
Chinmay Nirkhe | CSE 421 Spring 2025

Lecture 1
Thinking like a Computer Scientist

 1

Thinking like a Computer Scientist
The computational lens

2

The New York Times, October 2024

The New York Times, October 2024

The New York Times, October 2000

There is no Nobel Prize for computer science. But obliquely and perhaps
unconsciously, the judges were using the tools at their disposal to recognize
how formidable the notion of information has become, pervading not just the

technologies we devise but the way we think about ourselves.
— George Johnson

Thinking like a Computer Scientist
The computational lens

3

The New York Times, October 2024

The New York Times, October 2024

• 2024 seemed like it was the year of “thinking like a
computer scientist”. But really its the 2000s that is
the century of thinking like a computer scientist.

• As the problems we wish to solve get bigger and
bigger, understanding the computational cost
associated with solving problems will gain an
outsized importance.

• My goal is to train you how to think about the
world through a computational lens.

a.k.a. why I believe this course should be a required

• Help you learn to identify
algorithmic problems

• Develop a toolkit for finding
efficient algorithms

• Develop techniques for proving
correctness and analyzing their
properties

• Communicate your algorithms
and their properties to others

The goal of this course

4

Properties of an algorithm
What should we be optimizing for?

• Computational efficiency

• Speed, time, communication, etc.

• Historically, important parameters because computers were slow and weak

• Today, important parameters because computations are large

• Fairness

• Does my algorithm have unintended consequences in its optimization?

• Incredibly important as we apply algorithms in the real world

• In my research world of quantum computing

• How much entanglement does my algorithm generate?

• Is my algorithm error-robust? What kind of errors can it tolerate?

5

Course Logistics

6

Instructor
Chinmay Nirkhe [he/him]
nirkhe@cs.washington.edu

Speciality: Complexity, Quantum
Office: CSE2 Room 217
Office Hours: Mondays 4:30 - 6:00pm

7

mailto:nirkhe@cs.washington.edu

The course staff

• Head TAs: Jay Dharmadhikari,
Timothy Tran

• Contact Head TAs with any
questions, logistics, illnesses, etc.

• TAs: Siddharth Iyer, Oscar Sprumont,
Yichuan Deng, Ajay Harilal, Jack
Zhang, Owen Boseley, Shayla Huang

8

Day 1 checklist

• Find the course website. https://courses.cs.washington.edu/courses/cse421/

• Read the syllabus.

• Make sure you are on the following course resources: Gradescope, EdStem.
Ask a TA for help, if you are not.

• Attend your first section this week.

• Problem set 1 is posted soon. You have the knowledge to start after section.

• Get all your credit: 4th credit available by signing up for 490D.

9

https://courses.cs.washington.edu/courses/cse421/

How to succeed in this class

• Attend lecture and ask questions/interact. Attendance is correlated strongly
with final grade.

• I remember who asks questions, attends my office hours, and participates.

• Can make the difference when I’m assigning grades if you are on the cusp.

• It helps if I know who you are if you want me to write you a recommendation
letter for a job or graduate school.

• Take lots of thinking walks and mull on these problems. Being a computer
scientist is different than being a programmer. The same techniques may not
apply.

10

Coursework

• 8 problem sets (roughly) due on Wednesdays at 11:59 PM

• Typically 1 mechanical + 3 long-form problems

• See the homework guide on the website

• It is acceptable to talk to other students but write-ups must be done
individually and cannot be shared/distributed

• Use of outside resources (including generative AI) is forbidden. Read the
syllabus and problem set guide. Ask TAs if you have any questions.

11

Late Problem Sets
You are allocated four 24-hour extensions on sets.

• No questions asked, no reason required.

• You may not use more than one extension on any problem set.

• After the four extensions are exhausted,

• problem sets up to 24-hours late are graded with a 25% penalty.

• problem sets up to 48-hours late are graded with a 50% penalty.

• problem set after 48-hours are given automatic zeros.

• Extenuating circumstances can be discussed with Prof. Nirkhe, no TA can approve
additional extensions.

12

• The dates are set. Due to the size of the
class, no late exam exceptions will be
made. Extenuating circumstances should
be discussed with Prof. Nirkhe only.

• Midterm: Monday May 5th 3:30-4:20pm

• Final: Thursday June 12th 2:30-4:20pm

• Grading scheme (approx.):

• 8 problem sets: 40%

• Midterm: 20%

• Final: 40%

Exams and grading scheme

13

grading scheme

40%

20%

5%
5%5%5%5%

5%
5%

5%

Textbook

• There are two suggested textbooks for the
course.

• Both are page-turners and are great for
learning how to think like an algorithm
designer.

• They are also not required — all required
content can be extracted from the lecture
notes and quiz section materials.

14

The Stable Matching Algorithm

15

• Goal: Given a set of preferences amongst
hospital and residents, design an
admissions process to allocate residents to
hospitals.

• What might we want to optimize for?

• When do we know we have achieved the
optimal solution?

• What properties does our optimal solution
have?

The matching problem

16

A notion of stability

• Lets assume there are residents and hospitals for now.

• A matching is disjoint pairs assigning hospital to resident .

• A resident-hospital pair (resident , hospital) is unstable for if both

• resident prefers hospital to their assigned hospital .

• hospital prefers resident to their assigned resident .

• A matching is stable if the matching has no unstable pairs.

• Natural and desirable condition. Self-interest will prevent side-deals
from being made.

n n

M n (p, r) r p

p r′ M

p r′ M(p)

r′ p M(r′)

17

Can we design an algorithm to find a stable matching?
And does a stable matching necessarily exist?

• Input to the problem:

• Two groups of people: one group and the other
group .

• For each , a ranking from to of the group .

• For each , a ranking from to of the group .

• Output of the problem:

• A list of disjoint pairs . The matching should be
stable with respect to the input rankings.

n P
R

p ∈ P 1 n R

r ∈ R 1 n P

n M

18

Example 1: Is the following matching stable?

19

Example 1: Is the following matching stable?

20

Example 2: Is the following matching stable?

21

Example 2: Is the following matching stable?

22

The propose and reject algorithm
Gale & Shapley 1962

The group proposes and the group receivesP R

23

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free

 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

The propose and reject algorithm
Proof of termination

Observation 1: Every proposes in decreases order of preference.

Observation 2: No proposal is ever repeated.

Conclusion: Since there are only pairs , algorithm terminates after
 iterations of the while loop.

p ∈ P

(p, r)

n2 (p, r)
≤ n2

24

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

And indeed, it can take this long 
for many simple examples.

The propose and reject algorithm
Proof of termination

25

Initialize each person to be free.
while (some p in P is free) {
 Choose some free p in P
 r = 1st person on p's preference list to whom p has not yet proposed
 if (r is free)
 tentatively match (p,r) //p and r both engaged, no longer free
 else if (r prefers p to current tentative match p’)
 replace (p’,r) by (p,r) //p now engaged, p’ now free
 else
 r rejects p
}

W

V

1st

A

B

2nd

C

D

3rd

C

B

AZ

Y

X C

D

A

B

B

A

D

C

4th

E

E

5th

A

D

E

E

D

C

B

E

B

A

1st

W

X

2nd

Y

Z

3rd

Y

X

VE

D

C Y

Z

V

W

W

V

Z

X

4th

V

W

5th

V

Z

X

Y

Y

X

W

Z

Preference Profile for P Preference Profile for R

And indeed, it can take this long 
for many simple examples.

This example takes
 iterations.n(n − 1) + 1

The propose and reject algorithm
Proof of perfection

Observation 3: One a receiver is matched, they are never freed up. If
anything, w.r.t. their preferences, they only ever trade up.

Claim: By the time the algorithm terminates, everyone gets matched.

Proof:

• Since , if no receiver is free, then everyone is matched.

• If some proposes to their last choice receiver , then all previous
receivers must have already been matched. Then matching is
added and no receiver is free.

r

|P | = |R | = n

p ∈ P rn
r (p, rn)

26

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have unstable pairs

Proof: Consider a pair that is not matched by : .

• Case 1: During the entire algorithm run, never proposed to .

• Case 2: Or at some time, proposed to .

M

(p, r) M M(p) ≠ r

p r

p r

27

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have
unstable pairs

Proof: Consider a pair that is not matched by :
.

• Case 1: During the entire algorithm run, never proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

• Case 2: Or at some time, proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

M

(p, r) M
M(p) ≠ r

p r

p M(p) r (p, r)
M

p r

r M(r) p (p, r)
M

28

The propose and reject algorithm
Proof of stability

Claim: The final matching of the algorithm does not have
unstable pairs

Proof: Consider a pair that is not matched by :
.

• Case 1: During the entire algorithm run, never proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

• Case 2: Or at some time, proposed to .

• Therefore, prefers to . So is not unstable
w.r.t. .

M

(p, r) M
M(p) ≠ r

p r

p M(p) r (p, r)
M

p r

r M(r) p (p, r)
M

29

The propose and reject algorithm
What have we learned?

• Proof of termination in iterations.

• Proof of perfection: everyone gets matched.

• Proof of stability: the output matching is stable for all pairs.

• What have we not talked about?

• Is it fair? Is it better to be a proposer or a receiver? Does the first proposer or the last
proposer have it better?

• Is there a faster algorithm?

• How do we extend to proposers and receivers?

n2 ✓

✓

✓

n n′

30

The history of the propose and reject algorithm
Gale and Shapley 1962

• The original paper was about men and women and a
heterosexual notion of marriage.

• Gale and Shapley’s algorithm defined the proposers as the
men and the receivers as the women.

• We will see next week that the GS algorithm is proposer-
optimal but not receiver-optimal.

• For obvious reasons, we changed the notation.

• As originally stated, the GS algorithm favored being a man.
This social implication was not recognized for some time!

• Is fairness possible? In some cases, yes. But this is an active
area of research!

n n

31

Shapley winning the 2012 Economics
Nobel Prize (with Roth)

