
CSE 421 Section 1

Stable Matching

Administrivia & Introductions

Your Section TAs

• TA 1

• Anything you want to say about yourself

• TA 2

• content

Homework

● Submissions

○ LaTeX

○ Word Editor that supports mathematical equations

● All homeworks will be turned in via Gradescope

● Homeworks typically due on Wednesdays at 11:59pm

● Late day policy – 5 late days. Maximum 2 days late per assignment. Otherwise 25%

per day.

Announcements & Reminders

● Section Materials

○ Handouts will be provided in each section

○ Worksheets and sample solutions will be available on the course calendar later this

evening

● HW1

○ Due Wednesday 1/10 @ 11:59pm

Stable Matching

Stable Matching
Given 2𝑛 people, in two groups, M and W, of 𝑛 people, with each person having a
preference list for members of the other group, how can we find a stable matching between
them?

Perfect Matching:
● Each person m in M is paired with exactly one person w in W
● Each person w in W is paired with exactly one person m in M

Stability: No ability to exchange partners

Unstable: An unmatched pair m-w is unstable if they both prefer each other to current
matches

Stable Matching: perfect matching with no unstable pairs

Gale-Shapley Algorithm

Algorithm to find a stable matching:

Initially all 𝒎 in 𝑴 and 𝒘 in 𝑾 are free

while there is a free 𝑚

Let 𝑤 be highest on 𝒎’s list that 𝒎 has not proposed to

if 𝒘 is free

match (𝒎,𝒘)

else //𝒘 is not free

Let m′ be the current match of 𝒘

if 𝒘 prefers 𝒎 to m′

unmatch (m′,𝒘)

match (𝒎,𝒘)

Consider the following stable matching instance:

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When

choosing which free m in M to propose next, always choose the

one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)

m2 chooses w2 (m1, w3), (m2, w2)

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)

m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)?

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)

m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)
m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)

m2 chooses w1 (m1, w3), (m2, w1), (m3, w2)

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)
m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)
m2 chooses w1 (m1, w3), (m2, w1), (m3, w2)

m4 chooses w3 (m1, w3), (m2, w1), (m3, w2), (m4, w3)?

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)
m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)
m2 chooses w1 (m1, w3), (m2, w1), (m3, w2)

m4 chooses w3 (m1, w3), (m2, w1), (m3, w2) (m4, w3) failed

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)
m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)
m2 chooses w1 (m1, w3), (m2, w1), (m3, w2)
m4 chooses w3 (m1, w3), (m2, w1), (m3, w2) (m4, w3) failed

m4 chooses w4 (m1, w3), (m2, w1), (m3, w2), (m4, w4)

Problem 1 – Gale-Shapley

a) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the smallest index (e.g., if m1 and m2 are both free,

always choose m1).

m1 chooses w3 (m1, w3)
m2 chooses w2 (m1, w3), (m2, w2)
m3 chooses w2 (m1, w3), (m2, w2), (m3, w2)
m2 chooses w1 (m1, w3), (m2, w1), (m3, w2)
m4 chooses w3 (m1, w3), (m2, w1), (m3, w2) (m4, w3) failed
m4 chooses w4 (m1, w3), (m2, w1), (m3, w2), (m4, w4)

(m1, r3), (m2, r1), (m3, r2), (m4, r4)

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 1 – Gale-Shapley

b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the largest index (e.g., if m1 and m2 are both free,

always choose m2). Do you get the same result?

Work on parts b and c of this problem with the people around
you, and then we’ll go over it together!

c) Now run the algorithm with the same preferences but with the

roles of M and W reversed (that is the wi do the proposing)

breaking ties by taking the free wi with the smallest index i. Do you

get the same result?

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the largest index (e.g., if m1 and m2 are both free,

always choose m2). Do you get the same result?

Problem 1 – Gale-Shapley

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

b) Run the Gale-Shapley Algorithm on the instance above. When choosing which free m in M to

propose next, always choose the one with the largest index (e.g., if m1 and m2 are both free,

always choose m2). Do you get the same result?

Problem 1 – Gale-Shapley

The steps of the Gale-Shapley Algorithm with the free m in M with
largest index proposing first:

m4 chooses w3 (m4, w3)
m3 chooses w2 (m3, w2),(m4, w3)
m2 chooses w2 (m3, w2),(m4, w3) (m2, w2) failed
m2 chooses w1 (m2, w1),(m3, w2),(m4, w3)
m1 chooses w3 (m1, w3),(m2, w1),(m3, w2),(m4, w3)
m4 chooses w4 (m1, w3),(m2, w1),(m3, w2),(m4, w4)

We ended up with the same result!

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

c) Now run the algorithm with the people in W proposing, breaking ties by taking the free wi

with the smallest index. Do you get the same result?

Problem 1 – Gale-Shapley

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

c) Now run the algorithm with the people in W proposing, breaking ties by taking the free wi

with the smallest index. Do you get the same result?

Problem 1 – Gale-Shapley

The steps of the Gale-Shapley Algorithm with the w in W proposing:

w1 chooses p4 (m4, w1)
w2 chooses p1 (m1, w2),(m4, w1)
w3 chooses p1 (m1, w3),(m1, w2),(m4, w1)
w2 chooses p3 (m1, w3),(m3, w2),(m4, w1)
w4 chooses p3 (m1, w3),(m3, w2),(m4, w1) (m3, w4) failed
w4 chooses p1 (m1, w3),(m3, w2),(m4, w1) (m1, w4) failed
w4 chooses p2 (m1, w3),(m2, w4),(m3, w2),(m4, w1)

No, the result is different when we have the w in W propose as
opposed to the m in M.

m1: w3, w1, w2, w4

m2: w2, w1, w4, w3

m3: w2, w3, w1, w4

m4: w3, w4, w1, w2

w1: m4, m1, m3, m2

w2: m1, m3, m2, m4

w3: m1, m3, m4, m2

w4: m3, m1, m2, m4

Problem 2 – True/False

Determine if the following statements are true or false:

a) True or false? In every instance of the stable matching problem, there is a stable

matching containing a pair (m,w) such that m is ranked first on the preference list

of w and w is ranked first on the preference list of m.

Work on this problem with the people around you, and then we’ll go over it together!

Problem 2 – True/False

Determine if the following statements are true or false:

a) True or false? In every instance of the stable matching problem, there is a stable

matching containing a pair (m,w) such that m is ranked first on the preference list

of w and w is ranked first on the preference list of m.

False. Note the following counterexample. In both purple and green matchings, this

pair does not exist:

𝑚1: 𝑤1 > 𝑤2

𝑚2: 𝑤2 > 𝑤1

𝑤1: 𝑚2 > 𝑚1

𝑤2: 𝑚1 > 𝑚2

Problem 2 – True/False

Determine if the following statements are true or false:

b) Consider an instance of the stable matching problem in which there exists a man

m and a woman w such that m is ranked first on the preference list of w and w is

ranked first on the preference list of m. Then in every stable matching S for this

instance, the pair (m,w) belong to S.

Work on this problem with the people around you, and then we’ll go over it together!

Problem 2 – True/False

Determine if the following statements are true or false:

b) Consider an instance of the stable matching problem in which there exists a man

m and a woman w such that m is ranked first on the preference list of w and w is

ranked first on the preference list of m. Then in every stable matching S for this

instance, the pair (m,w) belong to S.

True. Let 𝑚 be matched to 𝑝 ≠ 𝑤 and 𝑤 be matched to 𝑞 ≠ 𝑚 in an arbitrary stable

matching S. We see then that 𝑚,𝑤 is instable for S. Hence (𝑚,𝑤) always belongs to

a stable matching S.

Induction

Induction

● You will be writing induction proofs in this class.

● The style requirements for proofs in this class are less stringent than the style

requirements from 311.

Induction Template

Let 𝑃(𝑛) be “(whatever you’re trying to prove)”.
We show 𝑃(𝑛) holds for all 𝑛 by induction on 𝑛.

Base Case: Show 𝑃(𝑏) is true.

Inductive Hypothesis: Suppose 𝑃(𝑘) holds for an arbitrary 𝑘 ≥ 𝑏

Inductive Step: Show 𝑃(𝑘 + 1) (i.e. get 𝑃(𝑘) → 𝑃(𝑘 + 1))

Conclusion: Therefore, 𝑃(𝑛) holds for all 𝑛 by the principle of induction.

Problem 3 – Induction Review

Consider the following claim:

Let 𝑃(𝑛) be “Every tree with 𝑛 nodes has 𝑛 − 1 edges.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume

and the right target)?

b) Prove the claim by induction.

Problem 3 – Induction Review

Consider the following claim:

Let 𝑃(𝑛) be “Every tree with 𝑛 nodes has 𝑛 − 1 edges.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume

and the right target)?

Work on this problem with the people around you, and then we’ll go over it together!

Problem 3 – Induction Review

Consider the following claim:

Let 𝑃(𝑛) be “Every tree with 𝑛 nodes has 𝑛 − 1 edges.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume

and the right target)?

Problem 3 – Induction Review

Consider the following claim:

Let 𝑃(𝑛) be “Every tree with 𝑛 nodes has 𝑛 − 1 edges.”

a) What is the correct “skeleton” of the inductive step (i.e., the right things to assume

and the right target)?

We must start with “Let 𝑇′ be an arbitrary tree with 𝑘 + 1 nodes.”
Our conclusion will be that 𝑇′ has at least two nodes of degree-one, so 𝑃(𝑘 + 1)
holds.

KEY Induction Concept
It might be really tempting to structure the inductive step of this problem as something like, “start
with an arbitrary tree 𝑇 of size 𝑘 nodes, and then add a node to it, making tree 𝑇′with 𝑘 + 1
nodes.”

This is a BAD idea! Then we’d have to cover every possible way to add on a node (and prove that
we had actually dealt with every possible case), making the overall proof way more complicated
and unwieldly.

Instead, we ALWAYS want to start with the bigger thing (in this
case, with the arbitrary tree 𝑇′ of size 𝑘 + 1) and find the smaller
thing inside of it.

Problem 3 – Induction Review

Consider the following claim:

Let 𝑃(𝑛) be “Every tree with 𝑛 nodes has 𝑛 − 1 edges.”

Prove the claim by induction.

Work on this problem with the people around you, and then we’ll go over it together!

Problem 3 – Induction Review

b) Prove the claim by induction.

Let P(n) be “Every tree with 𝑛 nodes has 𝑛−1 edges.” We prove the claim by induction on 𝑛.

Base Case: 𝑛 = 1. This tree clearly has 1 – 1 = 0 edges.

Inductive Hypothesis: Suppose 𝑃(𝑛) holds for 𝑛 = 1,… , 𝑘 for an arbitrary 𝑘 ≥ 1.

Inductive Step: Let T be a tree with 𝑘 + 1 nodes. Let 𝑑 denote the node that is a leaf in the tree T.
Let T’ be the graph we get after we remove 𝑑 and its connected edges. We see T’ is still connected
and undirected, and still acyclic as the removal of the node has not created a cycle. Hence, T’ is a
tree.

By IH, we see that T’ has 𝑘 − 1 edges. Let us add the node 𝑑 back to the tree. Since it is a leaf node,
it only has one edge, and therefore T has 𝑘 − 1 + 1 = 𝑘 edges.

Proof or Counterexample?

Prove or Disprove?

Often, you will be given a statement, and then asked to either prove or disprove it.

This can be stressful! How do you know which you should start with?

The best way to begin, especially when you don’t know if the claim is even true, is to

try to understand it better by producing some examples. This has two main benefits

that will help, whether you end up proving or disproving the claim:

1) You get a better understanding of the statement so now you have a clear method

of approach, OR

2) You find a counterexample, which allows you to easily write a quick proof that the

statement is false!

Problem 2 – A Quick Proof

Is it possible to have a stable matching instance with more than 2 stable matchings? If

so, give an instance and at least 3 stable matchings. If not, prove that every instance

has at most 2 stable matchings.

Work on this problem with the people around you, and then we’ll go over it together!

Problem 2 – A Quick Proof
Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and

at least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.

Problem 2 – A Quick Proof
Is it possible to have a stable matching instance with more than 2 stable matchings? If so, give an instance and

at least 3 stable matchings. If not, prove that every instance has at most 2 stable matchings.

Consider the following instance:

m1 : w1, w2, w3, w4

m2 : w2, w1, w4, w3

m3 : w3, w4, w1, w2

m4 : w4, w3, w2, w1

w1 : m2, m1, m4, m3

w2 : m1, m2, m3, m4

w3 : m4, m3, m2, m1

w4 : m3, m4, m1, m2

This instance has four stable matchings:

(m1, w1),(m2, w2),(m3, w3),(m4, w4)
(m1, w1),(m2, w2),(m3, w4),(m4, w3)
(m1, w2),(m2, w1),(m3, w3),(m4, w4)
(m1, w2),(m2, w1),(m3, w4),(m4, w3)

That’s All, Folks!

Thanks for coming to section this week!
Any questions?

	Intro
	Slide 1: CSE 421 Section 1

	Administrivia
	Slide 2: Administrivia & Introductions
	Slide 3: Your Section TAs
	Slide 4: Homework
	Slide 5: Announcements & Reminders

	Stable Matching
	Slide 6: Stable Matching
	Slide 7: Stable Matching
	Slide 8: Gale-Shapley Algorithm
	Slide 9: Problem 1 – Gale-Shapley
	Slide 10: Problem 1 – Gale-Shapley
	Slide 11: Problem 1 – Gale-Shapley
	Slide 12: Problem 1 – Gale-Shapley
	Slide 13: Problem 1 – Gale-Shapley
	Slide 14: Problem 1 – Gale-Shapley
	Slide 15: Problem 1 – Gale-Shapley
	Slide 16: Problem 1 – Gale-Shapley
	Slide 17: Problem 1 – Gale-Shapley
	Slide 18: Problem 1 – Gale-Shapley
	Slide 19: Problem 1 – Gale-Shapley
	Slide 20: Problem 1 – Gale-Shapley
	Slide 21: Problem 1 – Gale-Shapley
	Slide 22: Problem 1 – Gale-Shapley
	Slide 23: Problem 1 – Gale-Shapley
	Slide 24: Problem 2 – True/False
	Slide 25: Problem 2 – True/False
	Slide 26: Problem 2 – True/False
	Slide 27: Problem 2 – True/False

	Induction
	Slide 28: Induction
	Slide 29: Induction
	Slide 30: Induction Template
	Slide 31: Problem 3 – Induction Review
	Slide 32: Problem 3 – Induction Review
	Slide 33: Problem 3 – Induction Review
	Slide 34: Problem 3 – Induction Review
	Slide 35: KEY Induction Concept
	Slide 36: Problem 3 – Induction Review
	Slide 37: Problem 3 – Induction Review

	Counterexample
	Slide 38: Proof or Counterexample?
	Slide 39: Prove or Disprove?
	Slide 40: Problem 2 – A Quick Proof
	Slide 41: Problem 2 – A Quick Proof
	Slide 42: Problem 2 – A Quick Proof

	Outro
	Slide 43: That’s All, Folks!

