
CSE 421 Section 5

Dynamic Programming

Administrivia

Announcements & Reminders

● HW5

○ Due yesterday 1/31

● Midterm Exam: Friday February 9 In Class

● Make sure you have it saved on your calendar!

Writing a Dynamic Programming Algo

Dynamic Programming

● Take recursive ideas from divide and conquer, but speed up finding the solution by

optimizing the work by reordering and saving the results so we don’t have to

repeat anything!

● Key idea:

○ use English words to explain the output of the recursive function

○ write a recurrence for the output of the recursive function

● Memoization: save results of intermediate calculations so we don’t need to repeat

The Strategy (SLIGHTLY DIFFERENT FOR DP)

1. Read and Understand the Problem

2. Generate Examples

3. Write the Dynamic Program

4. Analyze the Dynamic Program

Dynamic Programming Process (from lecture)

This is what we’ll do in parts 3 and 4 of our strategy:

1. Define the object you’re looking for.

2. Write a recurrence to say how to find it.

3. Design a memoization structure.

4. Write an iterative algorithm.

Problem 1 – Lots of fun, with a normal sleep schedule

You are planning your social calendar for the month. For each day, you can choose to

go to a social event or stay in and catch-up on sleep. If you go to a social event, you

will enjoy yourself. But you can only go out for two consecutive days – if you go to a

social event three days in a row, you’ll fall too far behind on sleep and miss class.

Luckily, you have an excellent social sense, so you know exactly how much you will

enjoy any of the social events, and have assigned each day an (integer) numerical

happiness score (and you know you get 0 enjoyment from staying in and catching up

on sleep). You have an array 𝐻[] which gives the happiness you would get by going out

each day. Your goal is to maximize the sum of the happinesses for the days you do go

out, while not going out for more than two consecutive days.

1. Read and Understand the Problem

Problem 1.1 – Fun & Sleep
● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

Problem 1.1 – Fun & Sleep
● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

Problem 1.1 – Fun & Sleep
● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

“consecutive” means in a row
“maximize the sum of the happinesses” is semi-technical?

Problem 1.1 – Fun & Sleep
● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

“consecutive” means in a row
“maximize the sum of the happinesses” is semi-technical?

int[]

Problem 1.1 – Fun & Sleep
● Are there any technical terms, or words that seem technical?

● What is the input type? (Array? Graph? Integer? Something else?)

● What is your return type? (Integer? List?)

int[]

int (the maximum sum of happinesses)

“consecutive” means in a row
“maximize the sum of the happinesses” is semi-technical?

2. Generate Examples

Good Examples Help!

● You should generate two or three sample instances and the correct associated

outputs.

● It’s a good idea to have some “abnormal” examples – consecutive negative

numbers, very large negative numbers, only positive numbers, etc.

● Note: You should not think of these examples as debugging examples – null or the empty list is not

a good example for this step. You can worry about edge cases at the end, once you have the main

algorithm idea. You should be focused on the “typical” (not edge) case.

Problem 1.2 – Fun & Sleep

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

Work through generating some examples, and then we’ll go over it together!

Problem 1.2 – Fun & Sleep

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

Problem 1.2 – Fun & Sleep

Generate two examples with their associated outputs. Put some effort into these! The more

different from each other they are, the more likely you are to catch mistakes later.

[𝟐, 𝟐, 1, 𝟐, 𝟐, 1, 𝟐, 𝟐] has a maximum happiness sum of 6

[𝟏𝟎, 8, 𝟏𝟓, 𝟗, 3,11, 𝟏𝟐, 𝟏𝟑] has a maximum happiness sum of 59

3. Write the Dynamic Program

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a

single value or the max/min of a set of values?)?

d) Give a brief justification for why your recurrence is correct. You do not need a formal

inductive proof, but your intuition will likely resemble one.

Start brainstorming some answers to these questions.

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

First, let’s take some time to brainstorm about what the recurrence could be.

What is our OPT finding? How many parameters do we need to calculate it?

What are those parameters for?

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

Problem 1.3 – Fun & Sleep

a) Formulate the problem recursively – what are you looking for (in English!!), and what

parameters will you need as you’re doing the calculation?

OPT(𝑖, 𝑗) is the most points we can earn in the array from 1. . 𝑖 (inclusive)
where we have taken 𝑗 consecutive days at the right end of the subproblem
(e.g. if 𝑗 = 2 then we have included elements 𝑖 and 𝑖 − 1 but not element
𝑖 − 2). Per the problem, we only allow 𝑗 ∈ {0,1,2} and 𝑖 ∈ {1,… , 𝑛}.

Problem 1.3 – Fun & Sleep

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

Problem 1.3 – Fun & Sleep

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is

for the answer, not the running time).

OPT 𝑖, 𝑗 =

𝐴 𝑖 + OPT 𝑖 − 1, 1 if 𝑖 > 1, 𝑗 = 2

𝐴 𝑖 + max𝑦OPT 𝑖 − 2, 𝑦 if 𝑖 > 2, 𝑗 = 1

max𝑦OPT 𝑖 − 1, 𝑦 if 𝑖 > 1, 𝑗 = 0

𝐴 𝑖 if 𝑖 = 1,2, 𝑗 = 1
0 if 𝑖 = 1, 𝑗 = 0
−∞ otherwise

Problem 1.3 – Fun & Sleep

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a

single value or the max/min of a set of values?)?

Problem 1.3 – Fun & Sleep

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a

single value or the max/min of a set of values?)?

max𝑗OPT(𝑛, 𝑗)

Problem 1.3 – Fun & Sleep

d) Give a brief justification for why your recurrence is correct. You do not need a formal

inductive proof, but your intuition will likely resemble one.

Problem 1.3 – Fun & Sleep
Give a brief justification for why your recurrence is

correct. You do not need a formal inductive proof, but

your intuition will likely resemble one.

For 𝑖 > 1, 𝑗 = 2, we must include both 𝐴[𝑖] and 𝐴[𝑖 − 1], but not 𝐴[𝑖 − 2], so we need to add 𝐴[𝑖] to the
most points among 1,… , 𝑖 − 1 where we include 𝐴[𝑖 − 1] but not 𝐴[𝑖 − 2], which is the definition of
OPT(𝑖 − 1, 1).

For 𝑖 > 2, 𝑗 = 1, we must include 𝐴[𝑖] but not 𝐴[𝑖 − 1]. We therefore want to add 𝐴[𝑖] the maximum points
we can earn from 1,… , 𝑖 − 2. Since we skip element 𝑖 − 1, we have no requirement on whether to include
𝑖 − 2 or not, and just desire the maximum number of points among 1,… , 𝑖 − 2; the best sequence either
excludes A[𝑖 − 2], includes 𝐴[𝑖 − 2] but not 𝐴[𝑖 − 3], or includes both 𝐴[𝑖 − 2], 𝐴[𝑖 − 3] but not 𝐴[𝑖 − 4],
thus we want the max of OPT(𝑖 − 2, 0), OPT(𝑖 − 2, 1), 𝑂𝑃𝑇(𝑖 − 2, 2) added to 𝐴[𝑖]

If 𝑗 = 0, we simply need to skip 𝐴[𝑖], and want the maximum number of points for 1,… , 𝑖 − 1 with no
restrictions. We thus check all three options for the end of the array (none, one, or two elements at the
right).

For the base/edge cases: for 𝑖 = 1,2, 𝑗 = 1, our only choice is to take 𝐴[𝑖] and for 𝑖 = 1, 𝑗 = 0, we must not
take any elements. All other combinations of 𝑖, 𝑗 are invalid (there are no elements to take, or 𝑗 is large
enough we would have to take more elements than there are) so we choose −∞ which will never enter into
a max calculation.

4. Analyze the Dynamic Program

Problem 1.4 – Fun & Sleep

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

Start brainstorming some answers to these questions.

Problem 1.4 – Fun & Sleep

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

Problem 1.4 – Fun & Sleep

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

We need an 𝑛 × 3 array, where entry 𝑖, 𝑗 is OPT(𝑖, 𝑗).

Problem 1.4 – Fun & Sleep

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

We need an 𝑛 × 3 array, where entry 𝑖, 𝑗 is OPT(𝑖, 𝑗).

Outer loop 𝑖 from 1 to 𝑛
Inner loop 𝑗 from 0 to 2

Problem 1.4 – Fun & Sleep

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

We need an 𝑛 × 3 array, where entry 𝑖, 𝑗 is OPT(𝑖, 𝑗).

Outer loop 𝑖 from 1 to 𝑛
Inner loop 𝑗 from 0 to 2

In each recursive case, we check at most 3 entries, and we have 𝒪(𝑛) entries to fill,
so our total running time is 𝒪(𝑛).

Problem 2:
Longest Increasing Subsequence AGAIN

Problem 2 – Longest Increasing Subsequence

We’ve already seen a recurrence for Longest Increasing

Subsequence. Let’s write another!

As before, [10, −2, 5, 0, 3, 11, 8] has a longest increasing

subsequence of 4 elements: [−2, 0, 3, 8]

Problem 2.1 – Write the Dynamic Program

a) Formulate the problem recursively – what are you looking for (in English!!), and what parameters will you

need as you’re doing the calculation? To make sure you get a different solution than the one from class,

you should ask yourself to answer the question “what’s the longest increasing subsequence where the

first included element is the one at index 𝑖, and how would I find that?”

b) Write a recurrence for solving the problem you defined in the last part (the recurrence is for the answer,

not the running time).

c) What is your final answer (e.g. what parameters for the recurrence do you need? Is it a single value or the

max/min of a set of values?)?

d) Give a brief justification for why your recurrence is correct. You do not need a formal inductive proof, but

your intuition will likely resemble one.

Problem 2.1 – Write the Dynamic Program

a) Formulate the problem recursively – what are you looking for (in English!!), and

what parameters will you need as you’re doing the calculation? To make sure you

get a different solution than the one from class, you should ask yourself to

answer the question “what’s the longest increasing subsequence where the first

included element is the one at index 𝑖, and how would I find that?”

Problem 2.1 – Write the Dynamic Program

a) Formulate the problem recursively – what are you looking for (in English!!), and

what parameters will you need as you’re doing the calculation? To make sure you

get a different solution than the one from class, you should ask yourself to

answer the question “what’s the longest increasing subsequence where the first

included element is the one at index 𝑖, and how would I find that?”

Let LISAlt(𝑖) be the length of the longest increasing subsequence
of 𝐴[] where element 𝑖 is the first element of the subsequence.

Problem 2.1 – Write the Dynamic Program

b) Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

Problem 2.1 – Write the Dynamic Program

b) Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

LISAlt 𝑖 = ቊ
1 if 𝑖 = 𝑛
1 +max𝑗>𝑖𝟏 𝐴 𝑖 < 𝐴 𝑗 ∙ LISAlt 𝑖

Problem 2.1 – Write the Dynamic Program

c) What is your final answer (e.g. what parameters for the recurrence do you need?

Is it a single value or the max/min of a set of values?)?

Problem 2.1 – Write the Dynamic Program

c) What is your final answer (e.g. what parameters for the recurrence do you need?

Is it a single value or the max/min of a set of values?)?

max𝑖LISAlt(𝑖)

Problem 2.1 – Write the Dynamic Program

d) Give a brief justification for why your recurrence is correct. You do not need a

formal inductive proof, but your intuition will likely resemble one.

Problem 2.1 – Write the Dynamic Program

d) Give a brief justification for why your recurrence is correct. You do not need a

formal inductive proof, but your intuition will likely resemble one.

For the base case, since 𝑛 is the farthest right element, it is the only
element in a subsequence starting from that location.

If we begin at element 𝑖, then either it is the only element or there is
an element after. The recurrence checks all elements after – if they are
the second element in that sequence, they must be after 𝑖, have the
element be greater than 𝐴[𝑖]. That new location 𝑗 will then start the
rest of the increasing subsequence, so making all those recursive calls
suffices to find the best one

Problem 2.2 – Analyze the Dynamic Program

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

Start brainstorming some answers to these questions.

Problem 2.2 – Analyze the Dynamic Program

a) Describe a memoization structure for your algorithm.

Problem 2.2 – Analyze the Dynamic Program

a) Describe a memoization structure for your algorithm.

We need a (1D) array of size 𝑛.

Problem 2.2 – Analyze the Dynamic Program

b) Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

Problem 2.2 – Analyze the Dynamic Program

b) Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

We fill from 𝑛 down to 1.

Problem 2.2 – Analyze the Dynamic Program

c) What is your final answer (e.g. what parameters for the recurrence do you need?

Is it a single value or the max/min of a set of values?)?

Problem 2.2 – Analyze the Dynamic Program

c) What is your final answer (e.g. what parameters for the recurrence do you need?

Is it a single value or the max/min of a set of values?)?

Creating entry 𝑖 requires checking 𝑖 − 1 recursive calls. Since we
have 𝑛 entries, we need 𝒪(𝑛2) time.

Problem 3:
Delete and Earn

Problem 3 Delete and Earn (Leetcode 740)

● You are given an integer array “nums”. You want to maximize the number of points

you get by performing the following operation any number of times:

● Pick any nums[i] and delete it to earn nums[i] points. Afterwards, you must delete

every element equal to nums[i] - 1 and every element equal to nums[i] + 1.

● Return the maximum number of points you can earn by applying the above

operation some number of times.

Problem 3.1 – Write the Dynamic Program

● Formulate the problem recursively:

Problem 3.1 – Write the Dynamic Program

● First, we notice that the order of nums don’t really matter, we only care about it

values. So we can turn nums into vals, vals[k] represent the number of nums[i]==k.

Problem 3.1 – Write the Dynamic Program

● Formulate the problem recursively:

Let F(𝑖) be the maximum number of points of vals[0… 𝑖]

Problem 3.1 – Write the Dynamic Program

● Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

Problem 3.1 – Write the Dynamic Program

● Write a recurrence for solving the problem you defined in the last part (the

recurrence is for the answer, not the running time).

F 𝑖 = ቐ

0 if 𝑖 = 0
𝑣𝑎𝑙[1] if 𝑖 = 𝑛
max(𝐹(𝑖 − 1), 𝐹(𝑖 − 2) + 𝑖 ∗ 𝑣𝑎𝑙[𝑖])

Problem 3.1 – Write the Dynamic Program

● Give a brief justification for why your recurrence is correct. You do not need a

formal inductive proof, but your intuition will likely resemble one.

Problem 3.1 – Write the Dynamic Program

● Give a brief justification for why your recurrence is correct. You do not need a

formal inductive proof, but your intuition will likely resemble one.

No matter what we choose from [0…i-2], it won’t affect our
decision on i.
If we choose value i-1, we can’t choose value i.
If value i-1 is not choose, F[i-1] == F[i]

Problem 3.2 – Analyze the Dynamic Program

a) Describe a memoization structure for your algorithm.

b) Describe a filling order for your memoization structure.

c) State and justify the running time of an iterative solution.

Problem 3.2 – Analyze the Dynamic Program

a) Describe a memoization structure for your algorithm.

We need a (1D) array of size 𝑛.

b) Describe a filling order for your memoization structure.

We fill from 1 to 𝑛.

c) State and justify the running time of an iterative solution.

𝑂 𝑛

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 421 Section 5

	Administrivia
	Slide 2: Administrivia
	Slide 3: Announcements & Reminders

	Writing an Algorithm
	Slide 4: Writing a Dynamic Programming Algo
	Slide 5: Dynamic Programming
	Slide 6: The Strategy (SLIGHTLY DIFFERENT FOR DP)
	Slide 7: Dynamic Programming Process (from lecture)
	Slide 8: Problem 1 – Lots of fun, with a normal sleep schedule

	1
	Slide 9: 1. Read and Understand the Problem
	Slide 10: Problem 1.1 – Fun & Sleep
	Slide 11: Problem 1.1 – Fun & Sleep
	Slide 12: Problem 1.1 – Fun & Sleep
	Slide 13: Problem 1.1 – Fun & Sleep
	Slide 14: Problem 1.1 – Fun & Sleep

	2
	Slide 15: 2. Generate Examples
	Slide 16: Good Examples Help!
	Slide 17: Problem 1.2 – Fun & Sleep
	Slide 18: Problem 1.2 – Fun & Sleep
	Slide 19: Problem 1.2 – Fun & Sleep

	3
	Slide 20: 3. Write the Dynamic Program
	Slide 21: Problem 1.3 – Fun & Sleep
	Slide 22: Problem 1.3 – Fun & Sleep
	Slide 23: Problem 1.3 – Fun & Sleep
	Slide 24: Problem 1.3 – Fun & Sleep
	Slide 25: Problem 1.3 – Fun & Sleep
	Slide 26: Problem 1.3 – Fun & Sleep
	Slide 27: Problem 1.3 – Fun & Sleep
	Slide 28: Problem 1.3 – Fun & Sleep
	Slide 29: Problem 1.3 – Fun & Sleep
	Slide 30: Problem 1.3 – Fun & Sleep

	4
	Slide 31: 4. Analyze the Dynamic Program
	Slide 32: Problem 1.4 – Fun & Sleep
	Slide 33: Problem 1.4 – Fun & Sleep
	Slide 34: Problem 1.4 – Fun & Sleep
	Slide 35: Problem 1.4 – Fun & Sleep
	Slide 36: Problem 1.4 – Fun & Sleep

	Problem 2
	Slide 37: Problem 2: Longest Increasing Subsequence AGAIN
	Slide 38: Problem 2 – Longest Increasing Subsequence
	Slide 39: Problem 2.1 – Write the Dynamic Program
	Slide 40: Problem 2.1 – Write the Dynamic Program
	Slide 41: Problem 2.1 – Write the Dynamic Program
	Slide 42: Problem 2.1 – Write the Dynamic Program
	Slide 43: Problem 2.1 – Write the Dynamic Program
	Slide 44: Problem 2.1 – Write the Dynamic Program
	Slide 45: Problem 2.1 – Write the Dynamic Program
	Slide 46: Problem 2.1 – Write the Dynamic Program
	Slide 47: Problem 2.1 – Write the Dynamic Program
	Slide 48: Problem 2.2 – Analyze the Dynamic Program
	Slide 49: Problem 2.2 – Analyze the Dynamic Program
	Slide 50: Problem 2.2 – Analyze the Dynamic Program
	Slide 51: Problem 2.2 – Analyze the Dynamic Program
	Slide 52: Problem 2.2 – Analyze the Dynamic Program
	Slide 53: Problem 2.2 – Analyze the Dynamic Program
	Slide 54: Problem 2.2 – Analyze the Dynamic Program

	Problem 3
	Slide 55: Problem 3: Delete and Earn
	Slide 56: Problem 3 Delete and Earn (Leetcode 740)
	Slide 57: Problem 3.1 – Write the Dynamic Program
	Slide 58: Problem 3.1 – Write the Dynamic Program
	Slide 59: Problem 3.1 – Write the Dynamic Program
	Slide 60: Problem 3.1 – Write the Dynamic Program
	Slide 61: Problem 3.1 – Write the Dynamic Program
	Slide 62: Problem 3.1 – Write the Dynamic Program
	Slide 63: Problem 3.1 – Write the Dynamic Program
	Slide 64: Problem 3.2 – Analyze the Dynamic Program
	Slide 65: Problem 3.2 – Analyze the Dynamic Program

	Outro
	Slide 66: That’s All, Folks!

