Lecture 11 Dynamic programming

Chinmay Nirkhe | CSE 421 Spring 2025

1

A new algorithmic paradigm

- Greedy algorithms:
 - Identify a "local" property to optimize
 - Generating a "global" solution by combining individual decisions
- Divide and conquer:
 - Recursively solve computational task by identifying independent subtasks
 - Each independent subtask is smaller than the original $n \rightarrow 0.9n$
 - Combine solutions to subtasks to solve original problem

A new algorithmic paradigm **Dynamic programming**

- Optimal substructure:
 - of subproblems.
 - if we could just skip the recursive steps.
- Overlapping subproblems:
 - The subproblems share sub-subproblems. ullet
 - lot of time solving the same problems over and over again.

• The optimal value of the problem can easily be obtained given the optimal values

• In other words, there is a recursive algorithm for the problem which would be fast

• In other words, if you actually ran that naïve recursive algorithm, it would waste a

Tribonacci numbers

- Input: Integer *n*
- Output: Tribonacci number s_n defined recursively $s_1 = s_2 = s_3 = 1$ and

$$s_n = s_{n-1} + s_{n-2} + s_{n-3}$$
.

• There is a canonical recursive algorithm. But it's not very efficient.

Overlapping subproblems

Overlapping subproblems

Unlike divide & conquer, there are many repeated subproblems...

- Input: Integer *n*
- **Output:** Tribonacci number S_n
- Algorithm:
 - Initialize an array s of length n
 - Set $s_1, s_2, s_3 \leftarrow 1$
 - For $i \leftarrow 4$ to n, set $s_i \leftarrow s_{i-1} + s_{i-2} + s_{i-3}$

This is the "memo" in memoization

- Runtime is often nebulously expressed
- Example 1: Sorting a list of *n* elements
 - The runtime is often expressed as $O(n \log n)$ time
 - But this is misleading recall, it is really $O(n \log n)$ arithmetic operations
 - If each arithmetic is on k-bit integers (between 0 and $2^k 1$), then this takes $O(n \log n \cdot k)$.

- Runtime is often nebulously expressed
- **Example 2**: Dealing with a graph G = (V, E)
 - The runtime is often expressed in terms of
 - We are implicitly assuming the graph is expressed as an adjacency list Input: $\langle V = (1, ..., 6), N_1 = (2, 3, 4), N_2 =$
 - Length of input is $\Theta(n+m)$
 - If runtime is f(n + m) then the runtime is also O(f(|input|))
 - We aren't really losing much by expressing the runtime in terms of n and m

$$n = |V|, m = |E|$$

$$(1,5), N_3 = (1), N_4 = (1,5), N_5 = (2,4), N_6 = ()$$

- Runtime is often nebulously expressed
- **Example 2**: Dealing with a graph G = (V, E)
 - where $M_{ii} = 1$ if $(i, j) \in E$ and = 0 otherwise.
 - Input length is now $\Theta(n^2)$
 - So a runtime of f(n) is equal to O

• Sometimes a graph is expressed as an adjacency matrix $M \in \{0,1\}^{n \times n}$

$$O(f(\sqrt{|\text{input}|}))$$

- Runtime is often nebulously expressed
- **Example 3**: The input is an integer $n \in \mathbb{N}$

The runtime can depend on how the input is expressed

An integer can be expressed in unary 111...1 or in binary in $O(\log n)$ bits

n ones

Tribonacci runtime analysis

- Theorem: $s_n \leq 2^n$.
- **Proof:** By induction. Base cases are $s_1 = s_2 = s_3 = 1$. For induction

$$s_n = s_{n-1} + s_{n-2} + s_{n-3} \le 2^{n-1} + s_{n-3} \le 2^{n-1} + s_{n-2} \le 2^{n-1} + s_{n-3} \le 2^{n-1}$$

• Corollary: Each s_n can be expressed using *n*-bits.

 $-2^{n-2} + 2^{n-3} < 7 \cdot 2^{n-3} < 2^n.$

Tribonacci algorithm

- Input: Integer *n*
- **Output:** Tribonacci number S_n
- Algorithm:

 - Set $s_1, s_2, s_3 \leftarrow 1$
 - For $i \leftarrow 4$ to n, set $s_i \leftarrow s_{i-1} + s_{i-2} + s_{i-3}$

Initialize an array s of length n with each entry being an n-bit number

Tribonacci runtime analysis

- Computing each entry s_i of the array takes 3 additions: O(n) time
- Total time: $O(n^2)$, total space: $O(n^2)$

Could we have done better?

Better time analysis: $O(1) + \sum_{i=1}^{n} O(i) = O(n^2)$ (only constant factor)

• Better space: Use only 3n space by recycling old terms in array

Tribonacci runtime analysis

- **Unary input**
 - Runtime is $O(n^2)$ where n = | input |
- **Binary input**
 - Runtime is $O(4^{\ell})$ where $\ell = |$ input |

• Best possible runtime is $O(n \log^2 n)$ using explicit formula:

algorithm for integer multiplication

 $s_n = a_1r_1^n + a_2r_2^n + a_3r_3^n$ for some algebraic numbers $a_1, a_2, a_3, r_1, r_2, r_3$ and using optimal

- Input: Two strings $X = (x_1 \dots x_m)$ and $Y = (y_1 \dots y_n)$
- **Output:** A minimal sequence of edit operations converting *X* into *Y* with allowed transformations being Delete, Insert, or Substitute (one character)

EVIOUS

- Input: Two strings $X = (x_1 \dots x_m)$ and $Y = (y_1 \dots y_n)$
- **Output:** A minimal sequence of edit operations converting *X* into *Y* with allowed transformations being Delete, Insert, or Substitute (one character)

- Input: Two strings $X = (x_1 \dots x_m)$ and $Y = (y_1 \dots y_n)$
- **Output:** A minimal sequence of edit operations converting *X* into *Y* with allowed transformations being Delete, Insert, or Substitute (one character)

$$E V X O U S$$

 $I I I I$
 $I E V O U S$
 $2 Edi-$

- Input: Two strings $X = (x_1 \dots x_m)$ and $Y = (y_1 \dots y_n)$
- **Output:** A minimal sequence of edit operations converting *X* into *Y* with allowed transformations being Delete, Insert, or Substitute (one character)

 To find a dynamic programming algorithm, we need to reframe the problem as a special case of a general problem which is recurisely defined

- Input: Two strings $X = (x_1 \dots x_m)$ and $Y = (y_1 \dots y_n)$
- **Definitions:**
 - Let X_k be the prefix of the first k characters of X
 - Let $Y_{\mathscr{C}}$ be the prefix of the first k characters of Y
 - Let $d(k, \ell)$ be the minimal edit distance between X_k and Y_ℓ
- Base case: $d(0, \ell) = \ell$, need to insert all characters
- **Base case:** d(k,0) = k, need to delete all characters
- Observation: The order in which edits are made is irrelevant.

Observation: The Last character must change from x_k to y_e if they differ.

If $\chi_k = \gamma_e$, this Simplifies to Computing the edit distance between Xk-1 and YL-1, i.e. d(k,l) = d(k-1,l-1).

 $|f \ \chi_{k} \neq \gamma_{\ell},$

there are 3 ways the last character will get set.

22

 $|f \ \chi_{k} \neq \gamma_{\ell},$

there are 3 ways the last character will get set.

 $|f \ \chi_{k} \neq \gamma_{\ell},$

there are 3 ways the last character will get set.

 $|f \ \chi_{k} \neq \gamma_{\ell},$

there are 3 ways the last character will get set.

One of these 3 cases must occur. So, if $\chi_{k} \neq \gamma_{\ell}$, $d(k, l) = 1 + \min \begin{cases} d(k-1, l-1) \\ d(k-1, l) \\ d(k, l-1) \end{cases}$

Recursive algorithm

- **Recursive algorithm** $d(k, \mathcal{C})$:
 - If k = 0, then return ℓ
 - If $\ell = 0$, then return k

• If
$$x_k = y_\ell$$
,

• Return $d(k-1, \ell-1)$

Else, return 1 + min
$$\begin{cases} d(k-1,\ell-1) \\ d(k,\ell-1), \\ d(k-1,\ell) \end{cases}$$

The edit distance of the original problem is d(n, m).

There are many repeated subproblems.

N					
3					
2				$d(k, \ell)$	
1		1			
0	1		2	3	

n				
3				
2		d(k-1,l-1)	d(k, e)	
1		d(k-1,l-1)	d(k, l-i)	
0	1	2	3	

Note that the value of
d(k, e) only depends on
① if
$$x_k = y_e$$

② the 3 squares of
one fever Hamming neight

n				
3				
2		d(k-1,l-1)	d(k, e)	
1		d(k-1,l-1)	d(k, l-i)	
0	1	2	3	

Edit distance algorithm

- Create a table $(n + 1) \times (m + 1)$ table d.
- Set $d(k,0) \leftarrow k, d(0,\ell) \leftarrow \ell$ for $k \in [n], \ell \in [m] \leftarrow O(n+m)$ then
- For $k \leftarrow 1$ to n• For $\ell \leftarrow 1$ to m
 - If $x_k = y_\ell$, then set $d(k, \ell) \leftarrow d(k-1, \ell-1)$ Else, set $d(k, \ell) \leftarrow 1 + \min \begin{cases} d(k-1, \ell-1), \\ d(k, \ell-1), \\ d(k-1, \ell) \end{cases}$
- Return d(n,m).

Total time = O(nm)

- This algorithm only computes the edit distance.
- How do we also calculate the collection of edits that need to be made?
- Recall we set $d(k, \ell)$ based on a local optimization of subproblems
- Solution: Also keep track of which subproblem achieved the optimization
- Create a tree with $V = [n + 1] \times [m + 1]$ (the squares of the table) and a edge point from (k, ℓ) to the subproblem that solved the optimization

N				
3				
2		d(k-1,l-1)	d(k, e)	
1		d(k-1,l-1)	d(k,l-1)	
0	1	2	3	

Optimal edit path algorithm

- Generate tables:
 - Create $(n + 1) \times (m + 1)$ tables d, p.
 - Set $d(k,0) \leftarrow k, d(0,\ell) \leftarrow \ell$ and $p(k,0) \leftarrow (k-1,0), p(0,\ell) \leftarrow (0,\ell-1)$ for $k \in [n], \ell \in [m]$.
 - For $k \leftarrow 1$ to *n* and for $\ell \leftarrow 1$ to *m*
 - Compute $d(k, \ell)$ recursively and identify parent p of (k, ℓ) .

Optimal edit path algorithm

- Produce edit path:
 - Set $(k, \ell) = \leftarrow (n, m)$
 - While $(k, \ell) \neq (0,0)$
 - If $p(k, \ell) = (k 1, \ell 1)$ and $x_k \neq y_\ell$, print "Substitute x_k for y_{ℓ} "
 - If $p(k, \ell) = (k 1, \ell)$, print "Delete x_k "
 - If $p(k, \ell) = (k, \ell 1)$, print "Insert y_{ℓ} "
 - Set $(k, \ell) \leftarrow p(k, \ell)$

Edit distance runtime

- Generating tables subroutine runs in O(nm) time
- edit distance is O(n + m).
- Total runtime is still O(nm).

• The path from (n, m) to (0, 0) has length at most n + m. Total time to print the

General dynamic programming algorithm

- Iterate through subproblems: Starting from the "smallest" and building up to the "biggest." For each one:
 - Find the optimal value, using the previously-computed optimal values to smaller subproblems.
 - Record the choices made to obtain this optimal value. (If many smaller subproblems were considered as candidates, record which one was chosen.)
- Compute the solution: We have the value of the optimal solution to this
 optimization problem but we don't have the actual solution itself. Use the
 recorded information to actually reconstruct the optimal solution.

General dynamic programming runtime

Runtime = (Total number of subproblems) $\times \begin{pmatrix} \text{Time it takes to solve problems} \\ \text{given solutions to subproblems} \end{pmatrix}$