Lecture 10 **Computing medians and quicksort**

Chinmay Nirkhe | CSE 421 Spring 2025

Previously in CSE 421...

Multiplication

- Matrix multiplication
 - $O(n^{2.87})$ time algorithm for $n \times n$ matrices
 - Strassen's divide and conquer algorithm
- Integer multiplication
 - $O(n^{1.58})$ time algorithm for multiplying *n*-bit numbers
 - Karatsuba's divide and conquer algorithm
- **Polynomial multiplication**
 - $O(n \log n)$ time algorithm for multiplying degree *n* polynomials
 - Convert to evaluation basis via Fast Fourier transform for quick evaluation

Median

- Input: Input list $X = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$ for n odd.
- Output: The median element i.e. $y_{(n+1)/2}$ when Y = sort(X).

- An upper bound for the runtime is $O(n \log n)$ from sorting + selecting.
- Can we do better? Could we achieve O(n)?

Median

- Consider a divide and conquer algorithm for median
- What would the recurrence relation have to be for T(n) = O(n)?
- Case 1: T(n) = 2T(n/2) + O(1)
 - Challenge is to split the problem X into two halves with O(1) compute
 - And to "stitch" the solutions to the two subproblems together in O(1) compute
- Case 2: T(n) = T(n/2) + O(n)
 - With O(n) time, we can make a constant number of passes through the list X
 - After constant number of passes, we need to find a sublist X' of size n/2 which must contain the median
 - Then we recurse on the sublist X'

Selection

- Let's define a more general problem called "Selection"
 - Input: list $(X, k) \in \mathbb{R}^n \times [n]$.
 - Output: The k-th element y_k when $\vec{y} = \operatorname{sort}(\vec{x})$.
- Generalizes the median problem

Selection Find the 6th element

03365223

Selection Find the 6th element

Selection Find the 6th element

Selection

- **Recursive algorithm** Selection(X, k):
 - Randomly sample *j* from [*n*]. Call x_j the "**pivot**".
 - Filter X into X_L , X_E , and X_R based on if $x_i < x_j$, $x_i = x_j$, or $x_i > x_j$.
 - If $|X_I| \ge k$, recursively output Selection (X_I, k) .
 - Else if, $|X_L| + |X_E| \ge k$, output x_i .
 - Else, recursively output Selection($X_R, k |X_L| |X_E|$).

Runtime analysis

the input size from n to n/b for b > 1

•
$$T(n) = T(n/b) + cn \implies T(n) = \frac{c}{1 - 1/c}$$

- However, each call may not reduce the size from n to n/b
- Depends on how close the randomly chosen x_i is to the middle
 - If pivot x_i was the largest element, then $|X_L| = n 1$, $|X_E| = 1$, and $|X_R| = 0$.
 - Decreases instance size from *n* to n-1.
 - Fortunately, the probability this occurs is 1/n.

• In order to apply the master theorem, we would need to argue that each recursive call was reducing

$$-n$$

Runtime analysis

- Amortized analysis:
 - If pivot x_j is the ℓ -th element, then the next problem is of size $\leq \max\{\ell, n \ell\}.$
 - With probability $\geq 1/2$, pivot x_j is the ℓ -th element for $\ell \in \{n/4, \dots, 3n/4\}$.
 - The expected compute in reducing from *n*-sized instance to a 3n/4-sized instance is O(n).
- Total **expected** runtime: T(n) = T(3)

$$3n/4) + O(n) \implies T(n) = O(n).$$

Runtime analysis

- Amortized analysis:
 - If pivot x_i is the ℓ -th element, then the next problem is of size $\leq \max\{\ell, n \ell\}$.
 - With probability $\geq 1/2$, pivot x_i is the ℓ -th element for $\ell \in \{n/4, \dots, 3n/4\}$.
 - The expected compute in reducing from *n*-sized instance to a 3n/4-sized instance is O(n).
 - $\geq 1/2$ probability, shrinks in 1 reduction.
 - $\geq 1/4$ probability, shrinks in 2 reductions.
 - ... $\geq 1/2^{j}$ probability, shrinks in *j* reductions ...
 - Expected compute is $\leq O(n) \cdot (\frac{1}{2} + \frac{1}{4} \cdot 2 + \frac{1}{8})$
- Total expected runtime: $T(n) = T(3n/4) + O(n) \implies T(n) = O(n)$.

$$\cdot 3 + \ldots) = O(n) \cdot 2$$

Derandomization

- The worst case runtime is $O(n^2)$.
 - Only happens with $2^{-\Omega(n\log n)}$ probability.
- But, is there an algorithm that didn't require randomness?
- If we could guarantee that the pivot x_j was in the middle half, then each recursion would decrease in size by 3/4.
- Blum-Pratt-Floyd-Rivest-Tarjan (1973): Calculate a pivot in the middle 4n/10 in time O(n).

• Express the *n* elements as a $5 \times (n/5)$ matrix of elements

- Express the *n* elements as a $5 \times (n/5)$ matrix of elements
- Calculate the medians of each of the columns: $Y = (y_1, y_2, ..., y_{n/5})$

the 5 clements in the

column

- Express the *n* elements as a $5 \times (n/5)$ matrix of elements
- Calculate the medians of each of the columns: $Y = (y_1, y_2, ..., y_{n/5})$

- Express the *n* elements as a $5 \times (n/5)$ matrix of elements
- Calculate the medians of each of the columns: $Y = (y_1, y_2, ..., y_{n/5})$
- Choose the pivot as the median of the medians:
 p ← median(*Y*)

Pivot selection algorithm Runtime analysis

- Express the *n* elements as a $5 \times (n/5)$ matrix of elements
- Calculate the medians of O(1) per col. \in Total O(n). each of the columns: $Y = (y_1, y_2, \dots, y_{n/5})$
- Choose the pivot as the median of the medians: $p \leftarrow \operatorname{median}(Y) \quad T(n/s) \quad recursively$

Total time: $T(n) = T(\frac{n}{2}) + O(n) \implies T(n) = O(n)$

• There are $\geq n/10$ columns such that $y_i \geq p$.

- There are $\geq n/10$ columns such that $y_i \geq p$.
- In each such column, there are 3 elements $\geq y_i$.

- There are $\geq n/10$ columns such that $y_j \geq p$.
- In each such column, there are 3 elements $\geq y_i$.
- Therefore, there are $\geq 3n/10$ elements $\geq p$.
- Similarly, there are $\geq 3n/10$ elements $\leq p$. • So, p is in

Median/Selection algorithm

- Input: $(X, k) \in \mathbb{R}^n \times [n]$
- **Output:** the k-th item in the list X
- Algorithm:
 - Calculate $p \leftarrow \text{median-of-medians}(X)$ in a
 - Filter X into X_L , X_E , and X_R based on p
 - If $|X_L| \ge k$, recurse Selection (X_L, k)
 - Else if $|X_L| + |X_E| \ge k$, return p
 - Else, return Selection($X_R, k |X_L| |$

$$Total: T(n) = T(\frac{7}{10}n) + T(\frac{n}{5}) + O(n)$$

$$\Rightarrow T(n) = O(n)$$

Pset problem on how to analyze this
generalization of Master theorem

$$na 5 \times (n/5) \text{ division.}$$

$$recursive T(\frac{n}{5}) + O(n)$$

$$\int recursive T(\frac{7}{10}n)$$

$$-|X_E|).$$

Quicksort algorithm

- Sorting algorithm Quicksort(X):
 - Pick a pivot p (either randomized or with median-of-medians)
 - Filter X into X_L , X_E , X_R by comparing elements with p
 - Concatenate $Sort(X_I), X_E, Sort(X_I)$ Computing expected runt variable

• The algorithm we just analyzed, "Quickselect", can be generalized to sorting

$$X_R$$
).

Quicksort algorithm Runtime analysis

- Runtime depends on pivot selection
- Median-of-means:
 - $T(n) \le T(\alpha n) + T(n \alpha n) + O(n)$ for $\alpha \in [0.3, 0.7]$
 - T(n) = O(n) by analysis you will solve on your pset
- Choose random element:
 - Worst case: $O(n^2)$ time
 - Amortized: $O(n \log n)$ (next!)

Quicksort algorithm Runtime analysis for random choice of pivot

- Observations:
 - The runtime of Quicksort is proportional to the number of comparisons
 - The algorithm only compares two elements if is the pivot
- Let $Y = (y_1, \dots, y_n)$ be the sorted version of the input.

• Let
$$p_{ij} = \mathbf{Pr} \left[y_i \text{ and } y_j \text{ are compared} \right]$$

• Claim:
$$p_{ij} \leq \frac{2}{j-i+1}$$
 when $i < j$.

Expected number of comparisons:

$$\sum_{i < j} P_{ij} \leq 2 \sum_{i < l} \sum_{j = i+l}^{n} \frac{1}{j - i + l}$$

$$= 2 \sum_{i = l}^{n} \sum_{i = l} \sum_{k = l}^{n-i+l} \frac{1}{k+l}$$
one

$$= 2 \sum_{i = l}^{n} \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n-i+l}$$

$$\leq \log(n-i+l) + 1$$

$$\leq \log(n) + 1$$

$$\leq 2 n \log n + 2n$$
Runtime of quicksort = O(n log n).

Proof of claim

• Claim:
$$p_{ij} \leq \frac{2}{j-i+1}$$
 when $i < j$.

• **Proof**:

- $y_i \leq y_j$ and y_i and y_j are compared at most once
 - Comparisons only occur when one of them is the pivot
 - Case 1: $y_i, y_i \in X_E$ and we never recurse on X_E
 - Case 2: $y_i \in X_E, y_i \in X_R$ and we never compare between X_L, X_E , and X_R
 - Case 3: $y_i \in X_L, y_j \in X_E$ and we never compare between X_L, X_E , and X_R

- If and when y_i and y_j are compared during sort(X') then $y_i, y_{i+1}, y_{i+2}, \dots, y_j \in X'$
 - Can be formally proven via induction \bullet
 - So $|X'| \ge j i + 1$.
 - Probability that either y_i or y_j is chosen as pivot is ullet $\leq \frac{2}{i-i+1}.$

Sorting in the real world

Quicksort

- Fast almost always, especially for in-memory sorting.
- Works well with caches due to good locality of reference.
- In practice,
 - Don't filter X_L, X_E , and X_R . Use in-place swaps.
 - When *n* is small, insertion sorting is a better base case.
 - Pick pivot randomly for small n, median of 3 random values for medium n, and median-ofmedians on 9 elements for large n
 - Never actually run the median-of-medians pivot finding routine

Sorting in the real world

- Mergesort
 - Used when data is expressed as a linked list and RAM access to entries in the middle of the list is non-existent
 - Sorting over a dataset that cannot be stored in memory
 - Uses O(n) extra space when sorting arrays over Quicksort

Sorting in the real world

Insertion sort

- Best when data is almost sorted already
- $O(n^2)$ when far from sorted
- Heap sort memory efficient choice
- Bucket sort distribution aware sorting
- Etc...