
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 12
The Knapsack problem

 1

Previously in CSE 421…

2

General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to
the “biggest.” For each one:

• Find the optimal value, using the previously-computed optimal values to
smaller subproblems.

• Record the choices made to obtain this optimal value. (If many smaller
subproblems were considered as candidates, record which one was chosen.)

• Compute the solution: We have the value of the optimal solution to this
optimization problem but we don’t have the actual solution itself. Use the
recorded information to actually reconstruct the optimal solution.

3

General dynamic programming runtime

4

Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)

Today

5

The Knapsack problem

6

The Knapsack problem

• Input: Items with integer weights and values and
a max weight

• Output: Subset such that and maximizing .

• Brute force solution: Check all possible and choose the optimal
amongst those satisfying the weight constraint.

• Runtime:

w1, …wn ∈ ℕ v1, …, vn ∈ ℕ
W ∈ ℕ

S ⊆ [n] ∑
i∈S

wi ≤ W ∑
i∈S

vi

2n S S

O(n ⋅ 2n log VW)
7

A better dynamic programming algorithm

• Observation: Either item is included in or it is not

• Defining an appropriate subproblem

• Let be the optimal subset such that ’s items have net
weight and let be their optimal value

• Base cases: .

i S

S(i, W′) S ⊆ {1,…, i} S
≤ W′ V(i, W)

S(⋅,0) = S(0,⋅) = ∅, V(⋅,0) = V(0,⋅) = 0

8

A better dynamic programming algorithm

• Let be the optimal subset such that ’s items have net weight
and let be their optimal value

• To calculate , if we include item

• Value of bag is at least and bag now has remainder available weight

• Need to recursively choose between items

• Else

• Bag still has remainder available weight

• Need to recursively choose between items

S(i, W′) S ⊆ {1,…, i} S ≤ W′

V(i, W)

S(i, W′) i

vi W′ − wi

{1,…, i − 1}

W′

{1,…, i − 1}

9

A better dynamic programming algorithm

• Let be the optimal subset such that ’s items have net
weight and let be their optimal value

• Depending on maximization, or
 respectively.

S(i, W′) S ⊆ {1,…, i} S
≤ W′ V(i, W)

S(i, W′) = S(i − 1,W′ − wi) ∪ {i}
S(i, W′) = S(i − 1,W′)

10

V(i, W′) = max {V(i − 1,W′ − wi) + vi,
V(i − 1,W′) }

Memoization for Knapsack

11

Memoization for Knapsack

12

V(i, W′) = max {V(i − 1,W′ − wi) + vi,
V(i − 1,W′) }

Memoization for Knapsack

13

V(i, W′) = max {V(i − 1,W′ − wi) + vi,
V(i − 1,W′) }

Knapsack dynamic programming algorithm

• Generate tables:

• Let be sized tables and set .

• For from to , from to

• If

• Then, set and set

• Else, set and set

V, Inc (n + 1) × (W + 1) V(0,⋅) = V(⋅,0) ← 0

i 1 n W′ 1 W

V(i − 1,W′) > V(i − 1,W′ − wi) + vi

V(i, W′) ← V(i − 1,W′) Inc(i, W′) = false

V(i, W′) ← V(i − 1,W′ − wi) + vi Inc(i, W′) = true

14

Knapsack dynamic programming algorithm

• Find optimal Knapsack:

• Set . Set .

• While ,

• If ,

• Then, and .

• Else, .

• Return .

(i, W′) ← (n, W) S ← ∅

i ≠ 0

Inc(i, W′) = true

S ← S ∪ {i} (i, W′) ← (i − 1,W′ − wi)

(i, W′) ← (i − 1,W′)

S
15

Knapsack dynamic programming algorithm
Runtime analysis

• Tables are of size and computing each entry takes time
given past entries

• Total compute time of tables is

• To find the set , path walks from to each step. The path has
length .

• Computing takes time .

• Total computation time: .

O(nW) O(log VW)

O(nW)

S (i, ⋅) (i − 1,⋅)
≤ n

S O(n)

O(nW log VW)

16

Knapsack runtime

• The input for Knapsack is usually written in binary with each item weight
expressed with bit numbers and value with bit numbers

• Total input length is

• Runtime of Knapsack dynamic programming algorithm is exponential in the
input length

• This is expected. The decision version of Knapsack is a -complete
problem. We do not expect an efficient algorithm for Knapsack.

wi
O(log W) O(log V)

O(n log VW)

𝖭𝖯

17

Approximation algorithms

• We’ve only alluded to -completeness so far, but the -completeness of the
Knapsack problem means that there is no algorithm for optimizing Knapsack that
runs in time 
 

• Instead we will have to turn to approximation algorithms

• Given a Knapsack problem , let be the optimal
value of subset of items weighing : 
 

𝖭𝖯 𝖭𝖯

O(poly(n log W)) = O(ncpolylogW)

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)
18

Approximation algorithms

• Instead we will have to turn to approximation algorithms

• Given a Knapsack problem , let be the optimal
value of subset of items weighing : 
 

• An alg. is an -approximation alg. if always outputs a subset such
that (a) and (b) .

(v1, …, vn, w1, …, wn, W) OPT
≤ W

OPT = V(n, W)

𝒜 ϵ 𝒜 S̃
weight(S̃) ≤ W value(S̃) ≥ (1 − ϵ) ⋅ OPT

19

Knapsack approximation algorithm

• Theorem: For every , there exists an -approximation alg. for -item

Knapsack that runs in time .

• The construction will be another dynamic programming algorithm.

• However, we will have to make adjustments to not depend on .

ϵ > 0 ϵ n

O (n3 log(VW)
ϵ)

W

20

A different DP algorithm for (exact) Knapsack

• Assume that for all items.

• Let . Then,

• Define: to be the minimum weight of a set such that

• Let if no set exists of this value.

• Base case of

•

• is monotonically increasing

• Then, Knapsack solution = max value s.t.

0 ≤ wi ≤ W

vmax = max
i

vi vmax ≤ OPT ≤ V

C(V′) S
value(S) ≥ V′

C(V′) = ∞ S

C(0) ≤ 0

C(V′) = ∞ for V′ > V

C(V′)

OPT V′ C(V′) ≤ W

21

A slightly different optimization

• can be “morally” seen as a dual problem to maximization

• Define: as the minimum weight of a set such that using
items only

• This new subproblem has a recursive definition similar to our previous example

•

• = the maximum value s.t.

C(V′) V(W′)

C(i, V′) S value(S) ≥ V′

{1,…, i}

C(i, V′) = min { C(i − 1,V′),
C(i − 1,V′ − v − i) + wi}

OPT V′ C(n, V′) ≤ W

22

A different Knapsack algorithm

• This new algorithm has a table of size

• Each entry of the table can be constructed in time

• Computing after table involves binary searching along

• = the maximum value s.t.

• Requires total compute

• Yields a total runtime of runtime

• No exponential dependence in terms of

• However, exponential dependence in terms of

(n + 1) × V

O(log W + log V)

OPT C(n, ⋅)

OPT V′ C(n, V′) ≤ W

O(log V(log VW))

O(nV log VW)

log W

log V

23

An approximation algorithm

• Idea: Compute for and .

• Since the weights are reduced, the runtime is shorter!

• Runtime:

• Claim: is a feasible solution and .

S ← Knapsack({ṽi}, {wi}, W) ṽi =
vi

Z
Z =

ϵvmax

n

O (nV log VW
Z) = O (n2V log VW

ϵvmax) ≤ O (n3 log VW
ϵ)

S value(S) ≥ (1 − ϵ)OPT

24

An approximation algorithm

• Idea: Compute for and .

• Since the weights are reduced, the runtime is shorter!

S ← Knapsack({ṽi}, {wi}, W) ṽi =
vi

Z
Z =

ϵvmax

n

25

An approximation algorithm

26

An approximation algorithm

27

An approximation algorithm

28

Structure of approx. DP algorithm

• We came up with two DP algorithms for exact Knapsack based on the following recursive
definitions

• = max value with items s.t.

• = min weight with items s.t.

• Approx. alg. by rounding values and running second alg.

• Is there an approx. alg. by rounding and running the first alg.?

• Doing this will yield some subset

• Trouble is that this new set may not be feasible for the original weight constraints

V(i, W′) S ⊆ {1,…, i} weight(S) ≤ W′

C(i, V′) S ⊆ {1,…, i} value(S) ≥ V′

ṽi = ⌊vi/Z⌋

w̃i = ⌊wi/Z⌋, W̃ = ⌊W/Z⌋

S ⊆ {1,…, n}

29

Knapsack overview

• Input: items of integer values and weights and weight threshold .

• Input length:

• Output: optimal maximizing s.t.

• Various algorithms:

• Brute force alg: Runtime of

• DP alg: Runtime or

• -approx. alg: Runtime

n vi wi W

O(n log VW)

S ⊆ [n] value(S) weight(S) ≤ W

O(n2n log VW)

O(nW log VW) O(nV log VW)

ϵ O (n3 log VW
ϵ)

30

