Announcements

Final Exam: Monday, March 11, 2:30-4:20 PM
- One Hour Fifty Minutes
- Comprehensive (but roughly 60% post midterm)
- Topics will include: dynamic programming, network flow, network flow reductions, NP-completeness, and other stuff

Daylight Saving Time starts 2:00 AM, March 10

NP-Completeness Proofs

- Prove that problem X is NP-Complete
 - Show that X is in NP (usually easy)
 - Pick a known NP complete problem Y
 - Show Y \leq_p X

What we don’t know

- P vs. NP

What if?

- 3-SAT can be solved in O(n^3) time
- 3-SAT can be solved in O(n^{5000}) time
- Factorization can be solved in O(n^3) time

If P \neq NP, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
 - Shortest Vector in a Lattice
 - Factorization
 - Discrete Log
 - Graph Isomorphism

What if?
What about Quantum?

• Computing with Quantum Devices
 – Superposition of states
• Complexity Theory: BQP - Bounded Error Quantum Polynomial Time
• Factorization is in BQP Time (Shor’s Algorithm)

Cryptography

• Standard cryptography depends on number theory problems being hard
 – Keeping factorization secret
• Practical Quantum would break RSA
• Post-Quantum Cryptography
 – Find other hard problems to base cryptography on

Shortest Vector in a Lattice

• Given a set of vectors L, what is the shortest non-zero vector that can be formed by integer linear combinations of the vectors?
• The problem is NP-Complete under randomized polynomial time reductions

Complexity Theory

• Computational requirements to recognize languages
• Models of Computation
• Resources
• Hierarchies

Time complexity

• P: (Deterministic) Polynomial Time
• NP: Non-deterministic Polynomial Time
• EXP: Exponential Time

Space Complexity

• Amount of Space (Exclusive of Input)
• L: Logspace, problems that can be solved in O(log n) space for input of size n
 – Related to Parallel Complexity
• PSPACE, problems that can be required in a polynomial amount of space
So what is beyond NP?

NP vs. Co-NP
- Given a Boolean formula, is it true for some choice of inputs
- Given a Boolean formula, is it true for all choices of inputs

Problems beyond NP
- Exact TSP, Given a graph with edge lengths and an integer K, does the minimum tour have length K
- Minimum circuit, Given a circuit C, is it true that there is no smaller circuit that computes the same function as C

Polynomial Hierarchy
- Level 1
 - $\exists X_1 \Phi(X_1), \forall X_1 \Phi(X_1)$
- Level 2
 - $\forall X_1 \exists X_2 \Phi(X_1, X_2), \exists X_1 \forall X_2 \Phi(X_1, X_2)$
- Level 3
 - $\forall X_1 \exists X_2 \forall X_3 \Phi(X_1, X_2, X_3), \exists X_1 \forall X_2 \exists X_3 \Phi(X_1, X_2, X_3)$

Polynomial Space
- Quantified Boolean Expressions
 - $\exists X_1 \forall X_2 \exists X_3 \ldots \forall X_n \Phi(X_1, X_2, X_3 \ldots X_{n-1}, X_n)$
- Space bounded games
 - Competitive Facility Location Problem
 - N x N Chess
- Counting problems
 - The number of Hamiltonian Circuits

N x N Chess
Even Harder Problems

```csharp
public int[] RecolorSwap(int[] coloring) {
    int k = maxColor(coloring);
    for (int v = 0; v < nVertices; v++) {
        if (coloring[v] == k) {
            int[] nbdColorCount = ColorCount(v, k, coloring);
            List<Edge> edges1 = vertices[v].Edges;
            foreach (Edge e1 in edges1) {
                int w = e1.Head;
                if (nbdColorCount[coloring[w]] == 1)
                    if (RecolorSwap(v, w, k, coloring))
                        break;
            }
        }
    }
    return coloring;
}
```

Is this code correct?

Halting Problem

- Given a program P that does not take any inputs, does P eventually exit?

Impossibility of solving the Halting Problem

Suppose Halt(P) returns true if P halts, and false otherwise.

Consider the program G:

Define G {
 if (Halt(G)){
 while (true) ;
 } else {
 exit();
 }
}

What is Halt(G)?

Undecidable Problems

- The Halting Problem is undecidable
- Impossible problems are hard . . .