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Lecture 10
Computing medians and quicksort
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Previously in CSE 421…
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Multiplication

• Matrix multiplication 

•  time algorithm for  matrices


• Strassen’s divide and conquer algorithm


• Integer multiplication


•  time algorithm for multiplying -bit numbers


• Karatsuba’s divide and conquer algorithm


• Polynomial multiplication 

•  time algorithm for multiplying degree  polynomials


• Convert to evaluation basis via Fast Fourier transform for quick evaluation

O(n2.87) n × n

O(n1.58) n

O(n log n) n
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Today
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Median

• Input: Input list  for  odd.


• Output: The median element i.e.  when .


• An upper bound for the runtime is  from sorting + selecting.


• Can we do better? Could we achieve ?

X = (x1, x2, …, xn) ∈ ℝn n

y(n+1)/2 Y = sort(X)

O(n log n)

O(n)
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Median

• Consider a divide and conquer algorithm for median


• What would the recurrence relation have to be for ?


• Case 1: 


• Challenge is to split the problem  into two halves with  compute


• And to “stitch” the solutions to the two subproblems together in  compute


• Case 2: 


• With  time, we can make a constant number of passes through the list 


• After constant number of passes, we need to find a sublist  of size  which must contain the median


• Then we recurse on the sublist 

T(n) = O(n)

T(n) = 2T(n/2) + O(1)

X O(1)

O(1)

T(n) = T(n/2) + O(n)

O(n) X

X′ n/2

X′ 
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Selection

• Let’s define a more general problem called “Selection”


• Input: list .


• Output: The -th element  when .


• Generalizes the median problem

(X, k) ∈ ℝn × [n]

k yk ⃗y = sort( ⃗x)
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection
Find the 6th element
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Selection

• Recursive algorithm :


• Randomly sample  from . Call  the “pivot”.


• Filter  into , , and  based on if , , or .


• If , recursively output .


• Else if, , output .


• Else, recursively output .

Selection(X, k)

j [n] xj

X XL XE XR xi < xj xi = xj xi > xj

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k xj

Selection(XR, k − |XL | − |XE | )
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Runtime analysis

• In order to apply the master theorem, we would need to argue that each recursive call was reducing 
the input size from  to  for 


• 


• However, each call may not reduce the size from  to 


• Depends on how close the randomly chosen  is to the middle


• If pivot  was the largest element, then , and .


• Decreases instance size from  to .


• Fortunately, the probability this occurs is .

n n/b b > 1

T(n) = T(n/b) + cn ⟹ T(n) =
c

1 − 1/b
n

n n/b

xj

xj |XL | = n − 1, |XE | = 1 |XR | = 0

n n − 1

1/n
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Runtime analysis

• Amortized analysis: 

• If pivot  is the -th element, then the next problem is of size 
.


• With probability , pivot  is the -th element for .


• The expected compute in reducing from -sized instance to a -sized 
instance is .


• Total expected runtime: .

xj ℓ
≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4
O(n)

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)
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Runtime analysis

• Amortized analysis: 

• If pivot  is the -th element, then the next problem is of size .


• With probability , pivot  is the -th element for .


• The expected compute in reducing from -sized instance to a -sized instance is .


•  probability, shrinks in 1 reduction.


•  probability, shrinks in 2 reductions.


• …  probability, shrinks in  reductions …


• Expected compute is 


• Total expected runtime: .

xj ℓ ≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4 O(n)

≥ 1/2

≥ 1/4

≥ 1/2j j

≤ O(n) ⋅ (
1
2

+
1
4

⋅ 2 +
1
8

⋅ 3 + …) = O(n) ⋅ 2

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)
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Derandomization

• The worst case runtime is .


• Only happens with  probability.


• But, is there an algorithm that didn’t require randomness?


• If we could guarantee that the pivot  was in the middle half, then each 
recursion would decrease in size by .


• Blum-Pratt-Floyd-Rivest-Tarjan (1973): Calculate a pivot in the middle 
 in time .

O(n2)

2−Ω(n log n)

xj
3/4

4n/10 O(n)
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Pivot selection algorithm

• Express the  elements as a 
 matrix of elements

n
5 × (n/5)
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Pivot selection algorithm

• Express the  elements as a 
 matrix of elements


• Calculate the medians of 
each of the columns: 

n
5 × (n/5)

Y = (y1, y2, …, yn/5)
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Pivot selection algorithm

• Express the  elements as a 
 matrix of elements


• Calculate the medians of 
each of the columns: 

n
5 × (n/5)

Y = (y1, y2, …, yn/5)
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Pivot selection algorithm

• Express the  elements as a 
 matrix of elements


• Calculate the medians of 
each of the columns: 




• Choose the pivot as the 
median of the medians: 

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)
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Pivot selection algorithm
Runtime analysis

• Express the  elements as a 
 matrix of elements


• Calculate the medians of 
each of the columns: 




• Choose the pivot as the 
median of the medians: 

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)
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Pivot selection algorithm
Proof of correctness
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Pivot selection algorithm
Proof of correctness

• There are  columns 
such that .

≥ n/10
yj ≥ p
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Pivot selection algorithm
Proof of correctness

• There are  columns 
such that .


• In each such column, there 
are 3 elements .

≥ n/10
yj ≥ p

≥ yj
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Pivot selection algorithm
Proof of correctness

• There are  columns 
such that .


• In each such column, there 
are 3 elements .


• Therefore, there are  
elements .


• Similarly, there are  
elements . 

≥ n/10
yj ≥ p

≥ yj

≥ 3n/10
≥ p

≥ 3n/10
≤ p
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• So,  is in the middle  
elements and a good pivot.

p 4n/10



Median/Selection algorithm

• Input: 


• Output: the -th item in the list 


• Algorithm:


• Calculate median-of-medians( ) in a  division.


• Filter  into , , and  based on 


• If , recurse 


• Else if , return 


• Else, return .

(X, k) ∈ ℝn × [n]

k X

p ← X 5 × (n/5)

X XL XE XR p

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k p

Selection(XR, k − |XL | − |XE | )
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Quicksort algorithm

• The algorithm we just analyzed, “Quickselect”, can be generalized to sorting


• Sorting algorithm :


• Pick a pivot  (either randomized or with median-of-medians)


• Filter  into , ,  by comparing elements with 


• Concatenate .

Quicksort(X)

p

X XL XE XR p

Sort(XL), XE, Sort(XR)
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Quicksort algorithm
Runtime analysis

• Runtime depends on pivot selection


• Median-of-means:


• 


•  by analysis you will solve on your pset


• Choose random element:


• Worst case:  time


• Amortized:  (next!)

T(n) ≤ T(αn) + T(n − αn) + O(n) for α ∈ [0.3,0.7]

T(n) = O(n)

O(n2)

O(n log n)
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Quicksort algorithm
Runtime analysis

• Observations: 


• The runtime of Quicksort is proportional to the 
number of comparisons


• The algorithm only compares two elements if one 
is the pivot


• Let  be the sorted version of the 
input.


• Let 


• Claim: 

Y = (y1, …, yn)

pij = Pr [yi and yj are compared]
pij ≤

2
j − i + 1

when i < j .

28



Proof of claim

• Claim: 


• Proof:


•  and  and  are compared at most once


• Comparisons only occur when one of them is the 
pivot


• Case 1:  and we never recurse on 


• Case 2:  and we never compare 
between and 


• Case 3:  and we never compare 
between  and 

pij ≤
2

j − i + 1
when i < j .

yi ≤ yj yi yj

yi, yj ∈ XE XE

yi ∈ XE, yj ∈ XR
XL, XE, XR

yi ∈ XL, yj ∈ XE
XL, XE, XR
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• If and when  and  are compared during  then 



• Can be formally proven via induction


• So .


• Probability that either  or  is chosen as pivot is 

.

yi yj sort(X′ )
yi, yi+1, yi+2, …, yj ∈ X′ 

|X′ | ≥ j − i + 1

yi yj

≤
2

j − i + 1



Sorting in the real world

• Quicksort


• Fast almost always, especially for in-memory sorting. 


• Works well with caches due to good locality of reference.


• In practice,


• Don’t filter and . Use in-place swaps.


• When  is small, insertion sorting is a better base case.


• Pick pivot randomly for small , median of 3 random values for medium , and median-of-
medians on 9 elements for large 


• Never actually run the median-of-medians pivot finding routine

XL, XE, XR

n

n n
n
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Sorting in the real world

• Mergesort


• Used when data is expressed as a linked list and RAM access to entries in 
the middle of the list is non-existent


• Sorting over a dataset that cannot be stored in memory


• Uses  extra space when sorting arrays over QuicksortO(n)
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Sorting in the real world

• Insertion sort 

• Best when data is almost sorted already


•  when far from sorted


• Heap sort - memory efficient choice


• Bucket sort - distribution aware sorting


• Etc…

O(n2)
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