Lecture 12

The Knapsack problem

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

General dynamic programming algorithm

o |terate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

* Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

* Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

« Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

General dynamic programming runtime

Time 1t takes to solve problems
Runtime = (Total number of subproblems) x (P)

given solutions to subproblems

Today

The Knapsack problem

Maximize the tems jrabbeA S ml/ée_e}r To The w‘é\w\—‘

The Knapsack problem

e Input: ltems with integer weights w, ...w, € N and values v, ..., v, € N and
a max weight W € N

_ Output: Subset 5 C [n] such that Z w; < W and maximizing Z V..
i€S i€S

Lc_’l‘ (\/:Z Vi . wax velue ,,fmzsd-'

» Brute force solution: Check all 2" possible S and choose the optimal S
amongst those satisfying the weight constraint.

& aﬁ%—b\mﬁa C_OW\Pl ey 0{
0\0(0‘.\2 N e s é\/\l or é\/.

e Runtime: O(n - 2"log VW) _ o V- log W
- 7

14

A better dynamic programming algorithm

e Observation: Either item i is included in S or it is not

e Defining an appropriate subproblem

e Let S(i, W) be the optimal subset S C {1,...,1} such that §’s items have net
weight < W and let V(i, W) be their optimal value

« Base cases: 5(-,0) = 5(0,:) = @, V(-,0) = V(0,-) = 0.

A better dynamic programming algorithm

e Let S(i, W) be the optimal subset § C {1....,1} such that $’s items have net weight < W’
and let V(i, W) be their optimal value

 To calculate S(i, W), if we include item 1

» Value of bag is at least v; and bag now has remainder available weight W' — w,

» Need to recursively choose between items {1,...,1 — 1}

* Else
 Bag still has remainder available weight W’

» Need to recursively choose between items {1,...,i — 1}

9

A better dynamic programming algorithm

« Let S(i, W) be the optimal subset S C {1,...,1} such that §’s items have net
weight < W' and let V(i, W) be their optimal value

V(i, W) = max

V(i—1,W)

» Depending on maximization, $(i, W') = S — 1,W —w,) U {i} or
S, W) = S — 1,W’) respectively.

10

Memoization for Knapsack

Table oJ‘\ \ O. ,W,>‘

- T
AN 0
0 V(i,w)
L 0
O
,O e 0 O O ‘ O |

Memoization for Knapsack

Table oJ‘\ \ O. ,W,>‘

N\ O |
0 V(i,w')
7 O V(i-\W-w) V(Gi-1,w')
O
6 | O 0 0 O

V(i, W) = max {

V(l - I,W, - Wi) + Vl',
V(i—1,W’)

j

Memoization for Knapsack

- V(l — I,W, — Wi) -+ v,
V(la W,) — IMdx . ,
Teble of V(W) V(i — 1,W)
AN\ ,O 1 Eacln Co{ag l or / gocs %w\
O THW') ' SEPIR GRS
Z; O (i. ! ; \/(‘i—l)W’) A& ’RCCO\‘A §c~ Q‘Vc,o-\/ Ci‘w/‘> -‘f wWe.
: ore, ci‘m_«zX 3o tacdade 07 excluole
6 | O 0 O O | 5 | .
B | o 1.

Knapsack dynamic programming algorithm

<t Yo ”j_‘{‘élmo(.:

* Generate tables: J

/
e Let V,Incbe (n+ 1) X (W + 1) sized tables and set V(0,-) = V(-,0) « 0.

e Forifrom1lton, Wioml1ltoW
 fVG—-1LW)>Vi—-1W—-w)+v,
e Then, set V(i, W) « V(i — 1,W’) and set Inc(i, W) = false

» Else, set V(i, W) « V(i — 1,W' —w,) + v, and set Inc(i, W') = true

14

Knapsack dynamic programming algorithm

 Find optimal Knapsack:
e Set(i, W) « (n,W). Set§ « @&.
e Whilei # 0,
o If Inc(i, W) = true,
» Then, S < SU {i}and (i, W) <« (i — LW —w)).
e Else, (i, W) « (1 — 1,W').

e Return S.

Knapsack dynamic programming algorithm

Runtime analysis

» Tables are of size O(nW) and computing each entry takes O(log VW) time
given past entries

 Total compute time of tables is O(nW)

 To find the set S, path walks from (7, -) to (i — 1,:) each step. The path has
length < n.

« Computing S takes time O(n).

» Total computation time: O(nW log VW),

16

Knapsack runtime

» The input for Knapsack is usually written in binary with each item weight w
expressed with O(log W) bit numbers and value with O(log V') bit numbers

» Total input length is O(n log VW)

 Runtime of Knapsack dynamic programming algorithm is exponential in the
iInput length

» This is expected. The decision version of Knapsack is a NP-complete

problem. We do not expect an efficient algorithm for Knapsack.

L/\/\)
el Hg, in ['\/\YW\"

0|
i 7 \&mﬁk

Approximation algorithms

« We’ve only alluded to NP-completeness so far, but the NP-completeness of the
Knapsack problem means that there is no algorithm for optimizing Knapsack that
runs in time

O(poly(nlog W)) = O(n“polylogW)
* |[nstead we will have to turn to approximation algorithms

» Given a Knapsack problem (v, ...,v, ,wy,...,w,, W), let OPT be the optimal
value of subset of items weighing < W:

OPT = V(n, W)

18

Approximation algorithms

* |Instead we will have to turn to approximation algorithms

» Given a Knapsack problem (v, ..., v, wy, ...,w., W), let OPT be the optimal
value of subset of items weighing < W-

OPT = V(n, W)

* Analg. & is an c-approximation alg. if &/ always outputs a subset S such
that (a) weight($) < Wand (b) value(S) > (1 —¢) - OPT.

19

Knapsack approximation algorithm

« Theorem: For every € > 0, there exists an e-approximation alg. for n-item

n°log(VW)

€

Knapsack that runs in time O

* [he construction will be another dynamic programming algorithm.

« However, we will have to make adjustments to not depend on W.

20

A different DP algorithm for (exact) Knapsack

« Assume that 0 < w; < W for all items.

. Let v, = maxv; Then, v, < OPT <V

l

e Define: C(V’) to be the minimum weight of a set .S such that
value($S) >V’

e Let C(V') = oo if no set S exists of this value.
e Base case of C(0) <0

e C(V)=o0forV' >V

« C(V’)is monotonically increasing

e Then, Knapsack solution OPT = max value V's.t. C(V') < W

21

A slightly different optimization

e C(V’) can be “morally” seen as a dual problem to maximization V(W’)

« Define: C(i, V') as the minimum weight of a set .S such that value(S) > V' using
temsonly {1,...,1}

* This new subproblem has a recursive definition similar to our previous example

Ci—1,V), }

° C(Z’V):mm{C(i— LV —v—10)+w,

e OPT =the maximum value V's.t. C(n, V') < W

22

A different Knapsack algorithm

» This new algorithm has atableofsize(n + 1) X V
» Each entry of the table can be constructed in O(log W + log V) time
« Computing OPT after table involves binary searching along C(n, -)
e OPT =the maximum value V's.t. C(n, V') < W
» Requires O(log V(log VW)) total compute
» Yields a total runtime of O(nV log VW) runtime
» No exponential dependence in terms of log W

» However, exponential dependence in terms of log V

23

An approximation algorithm

Vi €Vmax

. ldea: Compute § < Knapsack({V.}, {w.}, W) for v, = ~ and Z =
n

e Since the weights are reduced, the runtime is shorter!

| nVlog VW n°Vlog VW n°log VW
Runtime: O — | = O| ——— | <o| ——=——
* €Vmax €

e Claim: § is a feasible solution and value($) > (1 — ¢)OPT.

24

An approximation algorithm

. ldea: Compute § < Knapsack({v;}, {w;}, W) forv,=—and Z =

Vi

/

e Since the weights are reduced, the runtime is shorter!

o 'm-\-ul-]rfov\l 347/ < =9\|f 3\0" seme. I,

JESFACS

1|2 jofo]a |a]e]a

Tlen, 'f N Qx\wgsf Ve s lo{"“‘r'- ’Vi 1
2V,
V; AR

0 |1

1|0

\

|

= " K l

Evmax

n

Keep only e siamitiont diads. Thic ola . N
ep 0 = <o s .15 wwmlly Tow |
7 SSJ(\ 3 1 ki

25

An approximation algorithm

Lt V= __“és | foz= S Oapat S KM'F”J‘O'\N/‘%' i, W)

v

Cloim: S is a Pacbe solubion to the o qinal 'Pnblm.

F‘P\’Do&\l g\f\% +l’\'- ’V\U'J\'\’\S ZW"S &'\3) RM\Jr \/\/ ore ’H’\L SaMe I QO&‘\'\/ 'be&o]b\"/\-s'

hn D, W€ W,

€S

26

An approximation algorithm

o = 3] bee S Oope S Mok (], Pl W),

LedX O be the o‘ﬁ‘?w\a\ sol. o

Khaf)sack(? '\/l-‘gl §Wi%, \/\/>

So) OPT = '\/a\% (O> |

Lc;\’ Va\\mg<g> = Z V‘L ‘ '\m (SB =Z VL- .
LeS e

Cloin: "alue, CS> 2 Ci— €> OPT.

An approximation algorithm

Cloian: ~value (S> 2 Ci— e} OPT-
T : ') = Vi W pa
(‘P\’oo&\: 1?)(‘ é.f\\/ \‘\‘tW\. 1, VL ’-Z(v(- 2(*2--’|:§'—l> - Z
—~ 7 _ \/
[nee O ey 20 .1"":""‘3, oPT —Zf\/ah“'(OB:Z 'V,’."Z'\/[_ .é.VLZ' -_é.VT—
LeS

Z value(O) 2 OPT - €V > (I-€) OPT,
NCX\’) ;DJ\\AJLCS> 2 %ﬁ(@} S, S 1s o?Hma\ 2ol. o KMPSO«C_k(i'\‘?;}li\/\Il'S'W>

So Velue ()2 Zote(S) 2 Z Galue (0) > (I- &) OPT, =

28

Structure of approx. DP algorithm

 We came up with two DP algorithms for exact Knapsack based on the following recursive
definitions

» V(i, W) = max value with items § C {1,...,1} s.t. weight($) < W
e C(1, V') = min weight with items § C {1,...,i} s.t. value(§) > V’
 Approx. alg. by rounding values v; = Lvl-/ZJ and running second alg.
- Is there an approx. alg. by rounding w; = |w./Z|, W = | W/Z] and running the first alg.?

» Doing this will yield some subset § C {1,...,n}
* Trouble is that this new set may not be feasible for the original weight constraints

29

Knapsack overview

e Input: n items of integer values v; and weights w; and weight threshold W.
e Input length: O(nlog VW)

e Output: optimal § C [n] maximizing value(S) s.t. weight(S) < W

* Various algorithms:

» Brute force alg: Runtime of O(n2" log VW)
» DP alg: Runtime O(nW log VW) or O(nV log VW)

n°log VW)

c-approx. alg: Runtime O (
€

30

