
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 11
Dynamic programming

 1



A new algorithmic paradigm

• Greedy algorithms:


• Identify a “local” property to optimize


•  Generating a “global” solution by combining individual decisions


• Divide and conquer:


• Recursively solve computational task by identifying independent subtasks


• Each independent subtask is smaller than the original 


• Combine solutions to subtasks to solve original problem 

n → 0.9n
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A new algorithmic paradigm
Dynamic programming

• Optimal substructure:  

• The optimal value of the problem can easily be obtained given the optimal values 
of subproblems. 


• In other words, there is a recursive algorithm for the problem which would be fast 
if we could just skip the recursive steps.


• Overlapping subproblems:  

• The subproblems share sub-subproblems. 


• In other words, if you actually ran that naïve recursive algorithm, it would waste a 
lot of time solving the same problems over and over again.
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Tribonacci numbers

• Input: Integer 


• Output: Tribonacci number  defined recursively  and 
 

.


• There is a canonical recursive algorithm. But it’s not very efficient.

n

sn s1 = s2 = s3 = 1

sn = sn−1 + sn−2 + sn−3
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Overlapping subproblems
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Overlapping subproblems
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Memoization

• Input: Integer 


• Output: Tribonacci number 


• Algorithm:


• Initialize an array  of length  


• Set 


• For  to , set 

n

sn

s n

s1, s2, s3 ← 1

i ← 4 n si ← si−1 + si−2 + si−3

7



A note on runtime

• Runtime is often nebulously expressed


• Example 1: Sorting a list of  elements


• The runtime is often expressed as  time


• But this is misleading — recall, it is really  arithmetic operations


• If each arithmetic is on -bit integers (between 0 and ), then this 
takes .

n

O(n log n)

O(n log n)

k 2k − 1
O(n log n ⋅ k)
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A note on runtime

• Runtime is often nebulously expressed


• Example 2: Dealing with a graph 


• The runtime is often expressed in terms of 


• We are implicitly assuming the graph is expressed as an adjacency list 
 
Input: 


• Length of input is 


• If runtime is  then the runtime is also 


• We aren’t really losing much by expressing the runtime in terms of  and 

G = (V, E)

n = |V | , m = |E |

⟨V = (1,…,6), N1 = (2,3,4), N2 = (1,5), N3 = (1), N4 = (1,5), N5 = (2,4), N6 = ()⟩

Θ(n + m)

f(n + m) O( f( | input | ))

n m

9



A note on runtime

• Runtime is often nebulously expressed


• Example 2: Dealing with a graph 


• Sometimes a graph is expressed as an adjacency matrix  
where  if  and  otherwise.


• Input length is now 


• So a runtime of  is equal to 

G = (V, E)

M ∈ {0,1}n×n

Mij = 1 (i, j) ∈ E = 0

Θ(n2)

f(n) O( f( | input | ))
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A note on runtime

• Runtime is often nebulously expressed


• Example 3: The input is an integer 


•
An integer can be expressed in unary  or in binary in  bits


• The runtime can depend on how the input is expressed

n ∈ ℕ

111…1
n ones

O(log n)
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Tribonacci runtime analysis

• Theorem: .


• Proof: By induction. Base cases are  For induction 
 

.


• Corollary: Each  can be expressed using -bits.

sn ≤ 2n

s1 = s2 = s3 = 1.

sn = sn−1 + sn−2 + sn−3 ≤ 2n−1 + 2n−2 + 2n−3 ≤ 7 ⋅ 2n−3 ≤ 2n

sn n
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Tribonacci algorithm

• Input: Integer 


• Output: Tribonacci number 


• Algorithm:


• Initialize an array  of length  with each entry being an -bit number


• Set 


• For  to , set 

n

sn

s n n

s1, s2, s3 ← 1

i ← 4 n si ← si−1 + si−2 + si−3
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Tribonacci runtime analysis

• Computing each entry  of the array takes 3 additions:  time


• Total time: , total space: 


• Could we have done better?


• Better time analysis:  (only constant factor)


• Better space: Use only  space by recycling old terms in array 

si O(n)

O(n2) O(n2)

O(1) +
n

∑
i=4

O(i) = O(n2)

3n
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Tribonacci runtime analysis

• Unary input


• Runtime is  where 


• Binary input


• Runtime is  where 


• Best possible runtime is  using explicit formula: 
 

  for some algebraic numbers  and using optimal 
algorithm for integer multiplication

O(n2) n = | input |

O(4ℓ) ℓ = | input |

O(n log2 n)

sn = a1rn
1 + a2rn

2 + a3rn
3 a1, a2, a3, r1, r2, r3
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Edit distance

• Input: Two strings  and 


• Output: A minimal sequence of edit operations converting  into  with 
allowed transformations being Delete, Insert, or Substitute (one character)

X = (x1…xm) Y = (y1…yn)

X Y
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Edit distance

• Input: Two strings  and 


• Output: A minimal sequence of edit operations converting  into  with 
allowed transformations being Delete, Insert, or Substitute (one character)
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Edit distance

• Input: Two strings  and 


• Output: A minimal sequence of edit operations converting  into  with 
allowed transformations being Delete, Insert, or Substitute (one character)

X = (x1…xm) Y = (y1…yn)

X Y
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Edit distance

• Input: Two strings  and 


• Output: A minimal sequence of edit operations converting  into  with 
allowed transformations being Delete, Insert, or Substitute (one character)


• To find a dynamic programming algorithm, we need to reframe the problem as 
a special case of a general problem which is recurisely defined

X = (x1…xm) Y = (y1…yn)

X Y
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Edit distance

• Input: Two strings  and 


• Definitions: 

• Let  be the prefix of the first  characters of 


• Let  be the prefix of the first  characters of 


• Let  be the minimal edit distance between  and 


• Base case: , need to insert all characters


• Base case: , need to delete all characters


• Observation: The order in which edits are made is irrelevant.

X = (x1…xm) Y = (y1…yn)

Xk k X

Yℓ k Y

d(k, ℓ) Xk Yℓ

d(0,ℓ) = ℓ

d(k,0) = k
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Recursive definition
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Recursive definition
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Recursive definition
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Recursive definition
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Recursive definition
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Recursive algorithm

• Recursive algorithm : 

• If , then return 


• If , then return 


• If ,


• Return 


•
Else, return .

d(k, ℓ)

k = 0 ℓ

ℓ = 0 k

xk = yℓ

d(k − 1,ℓ − 1)

1 + min
d(k − 1,ℓ − 1),

d(k, ℓ − 1),
d(k − 1,ℓ)
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Memoization
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Memoization

28



Memoization
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Edit distance algorithm

• Create a table  table .


• Set 


• For  to 


• For  to 


• If , then set 


•
Else, set .


• Return . 

(n + 1) × (m + 1) d

d(k,0) ← k, d(0,ℓ) ← ℓ for k ∈ [n], ℓ ∈ [m]

k ← 1 n

ℓ ← 1 m

xk = yℓ d(k, ℓ) ← d(k − 1,ℓ − 1)

d(k, ℓ) ← 1 + min
d(k − 1,ℓ − 1),

d(k, ℓ − 1),
d(k − 1,ℓ)

d(n, m)
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Finding the set of edits

• This algorithm only computes the edit distance.


• How do we also calculate the collection of edits that need to be made?


• Recall we set  based on a local optimization of subproblems


• Solution: Also keep track of which subproblem achieved the optimization


• Create a tree with  (the squares of the table) and a 
edge point from  to the subproblem that solved the optimization

d(k, ℓ)

V = [n + 1] × [m + 1]
(k, ℓ)
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Finding the set of edits
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Finding the set of edits
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Finding the set of edits
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Finding the set of edits
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Finding the set of edits
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Optimal edit path algorithm

• Generate tables: 

• Create  tables , .


• Set  and 
 for . 


• For  to  and for  to 


• Compute  recursively and identify parent  of .

(n + 1) × (m + 1) d p

d(k,0) ← k, d(0,ℓ) ← ℓ
p(k,0) ← (k − 1,0), p(0,ℓ) ← (0,ℓ − 1) k ∈ [n], ℓ ∈ [m]

k ← 1 n ℓ ← 1 m

d(k, ℓ) p (k, ℓ)
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Optimal edit path algorithm

• Produce edit path: 

• Set 


• While 


• If , 
print “Substitute  for ”


• If , print “Delete ”


• If , print “Insert ”


• Set 

(k, ℓ) = ← (n, m)

(k, ℓ) ≠ (0,0)

p(k, ℓ) = (k − 1,ℓ − 1) and xk ≠ yℓ
xk yℓ

p(k, ℓ) = (k − 1,ℓ) xk

p(k, ℓ) = (k, ℓ − 1) yℓ

(k, ℓ) ← p(k, ℓ)
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Edit distance runtime

• Generating tables subroutine runs in  time


• The path from  to  has length at most . Total time to print the 
edit distance is .


• Total runtime is still .

O(nm)

(n, m) (0,0) n + m
O(n + m)

O(nm)
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General dynamic programming algorithm

• Iterate through subproblems: Starting from the “smallest” and building up to 
the “biggest.” For each one:


• Find the optimal value, using the previously-computed optimal values to 
smaller subproblems.


• Record the choices made to obtain this optimal value. (If many smaller 
subproblems were considered as candidates, record which one was chosen.)


• Compute the solution: We have the value of the optimal solution to this 
optimization problem but we don’t have the actual solution itself. Use the 
recorded information to actually reconstruct the optimal solution.
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General dynamic programming runtime
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Runtime = (Total number of subproblems) × (Time it takes to solve problems
given solutions to subproblems)


