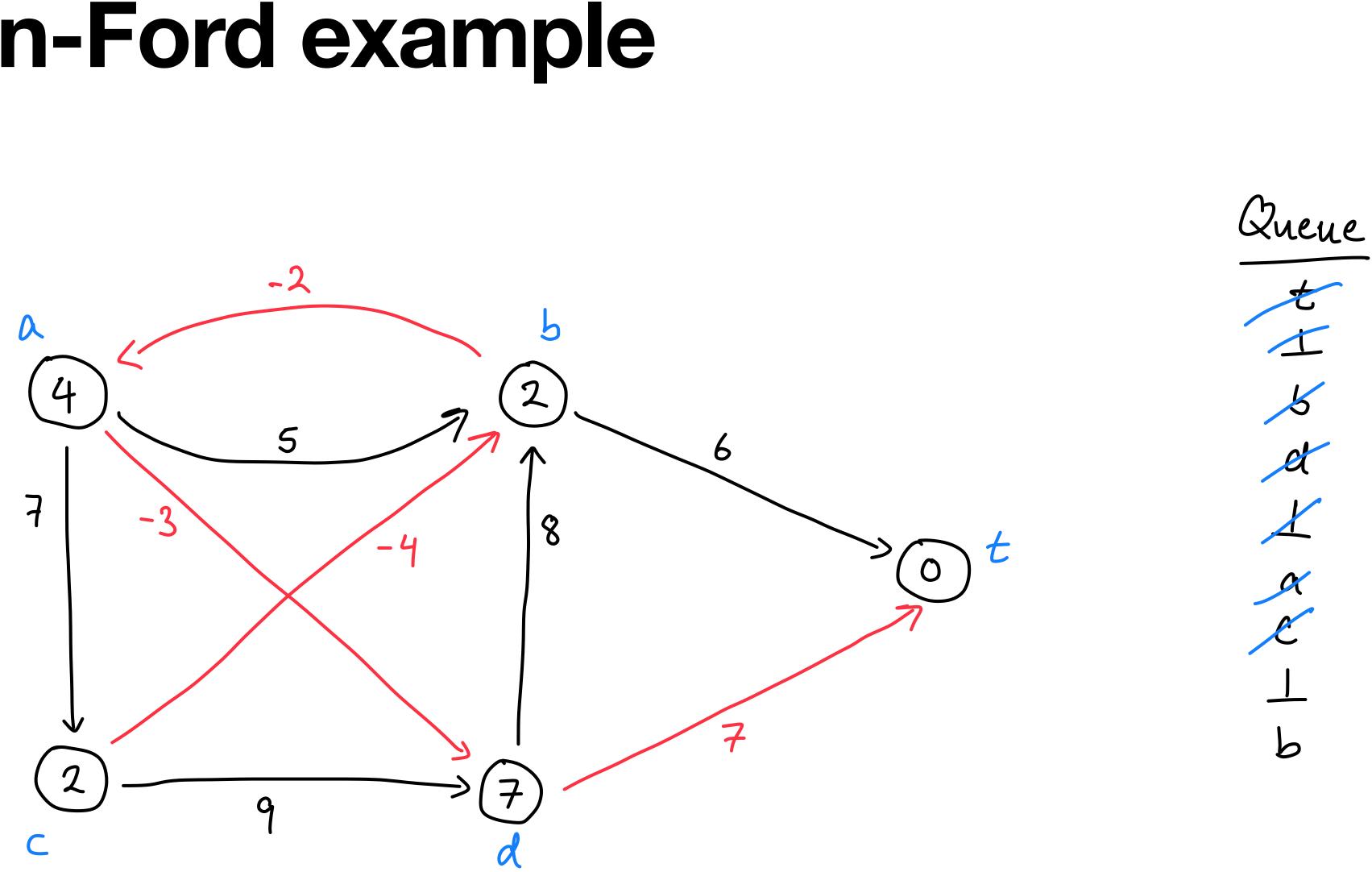
t

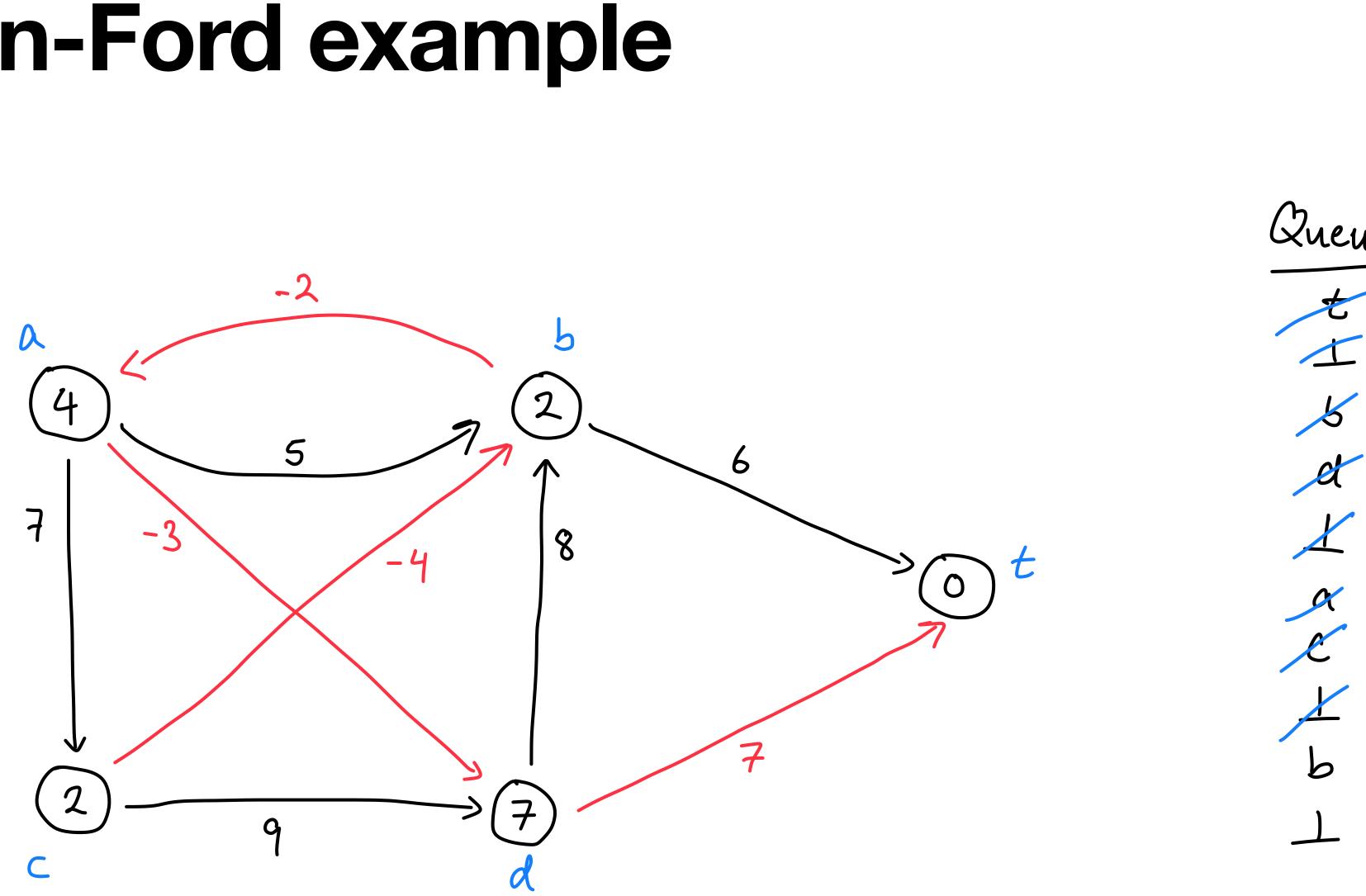




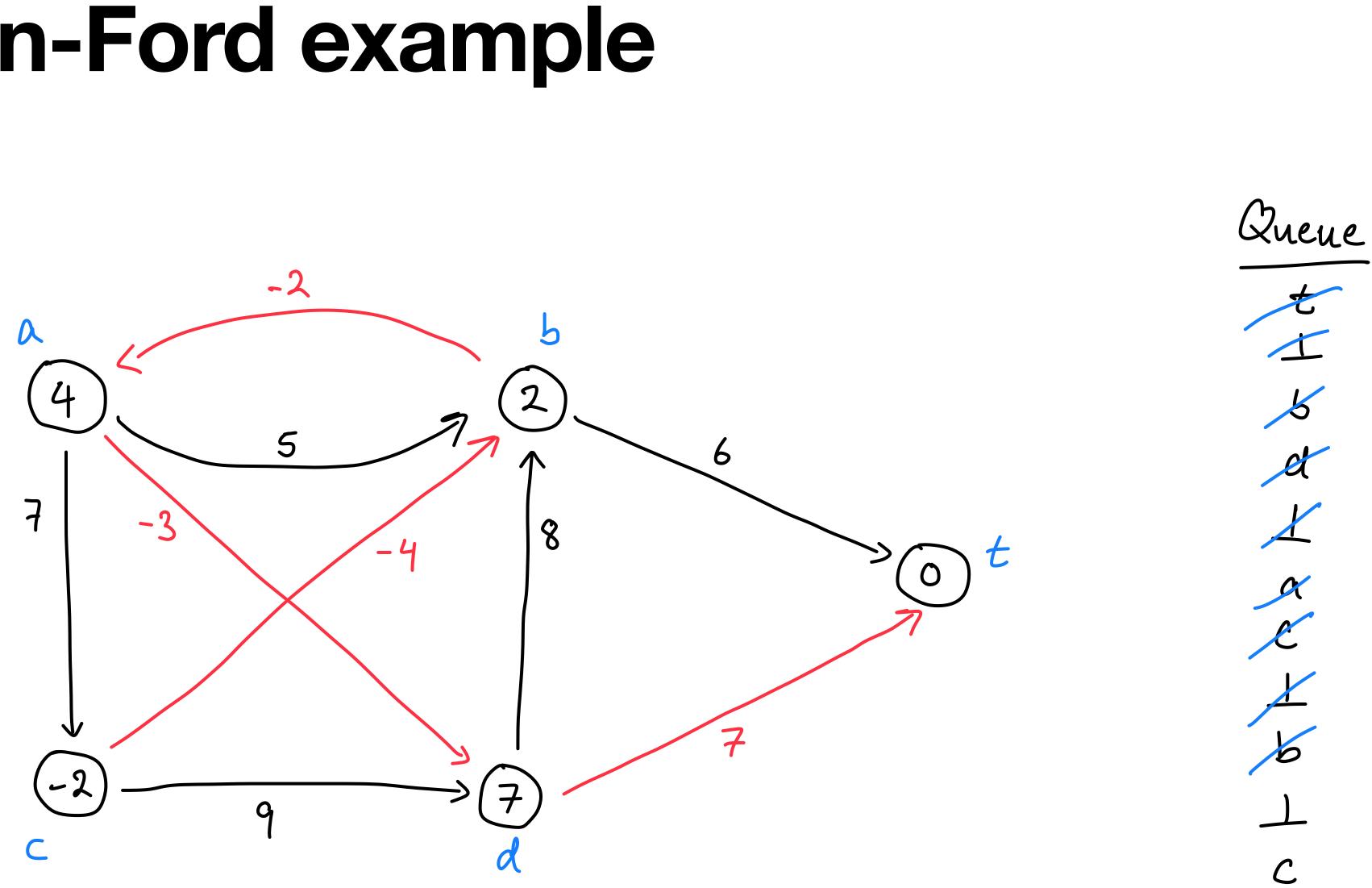


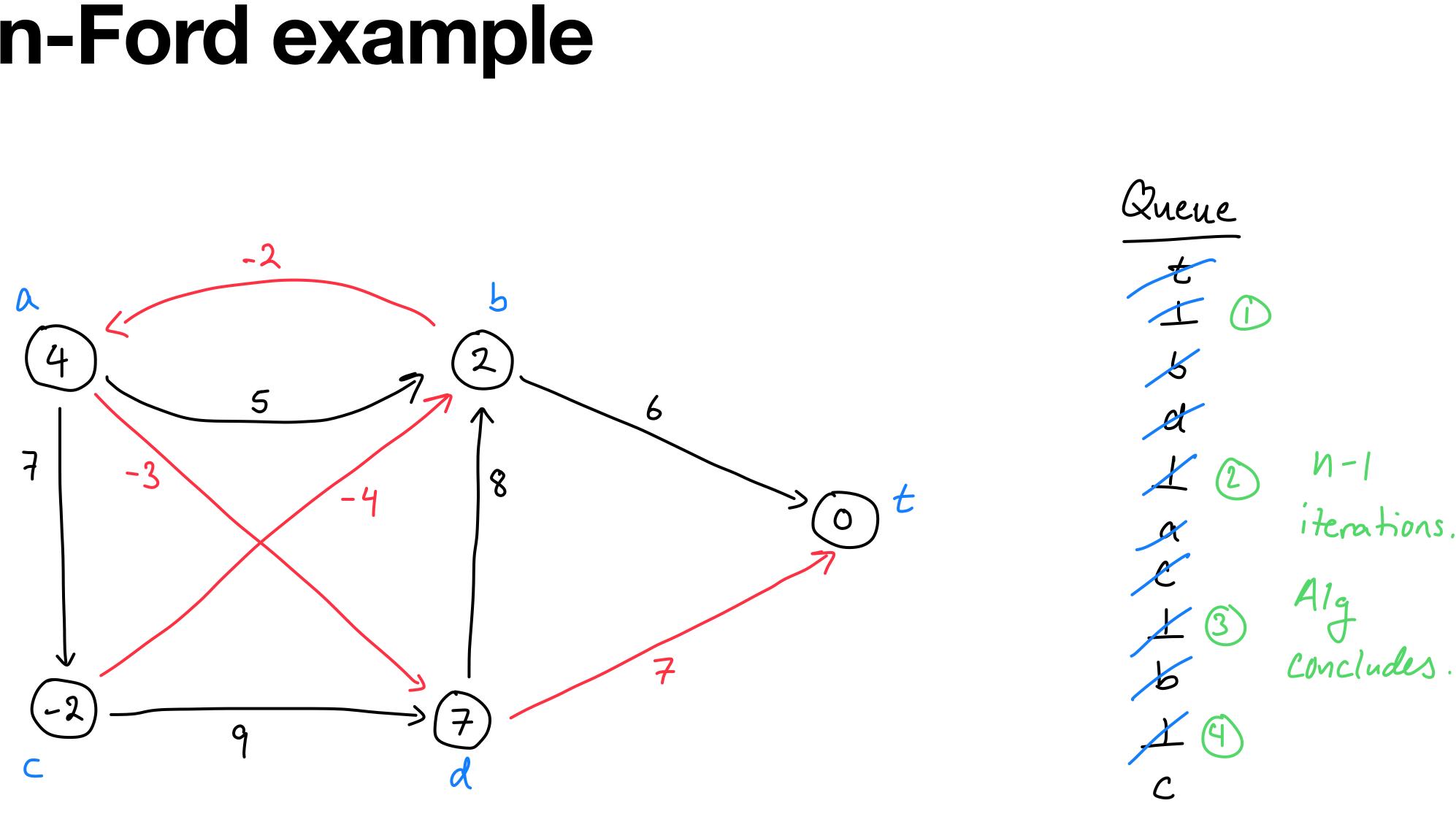
× L





Queue × L





55



## **Detecting negative cycles**

- Bellman-Ford is correct on final iteration.
- Assume (for L Adding up the **Proof:** By contradiction. ulletLet G have a negative cycle. . d(n-1 i=0  $\sum_{i=1}^{k-1} w(v_{i}, v_{i+1}) < 0.$  (1) cnd (2 (1)

• Lemma: If every vertex s can reach t, and G has a negative cycle, then there is some edge  $u \rightarrow v$  so that d(n-1,u) > d(n-1,v) + w(u,v). If G has no negative cycles, then output of

by that 
$$\forall$$
 edges  $u \rightarrow v$ ,  $d(n-1,u) \leq d(n-1,v) + W(u_1)$   
we equations for the cycle,  
 $1, V_i) \leq \sum_{i=0}^{k-1} d(n-1, V_{i+1}) + \sum_{i=0}^{k-1} W(V_{i,1} V_{i+1})$   
Same term  $\rightarrow 0 \leq \sum_{i=0}^{k-1} W(V_{i,1} V_{i+1})$  (2)  
are inconsistent, proving  
56 the contradiction.





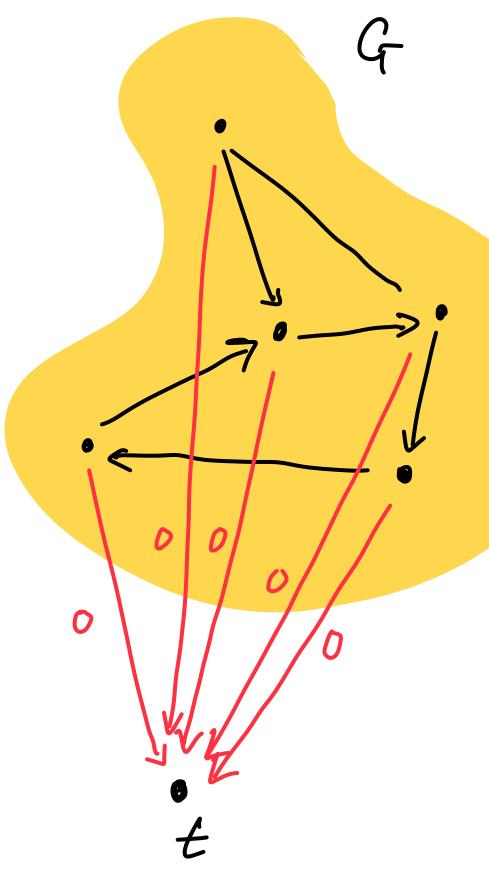
# **Detecting negative cycles**

- Lemma: If every vertex *s* can reach *t*, and *G* has a negative cycle, then there is some edge  $u \rightarrow v$  so that d(n 1, u) > d(n 1, v) + w(u, v). If *G* has no negative cycles, then output of Bellman-Ford is correct on final iteration.
- **Proof:** The previous slide proves the first part of the statement.
  - If there are no negative cycles, the shortest path *s* → *t* consists of unique vertices and has length ≤ *n* − 1.
  - We previously proved that d(i, s) was optimal length of path  $s \sim t$  of length  $\leq i$ .
  - Together, concludes proof.

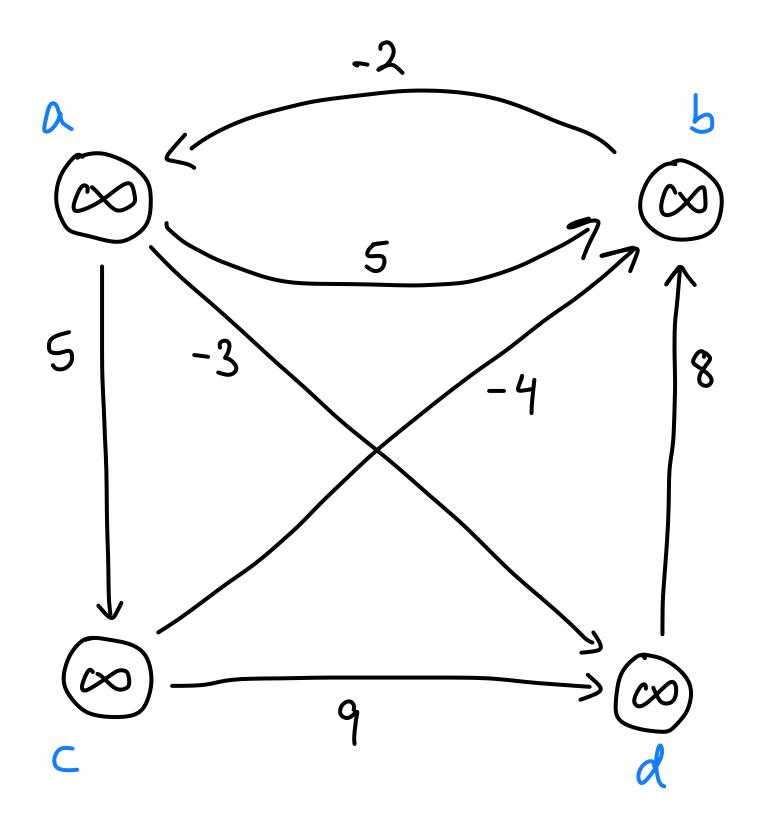
# Negative cycle detection

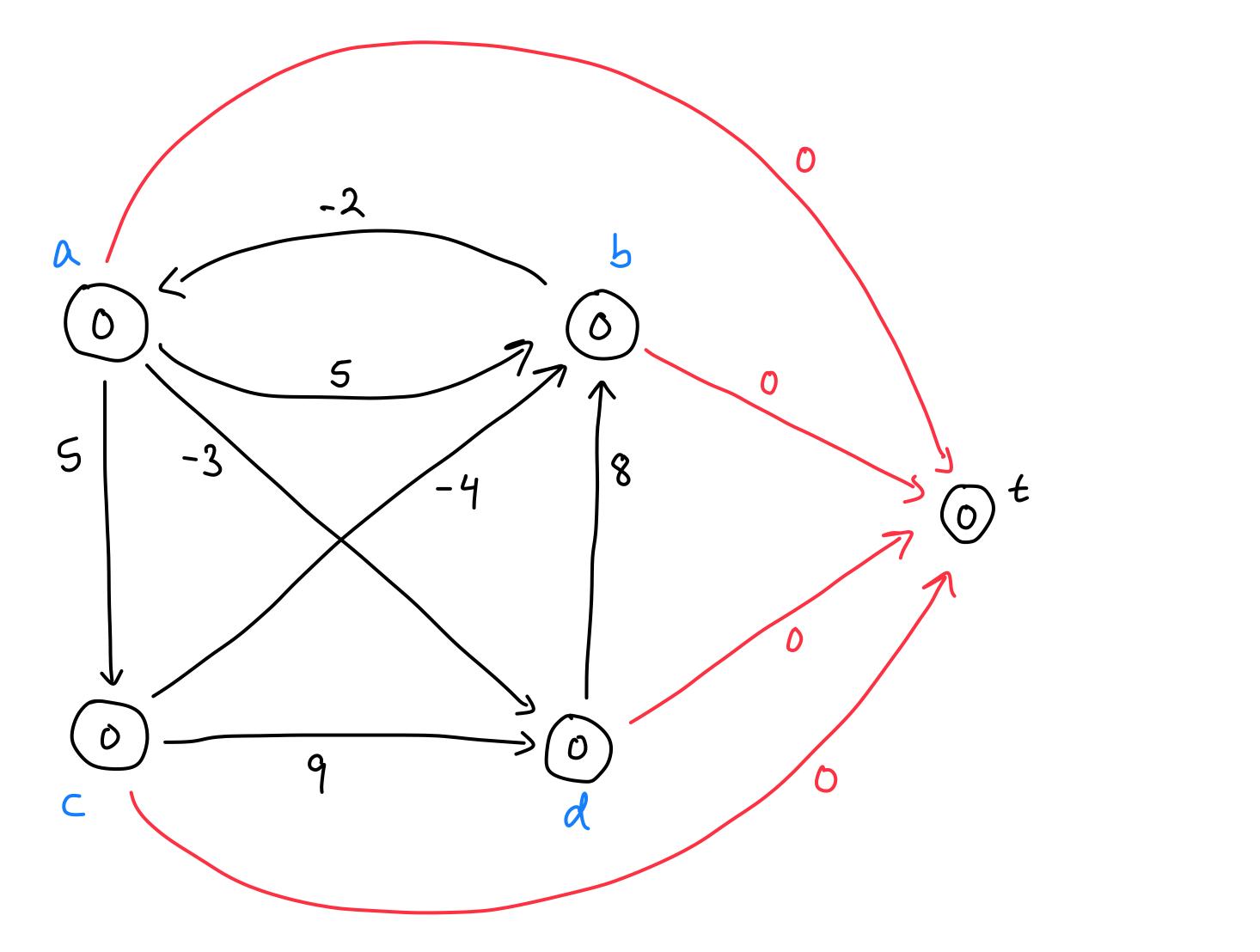
#### Negative cycle detection algorithm:

- Run Bellman-Ford assuming there are no negative cycles
- For each edge  $u \rightarrow v$ , verify that  $d(u) \leq d(v) + w(u, v)$ . Else, report "negative cycle detected".
- This will only detective negative cycles amongst vertices that have paths to *t*. Might not be the entire graph for bad choice of *t*.
- Solution: Add a new "sink" *t* to the graph and add edge  $v \rightarrow t$  of weight 0 for all vertices. Run detection algorithm w.r.t this sink.

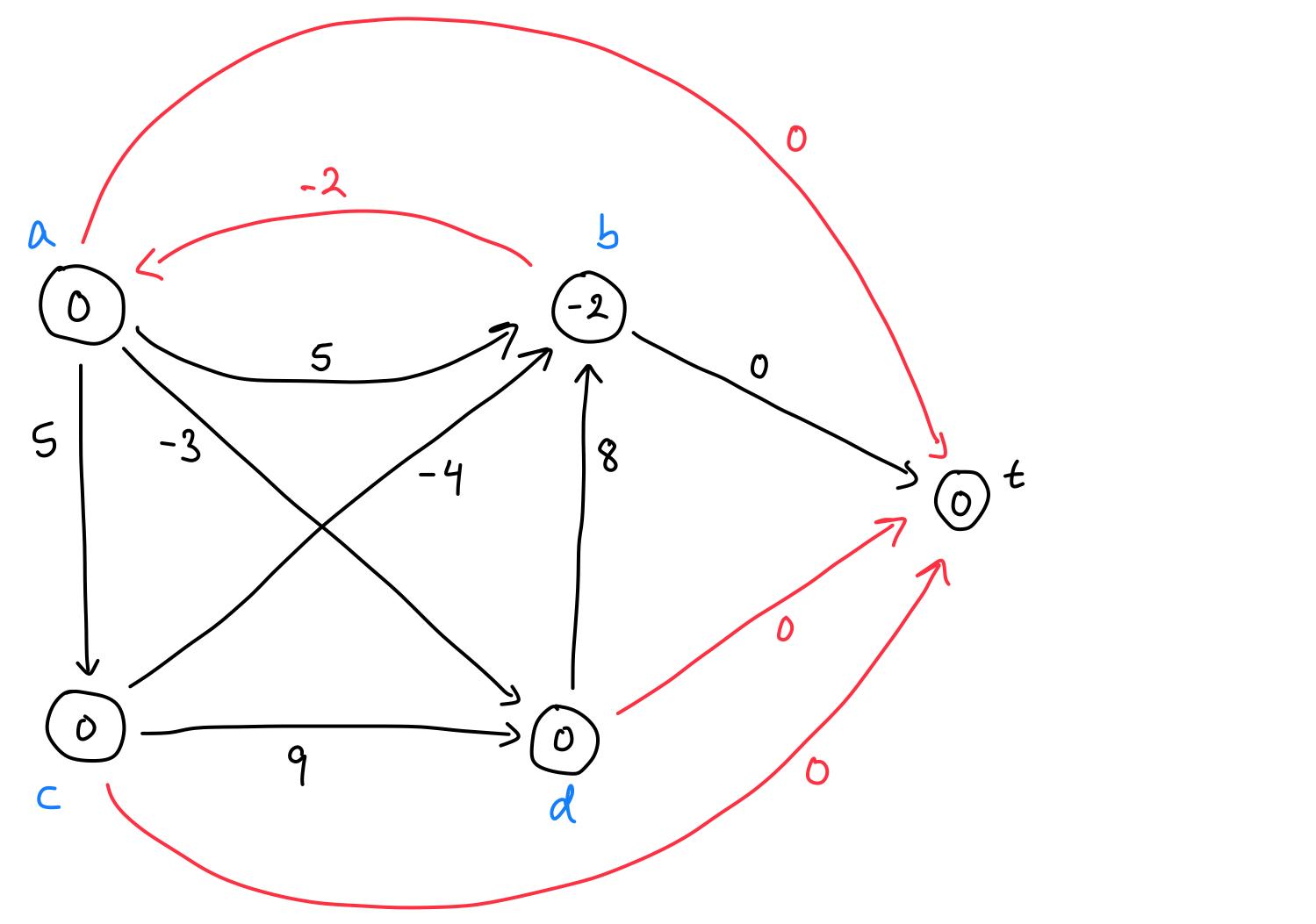




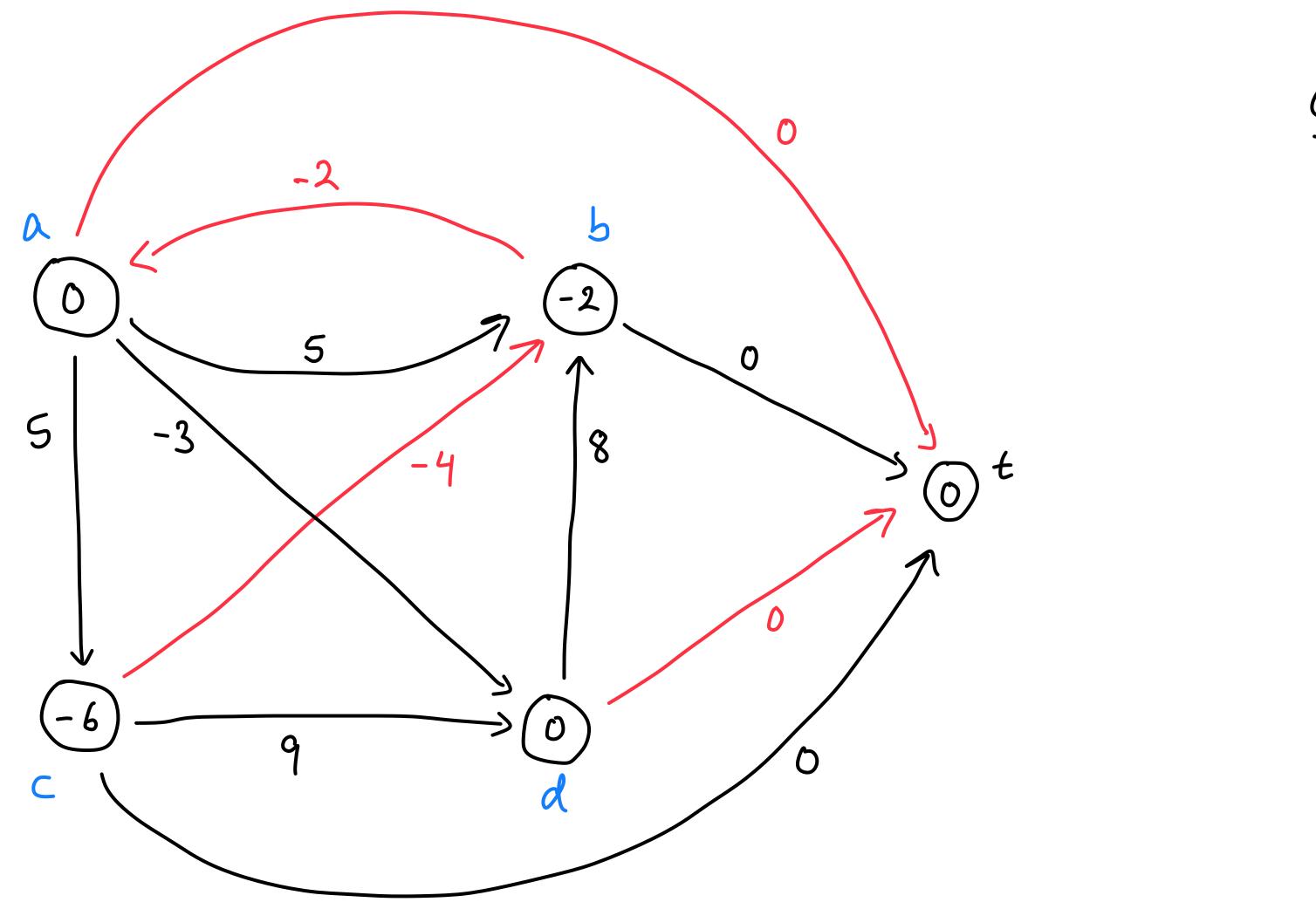




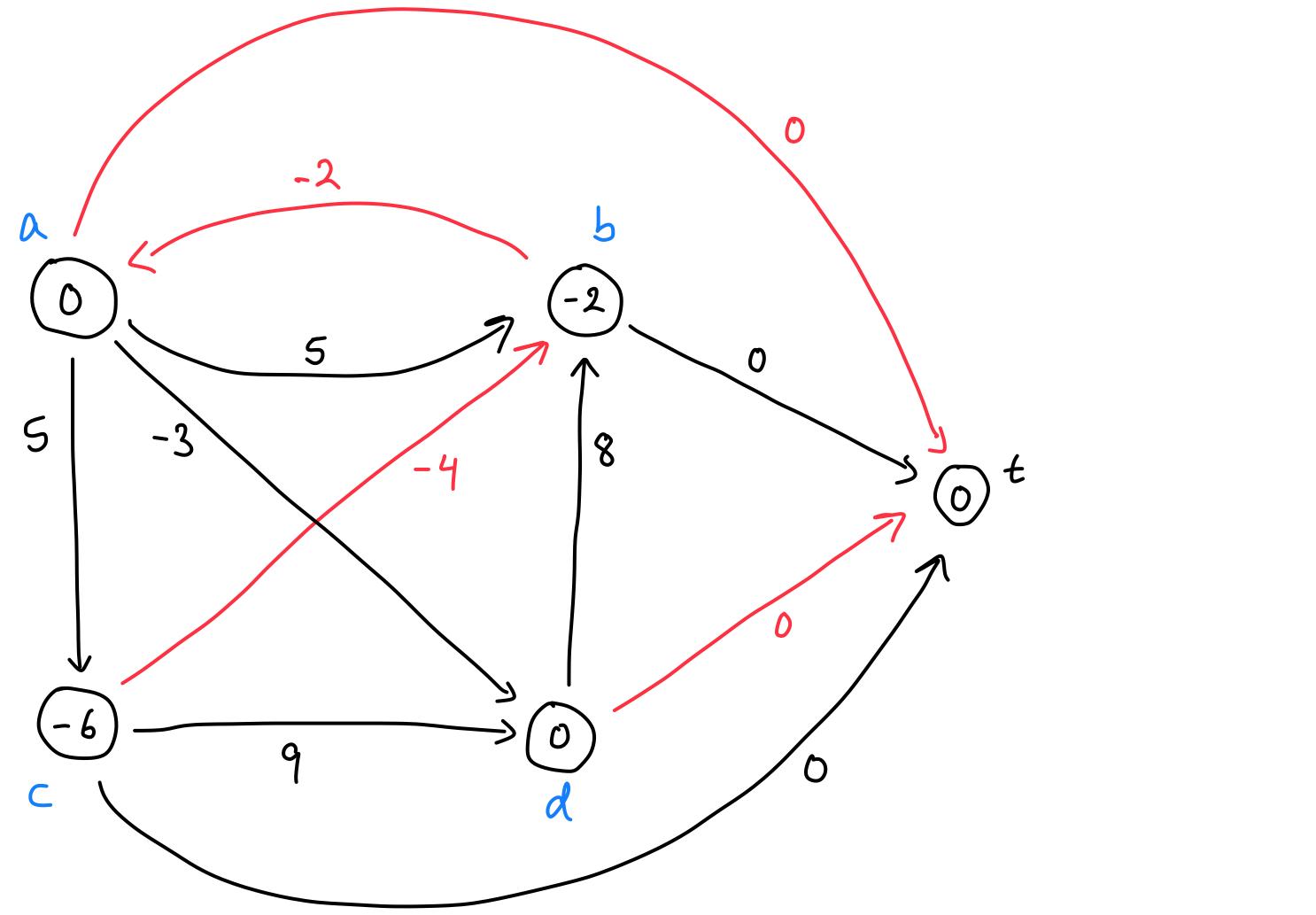
Queue A 6 d



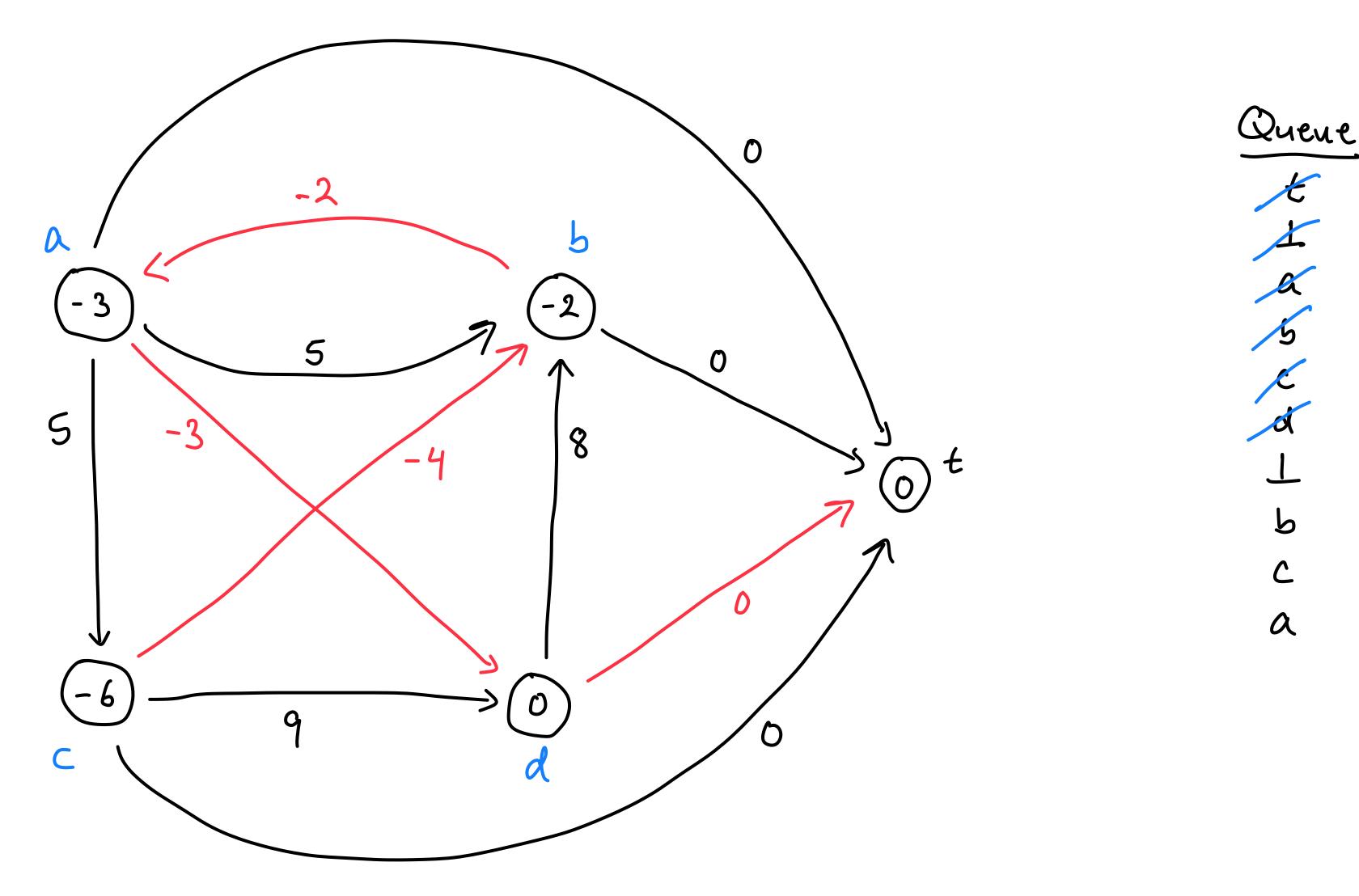
Queue 6 d 6

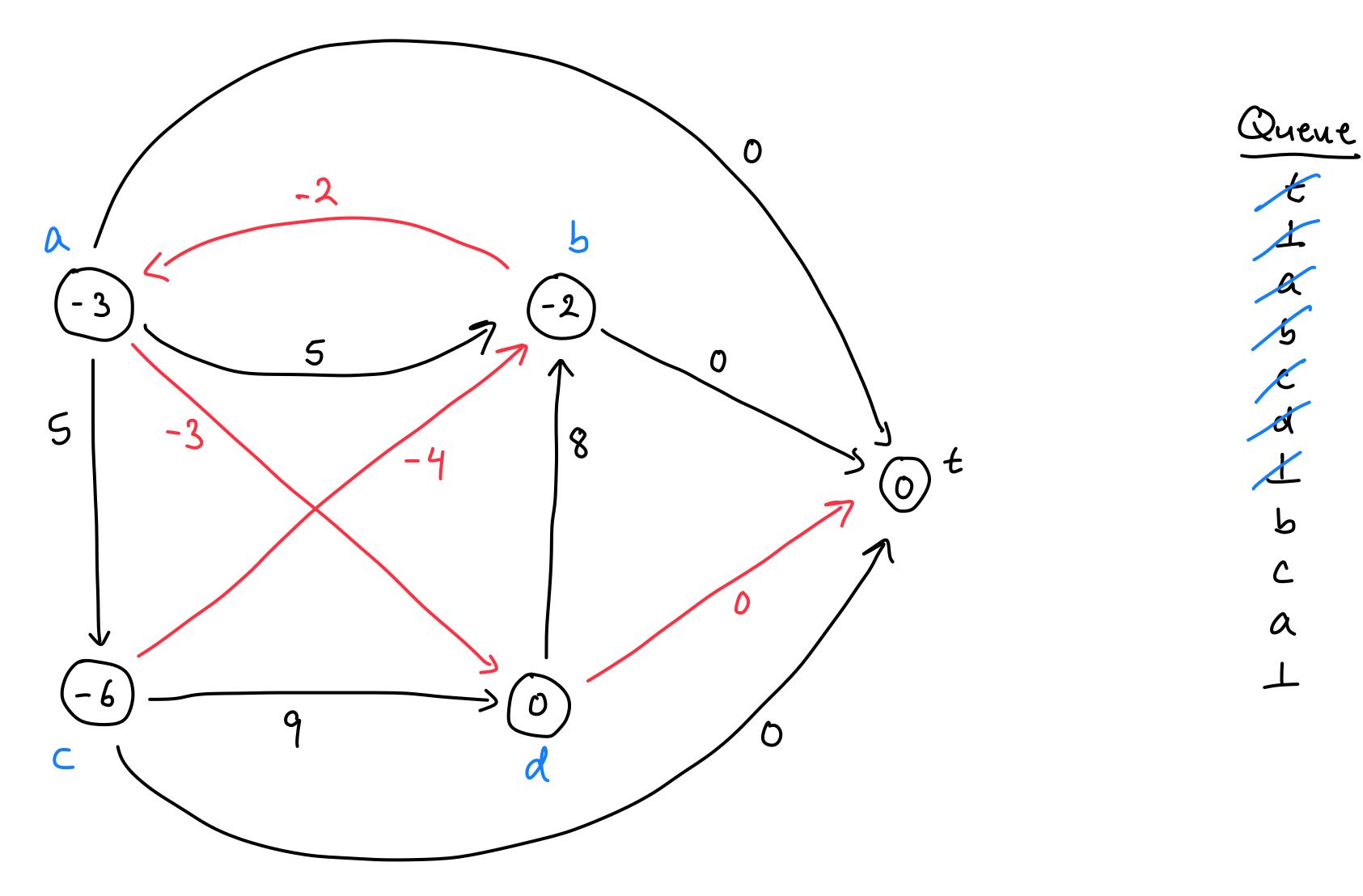


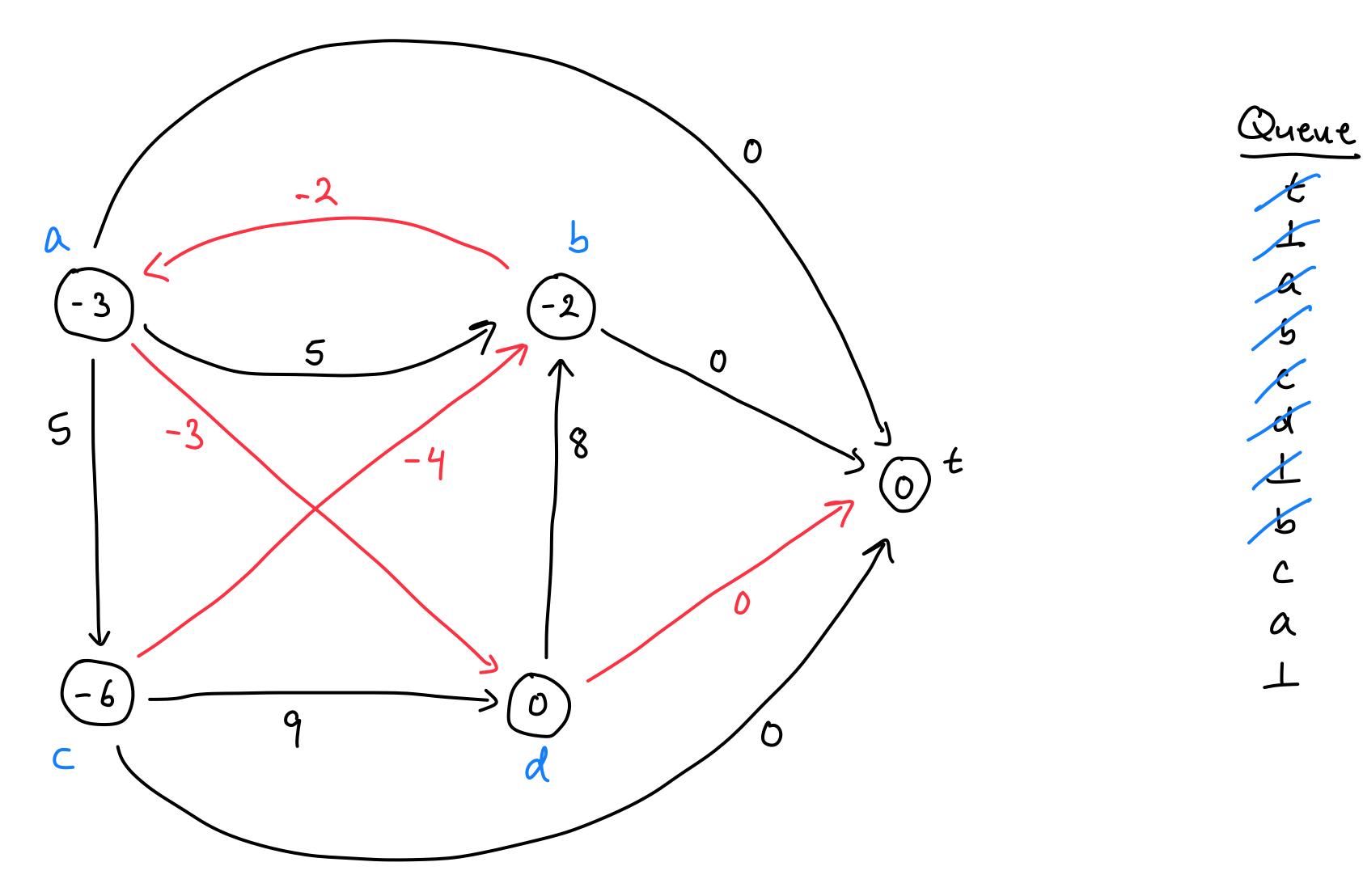
Queue とよみ d ط C



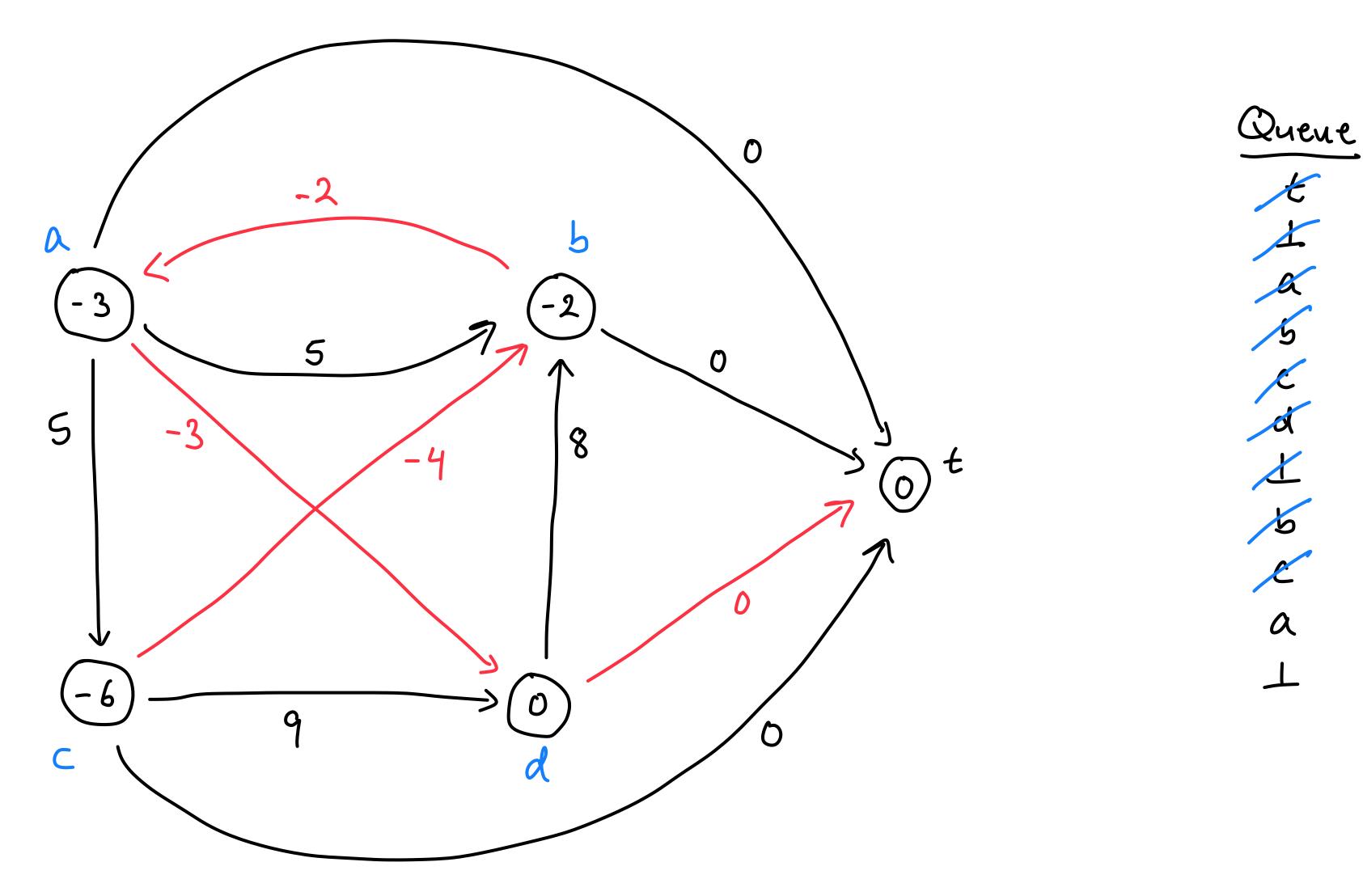
Queue E L Q d 6 C

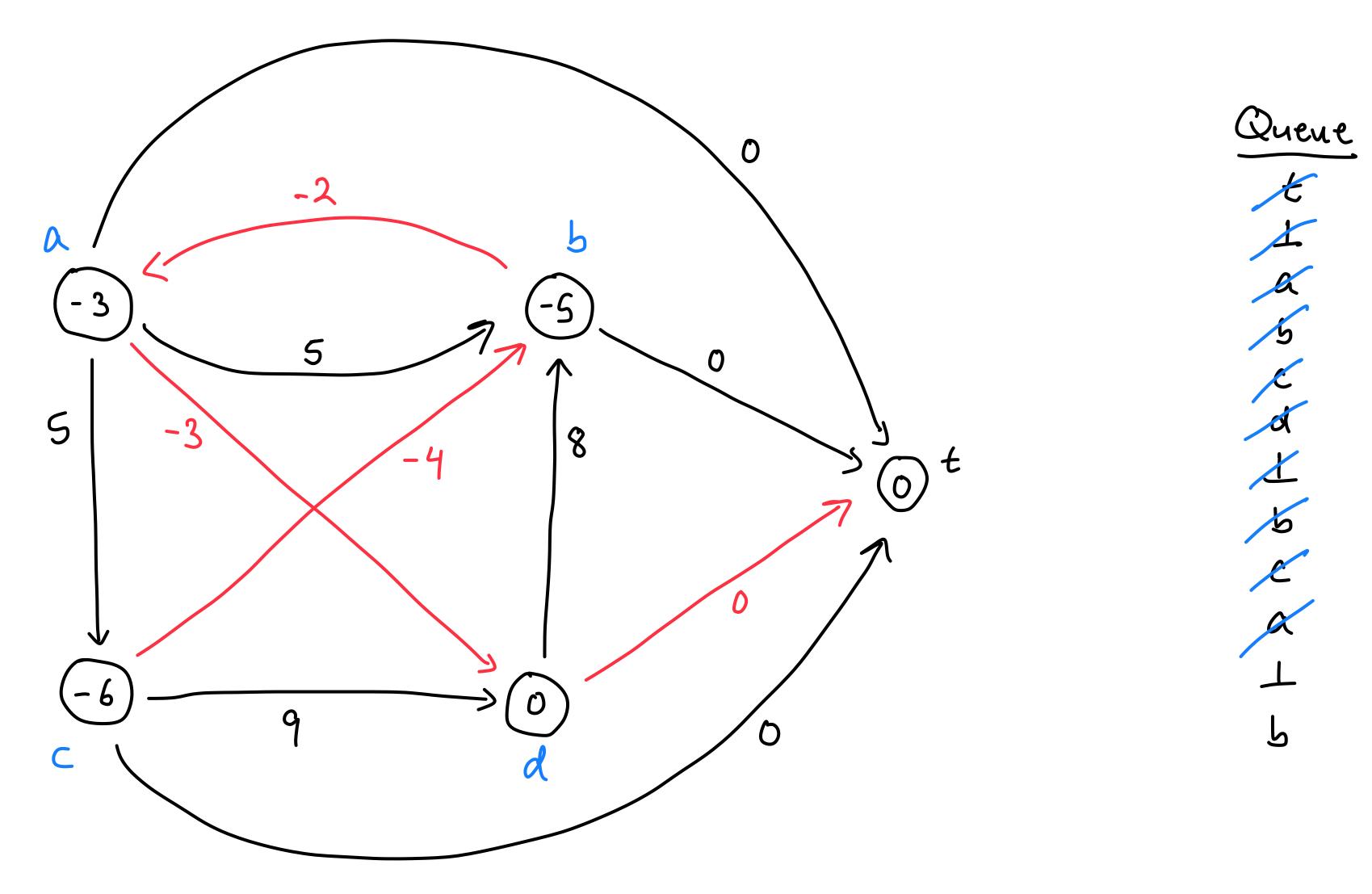


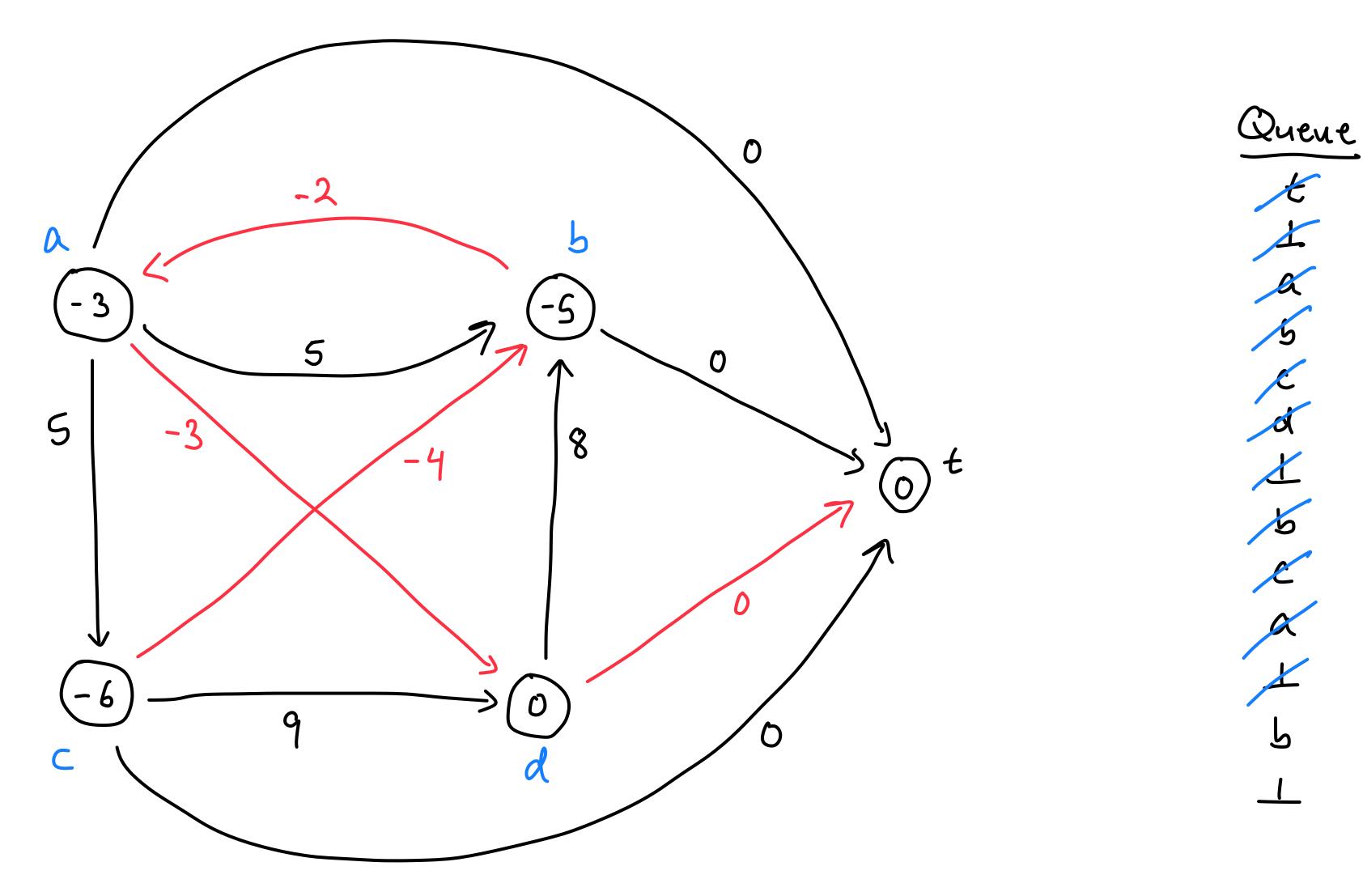


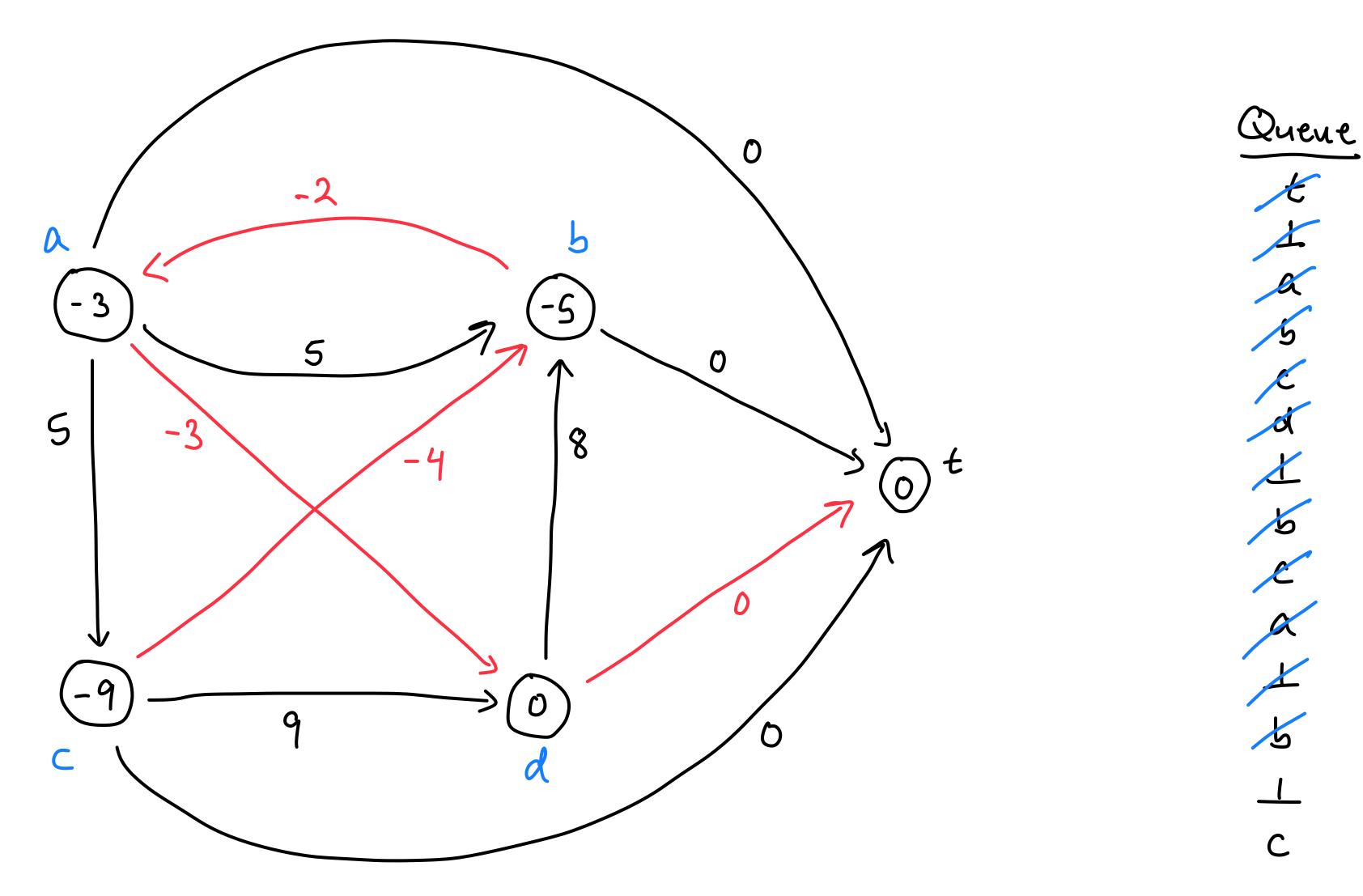


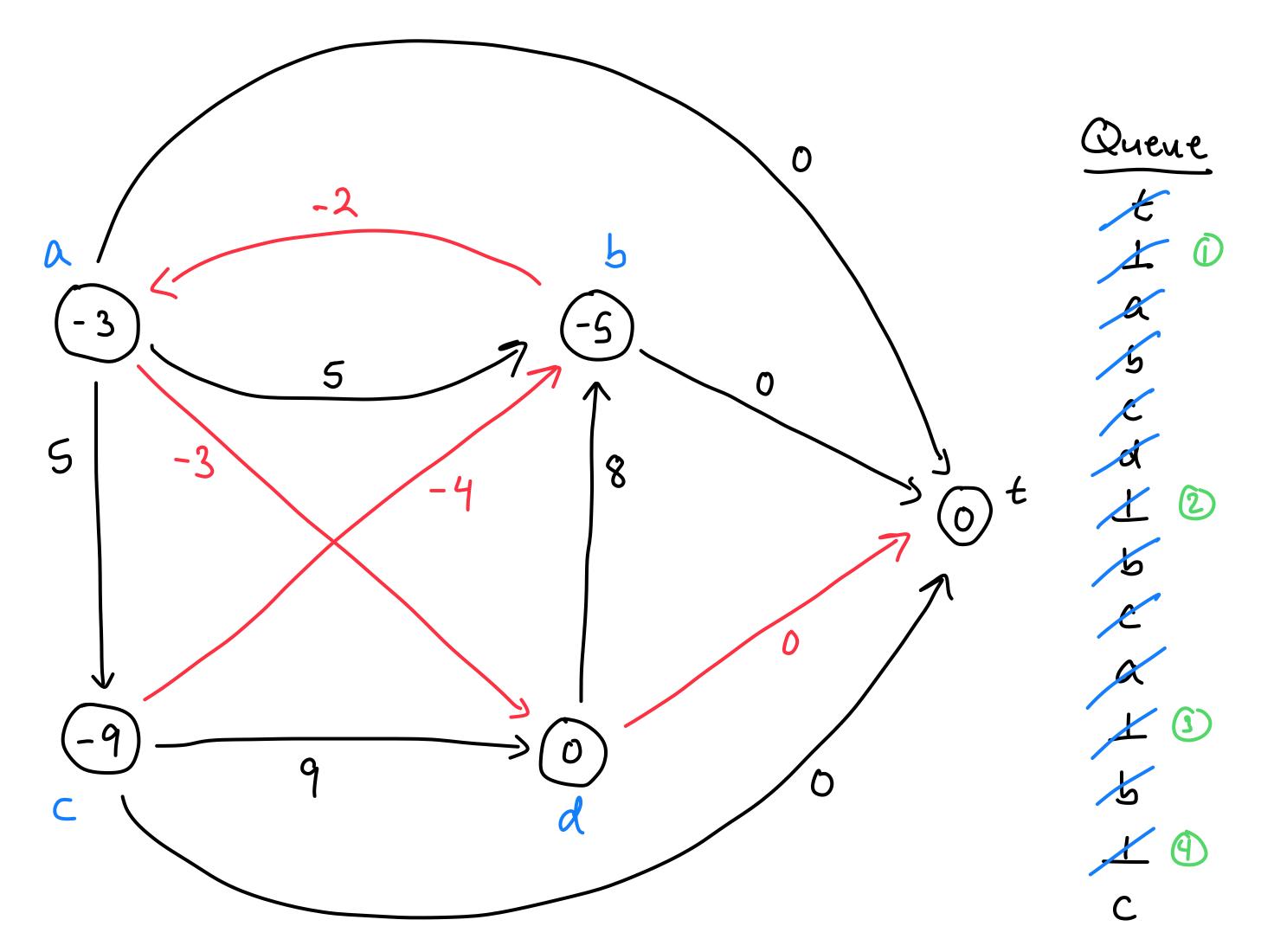
66



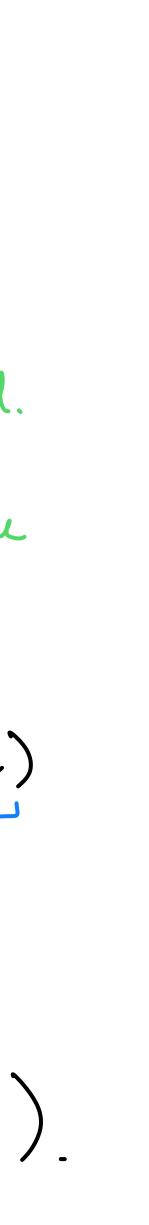


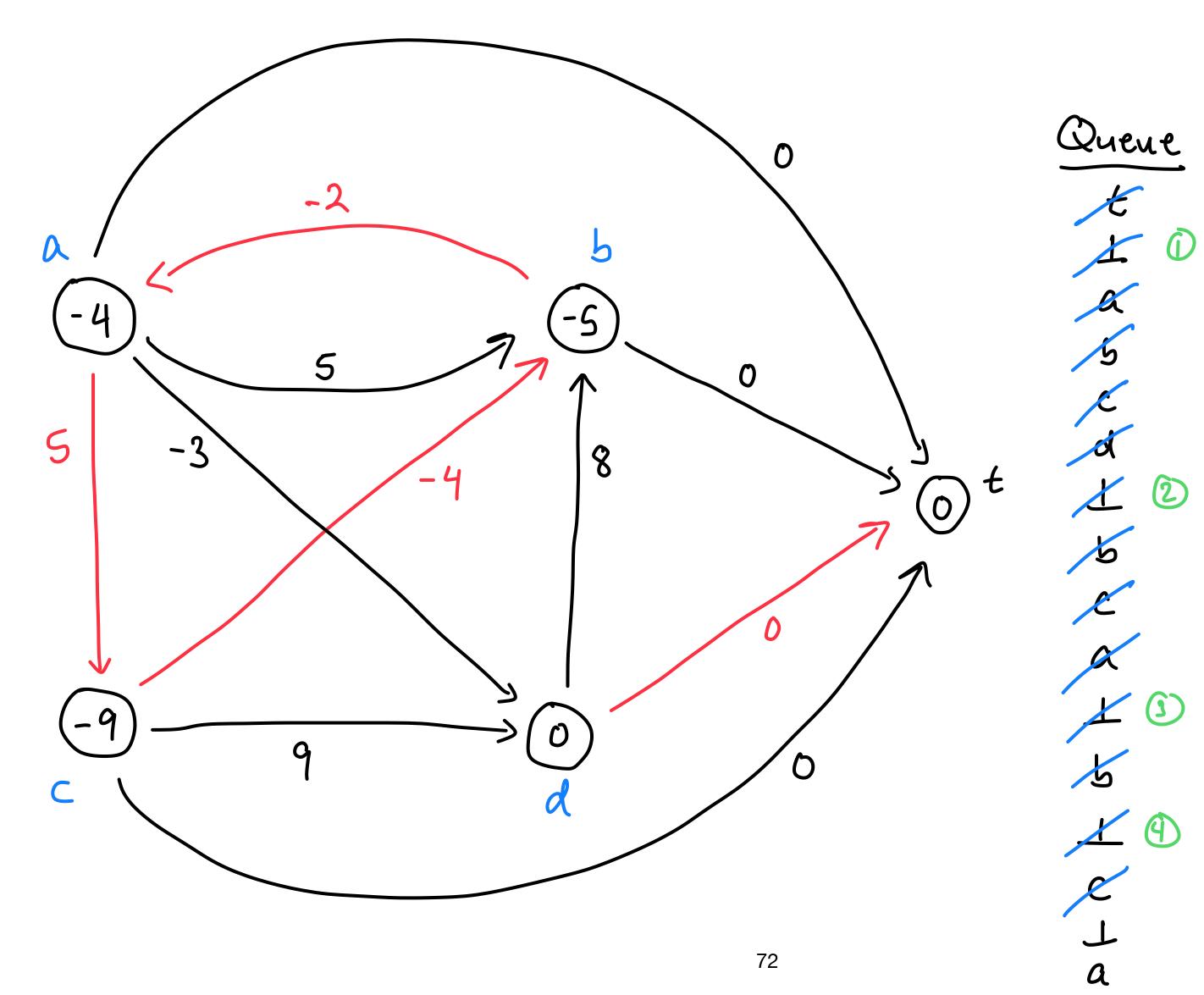






4 iterations completed. Now checking edges, ne notice that d(a) > d(c) + w(a, c)-3 So a negative cycle exists (a-sc-sb)







Observe what would

Once more

## Shortest paths with negative weights on a DAG

- No cycles by definition
- One pass through the vertices in reverse topological order suffices
- Runtime: O(n + m)

Under topological sort, edges only go from low to high numbered vertices

