
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 10
Computing medians and quicksort

 1

Previously in CSE 421…

2

Multiplication

• Matrix multiplication

• time algorithm for matrices

• Strassen’s divide and conquer algorithm

• Integer multiplication

• time algorithm for multiplying -bit numbers

• Karatsuba’s divide and conquer algorithm

• Polynomial multiplication

• time algorithm for multiplying degree polynomials

• Convert to evaluation basis via Fast Fourier transform for quick evaluation

O(n2.87) n × n

O(n1.58) n

O(n log n) n

3

Today

4

Median

• Input: Input list for odd.

• Output: The median element i.e. when .

• An upper bound for the runtime is from sorting + selecting.

• Can we do better? Could we achieve ?

X = (x1, x2, …, xn) ∈ ℝn n

y(n+1)/2 Y = sort(X)

O(n log n)

O(n)

5

Median

• Consider a divide and conquer algorithm for median

• What would the recurrence relation have to be for ?

• Case 1:

• Challenge is to split the problem into two halves with compute

• And to “stitch” the solutions to the two subproblems together in compute

• Case 2:

• With time, we can make a constant number of passes through the list

• After constant number of passes, we need to find a sublist of size which must contain the median

• Then we recurse on the sublist

T(n) = O(n)

T(n) = 2T(n/2) + O(1)

X O(1)

O(1)

T(n) = T(n/2) + O(n)

O(n) X

X′ n/2

X′

6

Selection

• Let’s define a more general problem called “Selection”

• Input: list .

• Output: The -th element when .

• Generalizes the median problem

(X, k) ∈ ℝn × [n]

k yk ⃗y = sort(⃗x)

7

Selection
Find the 6th element

8

Selection
Find the 6th element

9

Selection
Find the 6th element

10

Selection

• Recursive algorithm :

• Randomly sample from . Call the “pivot”.

• Filter into , , and based on if , , or .

• If , recursively output .

• Else if, , output .

• Else, recursively output .

Selection(X, k)

j [n] xj

X XL XE XR xi < xj xi = xj xi > xj

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k xj

Selection(XR, k − |XL | − |XE |)
11

Runtime analysis

• In order to apply the master theorem, we would need to argue that each recursive call was reducing
the input size from to for

•

• However, each call may not reduce the size from to

• Depends on how close the randomly chosen is to the middle

• If pivot was the largest element, then , and .

• Decreases instance size from to .

• Fortunately, the probability this occurs is .

n n/b b > 1

T(n) = T(n/b) + cn ⟹ T(n) =
c

1 − 1/b
n

n n/b

xj

xj |XL | = n − 1, |XE | = 1 |XR | = 0

n n − 1

1/n

12

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size
.

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized
instance is .

• Total expected runtime: .

xj ℓ
≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4
O(n)

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

13

Runtime analysis

• Amortized analysis:

• If pivot is the -th element, then the next problem is of size .

• With probability , pivot is the -th element for .

• The expected compute in reducing from -sized instance to a -sized instance is .

• probability, shrinks in 1 reduction.

• probability, shrinks in 2 reductions.

• … probability, shrinks in reductions …

• Expected compute is

• Total expected runtime: .

xj ℓ ≤ max{ℓ, n − ℓ}

≥ 1/2 xj ℓ ℓ ∈ {n/4,…,3n/4}

n 3n/4 O(n)

≥ 1/2

≥ 1/4

≥ 1/2j j

≤ O(n) ⋅ (
1
2

+
1
4

⋅ 2 +
1
8

⋅ 3 + …) = O(n) ⋅ 2

T(n) = T(3n/4) + O(n) ⟹ T(n) = O(n)

14

Derandomization

• The worst case runtime is .

• Only happens with probability.

• But, is there an algorithm that didn’t require randomness?

• If we could guarantee that the pivot was in the middle half, then each
recursion would decrease in size by .

• Blum-Pratt-Floyd-Rivest-Tarjan (1973): Calculate a pivot in the middle
 in time .

O(n2)

2−Ω(n log n)

xj
3/4

4n/10 O(n)

15

Pivot selection algorithm

• Express the elements as a
 matrix of elements

n
5 × (n/5)

16

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

17

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

18

Pivot selection algorithm

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

• Choose the pivot as the
median of the medians:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)

19

Pivot selection algorithm
Runtime analysis

• Express the elements as a
 matrix of elements

• Calculate the medians of
each of the columns:

• Choose the pivot as the
median of the medians:

n
5 × (n/5)

Y = (y1, y2, …, yn/5)

p ← median(Y)

20

Pivot selection algorithm
Proof of correctness

21

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

≥ n/10
yj ≥ p

22

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

• In each such column, there
are 3 elements .

≥ n/10
yj ≥ p

≥ yj

23

Pivot selection algorithm
Proof of correctness

• There are columns
such that .

• In each such column, there
are 3 elements .

• Therefore, there are
elements .

• Similarly, there are
elements .

≥ n/10
yj ≥ p

≥ yj

≥ 3n/10
≥ p

≥ 3n/10
≤ p

24

• So, is in the middle
elements and a good pivot.

p 4n/10

Median/Selection algorithm

• Input:

• Output: the -th item in the list

• Algorithm:

• Calculate median-of-medians() in a division.

• Filter into , , and based on

• If , recurse

• Else if , return

• Else, return .

(X, k) ∈ ℝn × [n]

k X

p ← X 5 × (n/5)

X XL XE XR p

|XL | ≥ k Selection(XL, k)

|XL | + |XE | ≥ k p

Selection(XR, k − |XL | − |XE |)

25

Quicksort algorithm

• The algorithm we just analyzed, “Quickselect”, can be generalized to sorting

• Sorting algorithm :

• Pick a pivot (either randomized or with median-of-medians)

• Filter into , , by comparing elements with

• Concatenate .

Quicksort(X)

p

X XL XE XR p

Sort(XL), XE, Sort(XR)

26

Quicksort algorithm
Runtime analysis

• Runtime depends on pivot selection

• Median-of-means:

•

• by analysis you will solve on your pset

• Choose random element:

• Worst case: time

• Amortized: (next!)

T(n) ≤ T(αn) + T(n − αn) + O(n) for α ∈ [0.3,0.7]

T(n) = O(n)

O(n2)

O(n log n)
27

Quicksort algorithm
Runtime analysis

• Observations:

• The runtime of Quicksort is proportional to the
number of comparisons

• The algorithm only compares two elements if one
is the pivot

• Let be the sorted version of the
input.

• Let

• Claim:

Y = (y1, …, yn)

pij = Pr [yi and yj are compared]
pij ≤

2
j − i + 1

when i < j .

28

Proof of claim

• Claim:

• Proof:

• and and are compared at most once

• Comparisons only occur when one of them is the
pivot

• Case 1: and we never recurse on

• Case 2: and we never compare
between and

• Case 3: and we never compare
between and

pij ≤
2

j − i + 1
when i < j .

yi ≤ yj yi yj

yi, yj ∈ XE XE

yi ∈ XE, yj ∈ XR
XL, XE, XR

yi ∈ XL, yj ∈ XE
XL, XE, XR

29

• If and when and are compared during then

• Can be formally proven via induction

• So .

• Probability that either or is chosen as pivot is

.

yi yj sort(X′)
yi, yi+1, yi+2, …, yj ∈ X′

|X′ | ≥ j − i + 1

yi yj

≤
2

j − i + 1

Sorting in the real world

• Quicksort

• Fast almost always, especially for in-memory sorting.

• Works well with caches due to good locality of reference.

• In practice,

• Don’t filter and . Use in-place swaps.

• When is small, insertion sorting is a better base case.

• Pick pivot randomly for small , median of 3 random values for medium , and median-of-
medians on 9 elements for large

• Never actually run the median-of-medians pivot finding routine

XL, XE, XR

n

n n
n

30

Sorting in the real world

• Mergesort

• Used when data is expressed as a linked list and RAM access to entries in
the middle of the list is non-existent

• Sorting over a dataset that cannot be stored in memory

• Uses extra space when sorting arrays over QuicksortO(n)

31

Sorting in the real world

• Insertion sort

• Best when data is almost sorted already

• when far from sorted

• Heap sort - memory efficient choice

• Bucket sort - distribution aware sorting

• Etc…

O(n2)

32

