Lecture 10

Computing medians and quicksort

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Multiplication

 Matrix multiplication

« O(n*®") time algorithm for n X n matrices
» Strassen’s divide and conquer algorithm

* Integer multiplication

.« O(n'>9%) time algorithm for multiplying 72-bit numbers
« Karatsuba’s divide and conquer algorithm
 Polynomial multiplication
» O(nlogn) time algorithm for multiplying degree n polynomials

 Convert to evaluation basis via Fast Fourier transform for quick evaluation

Today

Median

o Input: Input list X = (x, x5, ..., x,) € R" for n odd.

» Output: The median element i.e. y,,, 1), when ¥ = sort(X).

» An upper bound for the runtime is O(n log n) from sorting + selecting.

» Can we do better? Could we achieve O(n)?

Median

* Consider a divide and conqguer algorithm for median
« What would the recurrence relation have to be for 7(n) = O(n)?
e Case1:T(n) =2T(n/2) + O(1)
« Challenge is to split the problem X into two halves with O(1) compute
» And to “stitch” the solutions to the two subproblems together in O(1) compute
e Case2: T(n) =1T(n/2)+ O(n)
« With O(n) time, we can make a constant number of passes through the list X
 After constant number of passes, we need to find a sublist X’ of size n/2 which must contain the median

« Then we recurse on the sublist X’

Selection

* |et’s define a more general problem called “Selection”

e Input: list (X, k) € R" X [n].
+ Output: The k-th element y, when y = sort(X).

e (Generalizes the median problem

Selection
Find the 6th element

ole[#]2[a (344

s 2[[o [

Selection
Find the 6th element

\:O\‘il_(ﬂlli(% [q 4 [%kzli[o]g

Selection
Find the 6th element

ol B T < -
J —
[0 ﬂz(i\z]i\o [zE

le,«\gu« 9

L \/ -~
reculse. own ’H’\iS St

Selection

» Recursive algorithm Selection(X, k):

. Randomly sample j from |n]. Call x; the “pivot”.

o Filter X into X;, Xz, and X, based on if x; < Xj, X; = X;, Or X; > X;.

. If | X; | > k, recursively output Selection(X;, k).

. Elseif, [X, |+ |Xg| = &, output x.

» Else, recursively output Selection(Xp, k — | X; | — | Xz |).

11

Runtime analysis

* |n order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from n to n/b forb > 1

. I'(n)=Tn/b)+cn = T(n) = - l/bn

« However, each call may not reduce the size from n to n/b

« Depends on how close the randomly chosen X; Is to the middle

+ If pivot x; was the largest element, then | X, | =n — 1,|Xg| = 1,and | Xi| = 0.
» Decreases instance size fromnton — 1.

 Fortunately, the probability this occurs is 1/n.

12

- - P
Runtime analysis g o L Torme

« Amortized analysis: Pot dus} n'é\»*“.

o |f pivot X; is the £-th element, then the next problem is of size
<max{f,n—17}.

» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

« The expected compute in reducing from n-sized instance to a 3n/4-sized
instance is O(n).

 Total expected runtime: T(n) = T(3n/4) + O(n) —> T(n) = O(n).

13

Runtime analysis

« Amortized analysis:

+ If pivot x; is the £-th element, then the next problem is of size < max{Z,n —¢}.
» With probability > 1/2, pivot x; is the £-th element for £ € {n/4,...,3n/4}.

» The expected compute in reducing from n-sized instance to a 3n/4-sized instance is O(n).
« > 1/2 probability, shrinks in 1 reduction.
« > 1/4 probability, shrinks in 2 reductions.

e ... > 1/2 probability, shrinks in j reductions ...

1 1 1
. Expected computeis < O(n) - (2 | 2 2+§ 34+ ...)=0(n) -2
 Total expected runtime: T(n) = T(3n/4) + O(n) — T(n) = O(n).

14

Derandomization

. The worst case runtime is O(n?).

Q(nlogn)

e Only happens with 2~ probability.

* But, is there an algorithm that didn’t require randomness?

« |f we could guarantee that the pivot X; was INn the middle half, then each
recursion would decrease in size by 3/4.

 Blum-Pratt-Floyd-Rivest-Tarjan (1973): Calculate a pivot in the middle
4n/10 in time O(n).

15

Pivot selection algorithm

L
—

als

 EXpress the n elements as a

5 X (n/5) matrix of elements

Pivot selection algorithm

als

L
—

T

 EXpress the n elements as a

5 X (n/5) matrix of elements

e Calculate the medians of

each of the columns:

Y = (Y25 o5 Yuss) |

LT LT T T

Hne medicn 1S one 0'9
the § &\twm’fs [d‘b\.k

QO\\AW\V\,
17

Pivot selection algorithm

L
—

 EXpress the n elements as a
5 X (n/5) matrix of elements

e Calculate the medians of
each of the columns:

Y = (Y25 o5 Yuss)

18

als

T

Pivot selection algorithm

L
—

 EXpress the n elements as a
5 X (n/5) matrix of elements

e Calculate the medians of
each of the columns:

Y = (Y25 o5 Yuss)

 Choose the pivot as the
median of the medians:

p < median(Y)

19

als

T

Pivot selection algorithm

Runtime analysis
OW ot
J \'(S’(—W\ ’\WC
 EXpress the n elements as a
5 X (n/5) matrix of elements

 (Calculate the medians of D0 ver e
each of the columns: = per <

Y = (yl, Vs ooy yn/S) Total OCVL’) |

 Choose the pivot as the
median of the medians:

p < median(Y) T(w/<) recnsinely

L
—

als

T

Total Hivmg: 1) = TC‘%B +0(n) =

20

Pivot selection algorithm

Proof of correctness -

als

~< |
N

Pivot selection algorithm

Proof of correctness

e There are > n/10 columns
such that y; 2 p.

22

L
—

als

T

Pivot selection algorithm

Proof of correctness - n _ ,

e There are > n/10 columns
such that y; 2 p.

 |n each such column, there
are 3 elements 2> ..

23

Pivot selection algorithm

Proof of correctness - n _ ,

e There are > n/10 columns
such that y; 2 p.

 |n each such column, there
are 3 elements 2> ..

e Therefore, there are > 3n/10

elements > p. E ‘/Z‘ 2l IP\ H
N\
 Similarly, there are > 3n/10 mwm\ of medions,
elements < p. So, pis in the middle 4n/10

elements and a good pivot.

Median/Selection algorithm

Total : TC“') = T(‘io V\B + T(—?z} + O(n)
e Input: (X, k) € R" X [n] = T = O()

e Output: the k-th item in the list X ffp&d_ Pmbw o how 4o aml\/'-zﬁ Hale

* Algorithm: gcm\;w\im of Mosten. Theavonn_

» Calculate p < median-of-medians(X) in a 5 X (n/35) division.

e Filter X into X;, X, and X, based on p — MECwRive "C%) + 0(n)
. If | X; | > k, recurse Selection(X;, k)

» Elseif | X; |+ |Xz| =k, return p "Blursive T<T?5 "‘>

» Else, return Selection(Xyp, k — | X; | — | Xz |).

25

Quicksort algorithm

* The algorithm we just analyzed, “Quickselect”, can be generalized to sorting
» Sorting algorithm Quicksort(X):

e Pick a pivot p (either randomized or with median-of-medians)

» Filter X into X;, X, Xp by comparing elements with p

» Concatenate Sort(X;), Xz, Sort(Xp).
\ A
COVM u&i (N ec‘}tc{ ﬂm\‘\"\w\& \S C\/\a“u\ 0 D(\AL Jo
? ,\3 f‘\)om'aubke, S e 8%—

26

Quicksort algorithm

Runtime analysis

 Runtime depends on pivot selection

 Median-of-means:
e T(n) < T(an)+ T(n — an) + O(n) for ¢ € [0.3,0.7]
o T(n) = O(n) by analysis you will solve on your pset
 Choose random element:

. Worst case: O(n?) time

» Amortized: O(n log n) (next!)

27

Quicksort algorithm

Runtime analysis

L{g(‘ N Ao, C,\«o'\cx_(f&\ ’F‘\'O'k}

» Observations:

* The runtime of Quicksort is proportional to the
number of comparisons

* The algorithm only compares two elements if one
IS the pivot

e LetY = (yy,...,¥,) be the sorted version of the
iInput.

. Letp,; = Pr |y, and y; are compared

2
Claim:pljsj_i_l_1 when 1 <.

28

Proof of claim

* Proof: - Ifand when y; and y; are compared during sort(X") then

9 Vi1 Vi4Ds oo EX,
e y; < Y and y; and y; are compared at most once Yis Vit 1> Vit2 Y

» Comparisons only occur when one of them is the * Can be formally proven via induction
pivot
« So |X'|>2j—i+1.
- Case 1:y;,y; € Xy and we never recurse on Xp

« Probabillity that either y. or y. iIs chosen as pivot is
« Case2:y. € X, ;i € Xp and we never compare 5 y i Or)j P

between X, , X, and Xp <

j—i+1
- Case 3:y; € X}, y; € Xg and we never compare
between X;, Xy, and X,

29

Sorting in the real world

* Quicksort
 Fast almost always, especially for in-memory sorting.
 Works well with caches due to good locality of reference.

* |n practice,
 Don’t filter X;, X, and Xp. Use in-place swaps.
 When n is small, insertion sorting is a better base case.

* Pick pivot randomly for small n, median of 3 random values for medium 7, and median-of-
medians on 9 elements for large n

* Never actually run the median-of-medians pivot finding routine

30

Sorting in the real world

e Mergesort

 Used when data is expressed as a linked list and RAM access to entries In
the middle of the list is non-existent

e Sorting over a dataset that cannot be stored in memory

» Uses O(n) extra space when sorting arrays over Quicksort

31

Sorting in the real world

e Insertion sort

 Best when data Is almost sorted already

. O(n”) when far from sorted
 Heap sort - memory efficient choice

 Bucket sort - distribution aware sorting

e Etc...

32

