CSE 421
Introduction to Algorithms
Winter 2024
Lecture 26
NP-Completeness and Beyond
Announcements

Final Exam: Monday, March 11, 2:30-4:20 PM

– One Hour Fifty Minutes
– Comprehensive (but roughly 60% post midterm)
– Topics will include: dynamic programming, network flow, network flow reductions, NP-completeness, and other stuff

Daylight Saving Time starts 2:00 AM, March 10
NP-Completeness Proofs

• Prove that problem X is NP-Complete
 – Show that X is in NP (usually easy)
 – Pick a known NP complete problem Y
 – Show $Y \leq_p X$
What we don’t know

• P vs. NP
If $P \neq NP$, is there anything in between

- Yes, Ladner [1975]
- Problems not known to be in P or NP Complete
 - Shortest Vector in a Lattice
 - Factorization
 - Discrete Log
 - Graph Isomorphism

Solve $g^k = b$ over a finite group
What if?

• 3-SAT can be solved in $O(n^3)$ time

• 3-SAT can be solved in $O(n^{5000})$ time

• Factorization can be solved in $O(n^3)$ time
What about Quantum?

- Computing with Quantum Devices
 - Superposition of states
- Complexity Theory: BQP - Bounded Error Quantum Polynomial Time
- Factorization is in BQP Time (Shor’s Algorithm)
Cryptography

• Standard cryptography depends on number theory problems being hard
 – Keeping factorization secret
• Practical Quantum would break RSA
• Post-Quantum Cryptography
 – Find other hard problems to base cryptography on
Shortest Vector in a Lattice

• Given a set of vectors L, what is the shortest non-zero vector that can be formed by integer linear combinations of the vectors?

• The problem is NP-Complete under randomized polynomial time reductions
Complexity Theory

• Computational requirements to recognize languages
• Models of Computation
• Resources
• Hierarchies
Time complexity

- P: (Deterministic) Polynomial Time
- NP: Non-deterministic Polynomial Time
- EXP: Exponential Time
Space Complexity

- Amount of Space (Exclusive of Input)
- L: Logspace, problems that can be solved in $O(\log n)$ space for input of size n
 - Related to Parallel Complexity

- PSPACE, problems that can be required in a polynomial amount of space
So what is beyond NP?
NP vs. Co-NP

• Given a Boolean formula, is it true for some choice of inputs

• Given a Boolean formula, is it true for all choices of inputs
Problems beyond NP

• Exact TSP, Given a graph with edge lengths and an integer K, does the minimum tour have length K

• Minimum circuit, Given a circuit C, is it true that there is no smaller circuit that computes the same function a C
Polynomial Hierarchy

• Level 1
 – \(\exists X_1 \Phi(X_1), \ \forall X_1 \Phi(X_1) \)

• Level 2
 – \(\forall X_1 \exists X_2 \Phi(X_1,X_2), \ \exists X_1 \forall X_2 \Phi(X_1,X_2) \)

• Level 3
 – \(\forall X_1 \exists X_2 \forall X_3 \Phi(X_1,X_2,X_3), \ \exists X_1 \forall X_2 \exists X_3 \Phi(X_1,X_2,X_3) \)
Polynomial Space

• Quantified Boolean Expressions
 – $\exists X_1 \forall X_2 \exists X_3 \ldots \exists X_{n-1} \forall X_n \Phi(X_1, X_2, X_3 \ldots X_{n-1} X_n)$

• Space bounded games
 – Competitive Facility Location Problem
 – N x N Chess

• Counting problems
 – The number of Hamiltonian Circuits
N X N Chess
public int[] RecolorSwap(int[] coloring) {
 int k = maxColor(coloring);

 for (int v = 0; v < nVertices; v++) {
 if (coloring[v] == k) {
 int[] nbdColorCount = ColorCount(v, k, coloring);
 List<Edge> edges1 = vertices[v].Edges;

 foreach (Edge e1 in edges1) {
 int w = e1.Head;
 if (nbdColorCount[coloring[w]] == 1) {
 if (RecolorSwap(v, w, k, coloring))
 break;
 }
 }
 }
 }

 return coloring;
}
Halting Problem

• Given a program P that does not take any inputs, does P eventually exit?
Impossibility of solving the Halting Problem

Suppose $Halt(P)$ returns true if P halts, and false otherwise.

Consider the program G:

What is $Halt(G)$?

```c
Define G {
    if (Halt(G)){
        while (true) ;
    }
    else {
        exit();
    }
}
```
Undecidable Problems

• The Halting Problem is undecidable
• Impossible problems are hard . . .