CSE 421 Section 9

Min-Cut \& NP Intro

Announcements \& Reminders

- HW8
- Due Friday!

Task Selection

Task Selection

- Precedence graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$
- Each vin V has a profit p(v)
- A set F is feasible if when w in F, and (v, w) in E, then v in F.
- Find a feasible set to maximize the profit

Task Selection

- Try to compute by yourself.
- How do we transfer it into Min-Cut problem?

Precedence graph construction

- 1. How to build the edge?
- 2. How to set the edge costs?
- 3. How to make sure it is feasible?

How to build the edge?

- Add vertices s, t
- Each vertex in V is attached to s and t with finite capacity edges

How to set the edge costs?

- If $p(v)>0$,
- cap $(v, t)=p(v)$
- cap(s,v) $=0$
- If $p(v)<0$
- cap(s,v) $=-p(v)$
- cap $(v, t)=0$
- If $p(v)=0$
- cap $(s, v)=0$
- $\operatorname{cap}(\mathrm{v}, \mathrm{t})=0$

How to make sure it is feasible?

- Each edge in E has infinite capacity.
- Why?
- The sink side of a finite cut is a feasible set.
- No edges permitted from S to T
- If a vertex is in T , all of its ancestors are in T

Why Min-Cut gives optimal solution?

- $\operatorname{Cost}(W)=\Sigma_{\{w \text { in } w ; p(w)<0\}^{-}}-p(w)$
- Benefit $(W)=\sum_{\{w \text { in } w ; p(w)>0\}} p(w)$
- $\operatorname{Profit}(\mathrm{W})=\operatorname{Benefit}(\mathrm{W})-\operatorname{Cost}(W)$
- Maximum cost and benefit
- $\mathrm{C}=\operatorname{Cost}(\mathrm{V})$
- $B=$ Benefit (V)

Express Cap(S,T)

- $\operatorname{Cap}(\mathrm{S}, \mathrm{T})=\operatorname{Cost}(\mathrm{T})+\operatorname{Ben}(\mathrm{S})=\operatorname{Cost}(\mathrm{T})+\operatorname{Ben}(\mathrm{S})+\operatorname{Ben}(\mathrm{T})-\operatorname{Ben}(\mathrm{T})$
$=B+\operatorname{Cost}(T)-\operatorname{Ben}(T)=B-\operatorname{Profit}(T)$

Image Segmentation

Image analysis

- a_{i} : value of assigning pixel i to the foreground
- b_{i} : value of assigning pixel i to the background
- p_{ij} : penalty for assigning i to the foreground, j to the background or vice versa
- A: foreground, B: background
- $Q(A, B)=\Sigma_{\{i \text { in } A\}} a_{i}+\Sigma_{\{j \text { in } B\}} b_{j}-\Sigma_{\{(i, j) \text { in } E, \text { i in } A, j \text { in } B\}} \mathrm{P}_{\mathrm{ij}}$

Mincut Construction

$$
\begin{aligned}
& \text { a: }[4,9,2,3] \\
& \text { b: }[4,7,4,2] \\
& \text { p1:[0,1,1,0] } \\
& \text { p2:[2,0,0,3] } \\
& \text { p3:[1,0,0,4] } \\
& \text { p4:[0,2,1,0] }
\end{aligned}
$$

Best Result

- Choose 2 and 4 for foreground.

What is P ?

- Decision problems with polynomial time algorithms

What is NP?

- Problems solvable in non-deterministic polynomial time
- Problems where "yes" instances have polynomial time checkable certificates

How to show it is P?

- Is x a multiple of y ?
- Is d the minimal distance from S to T ?
- Is the edit distance between x and y less than d ?
- Is the max profit of feasible set w?
- Division, Mod
- Shortest Path
- Dynamic Programming
- Network Flow

How to show it is NP?

- 3-SAT
- Independent set of size K - The Independent set of size K
- K-coloring a graph - Assignment of colors to the vertices

3-SAT

- SAT: Does a given CNF formula have a satisfying formula?
- 3-SAT: each clause is limited to exactly three literals.
- The literals within a clause can be either a Boolean variable or its negation, and the clauses are connected by logical AND operators.
- Instance S and certificate T:

$$
\begin{gathered}
\left(\overline{x_{1}} \vee x_{2} \vee x_{3}\right) \wedge\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(x_{1} \vee x_{2} \vee x_{4}\right) \wedge\left(\overline{x_{1}} \vee \overline{x_{3}} \vee \overline{x_{4}}\right) \\
x_{1}=1, x_{2}=1, x_{3}=0, x_{4}=1
\end{gathered}
$$

How to check the certificate T?

How to check the certificate T?

- Take given values into Boolean expression. Only takes O(n).

Independent set

- A set of vertices in a graph, no two of which are adjacent.

How to check the given independent set?

How to check the given independent set?

- Go through all edges (u,v). Check whether u and v are both in the given independent set. O(m).

K-coloring

- Give all vertices a color (No more than K different colors). No two adjacent vertices are of the same color.

How to check

How to check

- Go through all edges (u, v). Check whether u and v are in the same color. $O(m)$.

That's All, Folks!

Thanks for coming to section this week!
Any questions?

(T)

