
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 12
The Knapsack problem
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Previously in CSE 421…
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General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to 
the “biggest.” For each one:


• Find the optimal value, using the previously-computed optimal values to 
smaller subproblems.


• Record the choices made to obtain this optimal value. (If many smaller 
subproblems were considered as candidates, record which one was chosen.)


• Compute the solution: We have the value of the optimal solution to this 
optimization problem but we don’t have the actual solution itself. Use the 
recorded information to actually reconstruct the optimal solution.
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General dynamic programming runtime
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Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)



Today
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The Knapsack problem
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The Knapsack problem

• Input: Items with integer weights  and values  and 
a max weight 


• Output: Subset  such that  and maximizing .


• Brute force solution: Check all  possible  and choose the optimal  
amongst those satisfying the weight constraint.


• Runtime:  

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi

2n S S

O(n ⋅ 2n log VW)
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A better dynamic programming algorithm

• Observation: Either item  is included in  or it is not


• Defining an appropriate subproblem


• Let  be the optimal subset  such that ’s items have net 
weight  and let  be their optimal value


• Base cases: .

i S

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W)

S(⋅,0) = S(0,⋅) = ∅, V(⋅,0) = V(0,⋅) = 0
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A better dynamic programming algorithm

• Let  be the optimal subset  such that ’s items have net weight  
and let  be their optimal value


• To calculate , if we include item 


• Value of bag is at least  and bag now has remainder available weight 


• Need to recursively choose between items 


• Else


• Bag still has remainder available weight 


• Need to recursively choose between items 

S(i, W′￼) S ⊆ {1,…, i} S ≤ W′￼

V(i, W)

S(i, W′￼) i

vi W′￼− wi

{1,…, i − 1}

W′￼

{1,…, i − 1}
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A better dynamic programming algorithm

• Let  be the optimal subset  such that ’s items have net 
weight  and let  be their optimal value


• Depending on maximization,  or 
 respectively.

S(i, W′￼) S ⊆ {1,…, i} S
≤ W′￼ V(i, W)

S(i, W′￼) = S(i − 1,W′￼− wi) ∪ {i}
S(i, W′￼) = S(i − 1,W′￼)
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Memoization for Knapsack
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Memoization for Knapsack
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Memoization for Knapsack
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V(i, W′￼) = max {V(i − 1,W′￼− wi) + vi,
V(i − 1,W′￼) }



Knapsack dynamic programming algorithm

• Generate tables: 

• Let  be  sized tables and set .


• For  from  to ,  from  to 


• If 


• Then, set  and set 


• Else, set  and set 

V, Inc (n + 1) × (W + 1) V(0,⋅) = V(⋅,0) ← 0

i 1 n W′￼ 1 W

V(i − 1,W′￼) > V(i − 1,W′￼− wi) + vi

V(i, W′￼) ← V(i − 1,W′￼) Inc(i, W′￼) = false

V(i, W′￼) ← V(i − 1,W′￼− wi) + vi Inc(i, W′￼) = true
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Knapsack dynamic programming algorithm

• Find optimal Knapsack: 

• Set . Set .


• While ,


• If ,


• Then,  and .


• Else, .


• Return .

(i, W′￼) ← (n, W) S ← ∅

i ≠ 0

Inc(i, W′￼) = true

S ← S ∪ {i} (i, W′￼) ← (i − 1,W′￼− wi)

(i, W′￼) ← (i − 1,W′￼)

S
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Knapsack dynamic programming algorithm
Runtime analysis

• Tables are of size  and computing each entry takes  time 
given past entries


• Total compute time of tables is 


• To find the set , path walks from  to  each step. The path has 
length .


• Computing  takes time .


• Total computation time: .

O(nW) O(log VW)

O(nW)

S (i, ⋅ ) (i − 1,⋅)
≤ n

S O(n)

O(nW log VW)
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Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight  
expressed with  bit numbers and value with  bit numbers


• Total input length is 


• Runtime of Knapsack dynamic programming algorithm is exponential in the 
input length


• This is expected. The decision version of Knapsack is a -complete 
problem. We do not expect an efficient algorithm for Knapsack. 

wi
O(log W) O(log V)

O(n log VW)

𝖭𝖯
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Approximation algorithms

• We’ve only alluded to -completeness so far, but the -completeness of the 
Knapsack problem means that there is no algorithm for optimizing Knapsack that 
runs in time 
 




• Instead we will have to turn to approximation algorithms 


• Given a Knapsack problem , let  be the optimal 
value of subset of items weighing : 
 

𝖭𝖯 𝖭𝖯

O(poly(n log W)) = O(ncpolylogW)

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)
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Approximation algorithms

• Instead we will have to turn to approximation algorithms 


• Given a Knapsack problem , let  be the optimal 
value of subset of items weighing : 
 




• An alg.  is an -approximation alg. if  always outputs a subset  such 
that (a)  and (b) .

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT
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Knapsack approximation algorithm

• Theorem: For every , there exists an -approximation alg. for -item 

Knapsack that runs in time .


• The construction will be another dynamic programming algorithm.


• However, we will have to make adjustments to not depend on .

ϵ > 0 ϵ n

O ( n3 log(VW)
ϵ )

W
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A different DP algorithm for (exact) Knapsack

• Assume that  for all items.


• Let . Then, 


• Define:  to be the minimum weight of a set  such that 



• Let  if no set  exists of this value.


• Base case of 


• 


•  is monotonically increasing


• Then, Knapsack solution  = max value  s.t. 

0 ≤ wi ≤ W

vmax = max
i

vi vmax ≤ OPT ≤ V

C(V′￼) S
value(S) ≥ V′￼

C(V′￼) = ∞ S

C(0) ≤ 0

C(V′￼) = ∞ for V′￼ > V

C(V′￼)

OPT V′￼ C(V′￼) ≤ W
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A slightly different optimization

•  can be “morally” seen as a dual problem to maximization 


• Define:  as the minimum weight of a set  such that  using 
items only 


• This new subproblem has a recursive definition similar to our previous example


• 


•  = the maximum value  s.t. 

C(V′￼) V(W′￼)

C(i, V′￼) S value(S) ≥ V′￼

{1,…, i}

C(i, V′￼) = min { C(i − 1,V′￼),
C(i − 1,V′￼− v − i) + wi}

OPT V′￼ C(n, V′￼) ≤ W
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A different Knapsack algorithm

• This new algorithm has a table of size 


• Each entry of the table can be constructed in  time


• Computing  after table involves binary searching along 


•  = the maximum value  s.t. 


• Requires  total compute


• Yields a total runtime of  runtime


• No exponential dependence in terms of 


• However, exponential dependence in terms of 

(n + 1) × V

O(log W + log V)

OPT C(n, ⋅ )

OPT V′￼ C(n, V′￼) ≤ W

O(log V(log VW))

O(nV log VW)

log W

log V
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An approximation algorithm

• Idea: Compute  for  and .


• Since the weights are reduced, the runtime is shorter!


• Runtime: 


• Claim:  is a feasible solution and .

S ← Knapsack({ṽi}, {wi}, W) ṽi =
vi

Z
Z =

ϵvmax

n

O ( nV log VW
Z ) = O ( n2V log VW

ϵvmax ) ≤ O ( n3 log VW
ϵ )

S value(S) ≥ (1 − ϵ)OPT
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An approximation algorithm

• Idea: Compute  for  and .


• Since the weights are reduced, the runtime is shorter!

S ← Knapsack({ṽi}, {wi}, W) ṽi =
vi

Z
Z =

ϵvmax

n
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An approximation algorithm
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An approximation algorithm
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An approximation algorithm
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Structure of approx. DP algorithm

• We came up with two DP algorithms for exact Knapsack based on the following recursive 
definitions


•  = max value with items  s.t. 


•  = min weight with items  s.t. 


• Approx. alg. by rounding values  and running second alg.


• Is there an approx. alg. by rounding  and running the first alg.?


• Doing this will yield some subset 


• Trouble is that this new set may not be feasible for the original weight constraints

V(i, W′￼) S ⊆ {1,…, i} weight(S) ≤ W′￼

C(i, V′￼) S ⊆ {1,…, i} value(S) ≥ V′￼

ṽi = ⌊vi/Z⌋

w̃i = ⌊wi/Z⌋, W̃ = ⌊W/Z⌋

S ⊆ {1,…, n}
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Knapsack overview

• Input:  items of integer values  and weights  and weight threshold .


• Input length: 


• Output: optimal  maximizing  s.t.  


• Various algorithms:


• Brute force alg: Runtime of 


• DP alg: Runtime  or 


• -approx. alg: Runtime 

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O ( n3 log VW
ϵ )
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