
CSE 421 Section 8

Max Flow / Min Cut

Administrivia

Announcements & Reminders

● Midterm Exam
○ If you think something was graded incorrectly, submit a regrade request!
○ If you have concerns about your overall grade in the course, send an email course staff

to discuss privately

● HW7
○ Due tomorrow, Friday 2/23

● HW8
○ Due Friday 3/1

Ford-Fulkerson Algorithm

Finding the Max-Flow / Min-Cut

We use the Ford-Fulkerson algorithm to find Max-Flow / Min-Cut.

Key Ideas:
● Keep searching through the residual graph to find a path from 𝑠 to 𝑡 that we can

send more flow down.
● Keep updating the residual graph to track how much flow we can still push

through and how much flow we can potentially reroute.
● When we can no longer reach 𝑡 in the residual graph, we can’t send any more flow,

so the algorithm terminates!

Residual Graph

The residual graph indicates how much flow can still go along an edge, and how much
flow we could potentially reroute back from an edge.

Key ideas:
● the sum of the residual edges between any two nodes should be equal to the value

of the edge between them in the original graph
● The residual edge pointing in the direction of the original edge should have a value

equal to the amount of flow that could still pass through that edge
● The residual edge pointing in the opposite direction of the original edge should

have a value equal to the amount of flow you have currently sent down that edge

Ford-Fulkerson (formally)

While (flow is not maximum)
 Run BFS in residual graph starting from 𝑠
 Record predecessors to find an 𝑠,𝑡-path
 Iterate through path, finding 𝑐 minimum residual capacity on path
 Add 𝑐 to every edge on path in flow
 Update residual graph

1. Go With the Flow

Problem 1 – Go With the Flow
Using Ford-Fulkerson, find the maximum 𝑠 − 𝑡 flow in the graph 𝐺 below, the
corresponding residual graph, and list out the corresponding minimum cut.

Work through this problem with the people around you, and then
we’ll go over it together!

Problem 1 – Go With the Flow

10

s b c d t

e

a

5

3
2 3

5
42

4 6 5

10

Problem 1 – Go With the Flow

10

s b c d t

e

a

5

3
2 3

5
42

4 6 5

10

Start by making a copy of
the original graph to be
your residual graph!

Problem 1 – Go With the Flow

10

s b c d t

e

a

5

3
2 3

5
42

4 6 5

10

Find a path from 𝑠 to 𝑡

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3
2 3

5

42

4 6 5

10

5

Update the residual edges
to push the maximum
flow through

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3
2 3

5

42

4 6 5

10

5

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3
2 3

5

42

4 6 5

10

5

Look to see if there is
another path from 𝑠 to 𝑡

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3
2 3

5

42

4
2 1

10

5

1

4 4

Update the residual edges

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3
2 3

5

42

4
2 1

10

5

1

4 4

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3
2 3

5

42

4
2 1

10

5

1

4 4

Look to see if there is
another path from 𝑠 to 𝑡

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3

2 3

5

42

4
2 1

3

5

1

4 4

7

Update the residual edges

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3

2 3

5

42

4
2 1

3

5

1

4 4

7

Problem 1 – Go With the Flow
5

s b c d t

e

a

4

3

2 3

5

42

4
2 1

3

5

1

4 4

7

Look to see if there is
another path from 𝑠 to 𝑡

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3

1 3

5

42

4
2 1

4

5

4 4

6

1

Update the residual edges

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3

1 3

5

42

4
2 1

4

5

4 4

6

1

Problem 1 – Go With the Flow
5

s b c d t

e

a

5

3

1 3

5

42

4
2 1

4

5

4 4

6

1

Look to see if there is
another path from 𝑠 to 𝑡

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5

41

4
2 1

5

4

4 4

5

2

1

Update the residual edges

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5
41

4
2 1

5

4

4 4

5

2

1

Are there still any paths
from 𝑠 to 𝑡?

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5
41

4
2 1

5

4

4 4

5

2

1

No more paths, so we’re
done updating!

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5

41

4
2 1

5

4

4 4

5

2

1

All the residual edges going
backwards show the flow we are
sending down that path

Problem 1 – Go With the Flow

6/10

s b c d t

e

a

5/5

3/3
2/2 0/3

5/5
0/41/2

4/4 4/6 4/5

5/10

We can put all these final
flow values back into our
original graph to see the
maximum flow

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5
41

4
2 1

5

4

4 4

5

2

1

Now let’s find the min cut.

Problem 1 – Go With the Flow
6

s b c d t

e

a

5

3

3

5
41

4
2 1

5

4

4 4

5

2

1

The min cut is 𝑠 and the vertices you
can reach from it in the residual
graph on one side, and everything
else on the other side.

Problem 1 – Go With the Flow

6/10

s b c d t

e

a

5/5

3/3
2/2 0/3

5/5
0/41/2

4/4 4/6 4/5

5/10

The edges going across the min cut
from the s side to the t side all have
flow up to their capacity, and the
sum is equal to the max flow!

Problem 1 – Go With the Flow

6/10

s b c d t

e

a

5/5

3/3
2/2 0/3

5/5
0/41/2

4/4 4/6 4/5

5/10

The maximum flow is 14

The 𝑠 − 𝑡 cut is
({𝑠, 𝑎, 𝑏}, {𝑐, 𝑑, 𝑒, 𝑡})

Max-Flow / Min-Cut Tricks

Max-Flow / Min-Cut

We can use the concepts of Max-Flow / Min-Cut and the Ford-Fulkerson algorithm to
solve a wide variety of problems. Since we already have an algorithm, we can just call
it like a library function.

Most of the difficulty comes in taking a problem and turning it into a good graph so
that max-flow / min-cut gives us the solution we are actually looking for. So how can
we do it?

The Strategy

1. Read the Problem Carefully
2. Make a Basic Model
3. Brainstorm: How can you fix the graph?
4. Correctness and Running Time

The Tricks

We have three tricks that can be really helpful in converting a problem into a good
form for max-flow or min-cut. Sometimes you only need one, but sometimes you can
use them in a combination. There are other things you might need to do in a given
problem, but these are three very common tricks to try:

● Add “dummy vertices” for source or sink
● Split vertices to add vertex capacity
● Use infinite weight for edges that shouldn’t be considered for max-flow or min-cut

We have m professors and n graduate students. Each professor have a cap ci
on the number of graduate students they can advise, and each graduate
student have a specified set of interested professors that they would like to
work with.
Design a polynomial time algorithm that returns yes if there exists a valid
advising schedule on students’ side (i.e. each student has exactly one advisor
and advisors don't exceed the cap) or false if that's not possible.

What if each professor also have a set of students that they would like to
advise (i.e. professor may not accept all students)?
What if students can request more than one professor? (Here we say an
advising schedule is valid if each student gets exactly the number of
professor they request as advisors)

Source: 421 sp22 hw7

● Use Konig Theorem to design algorithm and show correctness: For any bipartite
graph, the size of maximum matching equals to the size of minimal vertex cover.

● What if we create a new kind of piece, Z. Define a position that are attacked by Z if
it’s diagonally neighbored with Z. So in general, Z can attack 4 positions. Z works
like Bishop, just that they can only attack positions on the diagonal one step away
but not arbitrary many steps.

● The problem is the same. Remove some cells and design a polynomial time
algorithm that returns maximum number of non-attacking Zs.

● Given a network flow instance with all integer capacity and a feasible flow
with integer flow value f (but flow value on all edges are not necessarily
integers), determine if there exists a flow with value f + 1 in O(m + n) time.

● Do a B/DFS starting from s on residual graph.
● Return true iff t is reachable.

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

