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Lecture 13
Dynamic programming III
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Previously in CSE 421…
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General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to 
the “biggest.” For each one:


• Find the optimal value, using the previously-computed optimal values to 
smaller subproblems.


• Record the choices made to obtain this optimal value. (If many smaller 
subproblems were considered as candidates, record which one was chosen.)


• Compute the solution: We have the value of the optimal solution to this 
optimization problem but we don’t have the actual solution itself. Use the 
recorded information to actually reconstruct the optimal solution.
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General dynamic programming runtime
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Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)



Knapsack overview

• Input:  items of integer values  and weights  and weight threshold .


• Input length: 


• Output: optimal  maximizing  s.t.  


• Various algorithms:


• Brute force alg: Runtime of 


• DP alg: Runtime  or 


• -approx. alg: Runtime 

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O ( n3 log VW
ϵ )
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Today
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RNA secondary structure

• RNA is expressed as a sequence of nucleotides: a string  where 
each  for adenine, cytosine, guanine, and uracil.


• RNA tends to not be linear in a molecule and forms secondary structures 

• Secondary structures cause the molecule to loop back and forth


• These are bonds between the base pairs 

B = b1…bn
bi ∈ {A, C, G, U}
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RNA secondary structure hypothesis

• Definition. A secondary structure for an RNA seq. 
 is a set of pairs  such that


• WC condition:  is a matching and pairs are 
Watson-Crick complements i.e. 




• No sharp bends:  only if 


• Non-crossing: If  and  then the 
intervals  and  are either disjoint or one 
contains the other.

B = b1…bn S = {(bi, bj)}

S

(bi, bj) ∈ WC := {(A, U), (U, A), (G, C), (C, G)}

(bi, bj) ∈ S 4 < | i − j |

(bi, bj) (bk, bℓ)
[i, j] [k, ℓ]
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RNA secondary structure problem

• Input: an RNA seq. 


• Output: a secondary structure  of maximal size for .


• Dynamic programming attempt 1: For  define  as the 
maximal secondary structure using bases only . Let 

. 

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S( j)
b1, b2, …, bj

f( j) = |S( j) |
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RNA secondary structure problem

• Consider if in the optimal solution 


• Splits problem into smaller problems but they aren’t subproblems.


• Problem: Our choice of subproblem was not expressive enough. 

(bk, bj) ∈ S
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RNA secondary structure problem

• Input: an RNA seq. 


• Output: a secondary structure  of maximal size for .


• Dynamic programming intuition: For  define  as the 
maximal secondary structure using bases only . Let 

. 

B = b1…bn

S B

1 ≤ i ≤ j ≤ n S(i, j)
bi, bi+1, …, bj

f(i, j) = |S(i, j) |
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RNA secondary structure DP algorithm

• Dynamic programming intuition: For  define 
 as the maximal secondary structure using bases only 

. Let . 


• Recursive definition:


• In optimal solution, either  is not in a SS or  is in 
the SS


• In first case,  and 


• In second case, 


• Optimal solution can be calculated as a recursive 
minimization

1 ≤ i ≤ j ≤ n
S(i, j)
bi, bi+1, …, bj f(i, j) = |S(i, j) |

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)
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RNA secondary structure DP algorithm

• Recursive definition:


• In optimal solution, either  is not in a SS or  is in the SS


• In first case,  and 


• In second case,  

• Observation: The recursive definition of  only depends on  for 
.


• Therefore, we fill memo from bottom-to-top w.r.t .

bj (bk, bj)

f(i, j) = f(i, j − 1) S(i, j) = S(i, j − 1)

f(i, j) = 1 + f(i, k − 1) + f(k + 1,j − 1)

f(i, j) f(i′ , j′ )
| j′ − i′ | < | j − i |

| j − i |
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RNA secondary structure DP algorithm

• Filling memoization tables: 

• Construct  tables  and  initialized as 


• Set  for all .


• For  and 


• Let 


• Compute  and let  be its argmin. 


• If , set  and set  


• Else, set  and keep .

n × n M f ⊥

f(i, i) ← 0 i

i ← 1 to n z ← 1 ← n − i

j ← i + z

V ← min
k∈{i,…,j−5}∧(bj,bk)∈WC

1 + f(i, k − 1) + f(k + 1,j − 1) k

V > f(i, j − 1) f(i, j) ← V M(i, j) ← k

f(i, j) ← V M(i, j) = ⊥
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RNA secondary structure DP algorithm

• Computing optimal secondary structure:


• If  this means that . Else  is not included in .


• To calculate optimal secondary structure run  where


• : 

• If  output 


• Else, output 


• Can be made to run faster in practice using DFS or BFS instead of recursion


• Runtime:  sized table with each recursive computation taking  time. Print runs in  time after 
the table is computed. Total runtime: .

M(i, j) = k (bk, bj) ∈ S j S

Print(1,n)

Print(i, j)

M(i, j) ← k (k, j) ∪ Print(i, k − 1) ∪ Print(k + 1,j − 1)

Print(i, j − 1)

O(n2) O(n) O(n)
O(n3)
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Dynamic programming patterns
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Top-down vs bottom-up DP algorithms

• So far we have seen that the recursive subproblems in DP algorithms are 
always smaller. Examples


• Knapsack:  depends on  for 


• RNA SS:  depends on  where 


• Yields a “bottom-up” ordering for filling the memoization table


• Instead we could fill up the table “top-down” 

f(n, W′ ) f(n − 1,W′ ′ ) W′ ′ ≤ W′ 

f(i, j) f(i′ , j′ ) | j′ − i′ | < | j − i |

17



Top-down vs bottom-up DP algorithms

• In a “top-down” DP algorithm 


• Conclude that  can be defined recursively based on 


• For each , check if  has been previously calculated


• If yes, use the value of 


• If not, recursive compute 


• Overall, runtime is asymptotically the same! Each square of the memo is only 
computed once.

f(x)

f(x) f(y1), f(y2), …f(yk)

yj f(yj)

f(yj)

f(yj)
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Top-down vs bottom-up DP tradeoffs

• In top-down approaches, not all squares may get calculated


• Can yield constant factor savings in terms of runtime


• However, the recursion stack usually scales poorly in top-down approaches


• For example, in Tribonacci, recursion stack would be  in depth


• Recursion stack is often in computer’s memory while data being manipulated is expressed on the hard 
drive


• Can yield memory overflow errors if not carefully programmed


• Top-down is better when the order of filling out squares isn’t well defined


• Occurs in graph DP algorithms like Bellman-Ford which we see soon


• In such cases, a more sophisticated analysis is needed to argue that recursive defs. are not cyclical 

Ω(n)
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Graph dynamic programming
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Currency exchange

• USD to BTC: 0.00001


• BTC to EUR: 70,240


• INR to USD: 0.0127


• EUR to INR: 97.01


• EUR to HKD: 9.85


• HKD to INR: 11.31


• USD to HKD: 6.96
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Set edge weight to log2(1/r) = − log2(r)



Currency exchange

• A path  of net weight  implies a 
currency conversion from 1 unit of  to  
units of 


• Finding a path of least weight from  to  
yields the best seq.  of currency exchanges


• Direct conversion of USD to HKD yields 
 HKD per USD


•  USD BTC EUR HKD yields 
 HKD per USD

p : u ↝ v w
u 2−w

v

u v

22.8

→ → →
2−(16.5−16.1−3.3) = 22.9
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Currency exchange

• What happens if HKD to INR rate 
changes from  to ?23.5 24.0
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Currency exchange

• What happens if HKD to INR rate 
changes from  to ?23.5 24.0
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Currency exchange

• Consider the highlighted path from USD to 
USD:


• Converts 1 USD to  USD


• Constitutes a negative cycle in the graph


• In the currency exchange problem, negative 
cycles represent arbitrage 

• Since there is a negative cycle, any currency 
can be converted into any other for 
arbitrarily cheap as the graph is strongly 
connected 

20.8 > 1
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Negative weights shortest paths

• Input: A directed graph  with weights  and a vertex 


• Output: For every vertex , the distance of the lightest directed path  
where a path’s weight is the sum of its weights


• Why not just run Dijkstra’s?


• Dijkstra’s will incorrectly calculate distances  
when negative weights are involved

G = (V, E) w : E → ℝ r

v r ↝ v
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Negative weights shortest paths

• Dijkstra’s property: Once a vertex  is visited, the distance 
 never needs updating again


• This does not hold with negative weights


• Need a slower but more careful algorithm that accounts for 
negative weights


• In this example, 


• Dijkstra’s would set distance of  as  with path  in 
its first step


• However, need to update the distance of  to  after  is 
visited.

v
d(r, v)

u 2 r → v

u −5 v
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Negative weights shortest paths
Applications

• Trade routes: each vertex is a commodity and edge  of weight  means  unit of  can be 
exchanged for  units of 


• Multiplicative gains can be converted to linear gains by taking logarithms


• Negative weights imply multiplicative losses  


• Chemical networks: cost represent the excess energy required or released when a transformation 
is made


• Subsidies offered by governments for certain trades being performed


• Example, US Govt. subsides flights from Portland, Oreg. to Pendleton, Oreg. to incentive airlines 
to fly to this market. (Annually, about $4 million for just this route) 


• How can an airline design its route network to maximize revenue in light of subsidies?

x → y w 1 x
2−w y

30



The Bellman-Ford algorithm

• Dijkstra’s is a greedy algorithm and suffices to calculate shortest/lightest paths when 
all weights are non-negative


• Distances will never need to be recalculated once set


• Bellman-Ford is a dynamic programming algorithm for computing shortest path in 
directed graphs


• Will run slower than Dijkstra’s:  time versus  time


• Will involve “resetting” distances as the algorithm goes along


• Bellman-Ford will detect negative cycles as shortest paths are undefined if there 
are negative cycles

O(mn) O(n + m)
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Failed attempt #1

• If a graph has negative weights, let 


• What if we adjusted every edge weight to ?


• Can we just run standard Dijkstra’s on the adjusted graph?


• No. Path weights adjust variably.


•

wmin = min
e∈E

w(e)

w′ (e) = w(e) − wmin ≥ 0

w′ (p) = w(p) − wmin ⋅ |# of edges in p |
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Negative weight shortest path

• Input: Directed graph  and weights  and a vertex 


• Output: For all vertices , the weight of the shortest path 


• Note, we are considering shortest paths with respect to the endpoint 


• Its easy enough to convert it to an algorithm for shortest paths with respect to 
the source

G = (V, E) w : E → ℝ t

s d(s, t)

t
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Negative weight shortest path

• Input: Directed graph  and weights  and a 
vertex 


• Output: For all vertices , the weight of the shortest path 


• Observation: If a path  contains a negative weight cycle, then 
a shortest path doesn’t exist.


• Observation: If  has no negative cycles then the shortest path 
 is of length .


• Proof: A path of length  exists, it has a repeated vertex (i.e. a 
cycle). That cycle has weight , so removing it only decreases 
weight. Repeat till path is of length .

G = (V, E) w : E → ℝ
t

s d(s, t)

s ↝ t

G
s ↝ t ≤ n − 1

≥ n
≥ 0

≤ n − 1
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Dynamic programming algorithm

• Definition. For , let  be the length of the 
shortest path  consisting of at most  edges


• Case 1: The shortest path uses  edges. Then 
 




• Case 2: The shortest path uses exactly  edges. Let  be the first the first 
vertex on the path. Then 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

≤ i − 1

d(i, s) = d(i − 1,s)

i u

d(i, s) = w(s, u) + d(i − 1,u)
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Dynamic programming algorithm

• Definition. For , let  be the length of the 
shortest path  consisting of at most  edges


• DP recursive definition: 
 

i ∈ {0,…, n − 1}, s ∈ V d(i, s)
s ↝ t i

d(i, s) =

0 if i = 0 and s = t
∞ if i = 0 and s ≠ t

min {d(i − 1,s), min
u:s→u

w(s, u) + d(i − 1,u)} otherwise
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Dynamic programming implementation
(Assuming no negative cycles)

• Table generation: 

• Generate table  of size  and table  of size 


• Set  for  and 


• For  to  and edge  


• If , 


• Set  and  


• Else, set .


• Path recovery: Follow  from  until it reaches .

d (n − 1) × n next n

d(0,s) ← ∞ s ≠ t d(0,t) ← 0

i ← 1 n (s → u) ∈ E

w(s, u) + d(i − 1,u) < d(i − 1,s)

d(i, s) ← w(s, u) + d(i − 1,u) next(s) ← u

d(i, s) ← d(i − 1,s)

next( ⋅ ) s t
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Space saving techniques

• The end result is a DAG mapping paths from every vertex  to the sink 


• The entries of  list the edges in the path


•  only depends on entries . Rows  can be discarded.

s t

next( ⋅ )

d(i, s) d(i − 1,⋅) i − 2,…,1
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Better DP implementation
(Assuming no negative cycles)

• Table generation: 

• Generate table  of size  and table  of size 


• Set  for  and 


• For  to  and edge  


• If , 


• Set  and  


• Path recovery: Follow  from  until it reaches .

d n next n

d(s) ← ∞ s ≠ t d(t) ← 0

i ← 1 n (s → u) ∈ E

w(s, u)+d(u) < d(s)

d(s) ← w(s, u)+d(u) next(s) ← u

next( ⋅ ) s t
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Even more trimming (in practice)

• If  doesn’t decrease in round , then we don’t need to consider any edges 
 in round  as the best paths through  have already been 

considered


• Keep a list  of vertices updated in the previous round and only update edge 
 if  was in 

d(u) i
s → u i + 1 u

Q
s → u u Q
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Even better DP implementation
(Assuming no negative cycles)

• Compute the reverse adjacency list: For every , .


• Generate tables ,  of size  with  and 


• Initialize counter  and generate a queue .


• While 


• Pop  off the queue .


• If , increment  and push  to .


• Else, for each ,


• If , set  and  


• Push  into queue .

u ∈ V pre(u) = {s : s → u}

d next n d(s) ← ∞ ∀ s ≠ t d(t) ← 0

i ← 0 Q ← {t, ⊥ }

i < n

u Q

u = ⊥ i ← i + 1 ⊥ Q

s ∈ pre(u)

w(s, u)+d(u) < d(s) d(s) ← w(s, u)+d(u) next(s) ← u

s Q
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Bellman-Ford properties

• Theorem: Throughout the algorithm,  is the length of some path and that 
path has weight less than the lightest path of  edges after  rounds of 
updates


• Impact: Space decreases to  but runtime is still  in the worst 
case. In practice, the runtime is much faster!


• New: [S.Rao, ’25] Bellman-Ford in time , first major upgrade in half a 
century

d(s)
≤ i i

O(n + m) O(nm)

O(n2/3m)
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Bellman-Ford example
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Detecting negative cycles

• Lemma: If every vertex  can reach , and  has a negative cycle, then there is some edge 
 so that . If  has no negative cycles, then output of 

Bellman-Ford is correct on final iteration.


• Proof: By contradiction.

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G
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Detecting negative cycles

• Lemma: If every vertex  can reach , and  has a negative cycle, then there is some edge 
 so that . If  has no negative cycles, then output of 

Bellman-Ford is correct on final iteration.


• Proof: The previous slide proves the first part of the statement.


• If there are no negative cycles, the shortest path  consists of unique vertices and has 
length .


• We previously proved that  was optimal length of path  of length .


• Together, concludes proof.  

s t G
u → v d(n − 1,u) > d(n − 1,v) + w(u, v) G

s ↝ t
≤ n − 1

d(i, s) s ↝ t ≤ i
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Negative cycle detection

• Negative cycle detection algorithm:


• Run Bellman-Ford assuming there are no negative cycles


• For each edge , verify that . Else, 
report “negative cycle detected”.


• This will only detective negative cycles amongst vertices that 
have paths to . Might not be the entire graph for bad choice of .


• Solution: Add a new “sink”  to the graph and add edge  of 
weight 0 for all vertices. Run detection algorithm w.r.t this sink.

u → v d(u) ≤ d(v) + w(u, v)

t t

t v → t
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example

60



Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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68



Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Bellman-Ford with negative cycles example
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Shortest paths with negative weights on a DAG

• No cycles by definition


• Under topological sort, edges only go from low to high numbered vertices


• One pass through the vertices in reverse topological order suffices


• Runtime: O(n + m)
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