
CSE 421

Introduction to Algorithms

Winter 2024

Lecture 26

NP-Completeness and Beyond

NP-

Complete

P

1

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=XU9flIOrWmTaFM&tbnid=W8hogqFNBI2XiM:&ved=0CAUQjRw&url=http://quashieart.blogspot.com/2010/05/on-beyond-zebra.html&ei=EoE6UaLMHInIyAGKwoCQDw&bvm=bv.43287494,d.aWc&psig=AFQjCNGmkUZqRw9FnONlRkfysCIwmuKeTw&ust=1362874997471973

Announcements

Final Exam: Monday, March 11, 2:30-4:20 PM

– One Hour Fifty Minutes

– Comprehensive (but roughly 60% post midterm)

– Topics will include: dynamic programming,

network flow, network flow reductions, NP-

completeness, and other stuff

Daylight Saving Time starts 2:00 AM, March 10

2

NP-Completeness Proofs

• Prove that problem X is NP-Complete

– Show that X is in NP (usually easy)

– Pick a known NP complete problem Y

– Show Y <P X

3

What we don’t know

• P vs. NP

NP-Complete

P

P = NP

4

If P NP, is there anything in

between
• Yes, Ladner [1975]

• Problems not known to be in P or NP Complete

– Shortest Vector in a Lattice

– Factorization

– Discrete Log

– Graph Isomorphism

Solve gk = b over a finite group

5

What if?

• 3-SAT can be solved in O(n3) time

• 3-SAT can be solved in O(n5000) time

• Factorization can be solved in O(n3) time

6

What about Quantum?

• Computing with Quantum

Devices

– Superposition of states

• Complexity Theory: BQP -

Bounded Error Quantum

Polynomial Time

• Factorization is in BQP

Time (Shor’s Algorithm)

7

NP-Complete

P

BQP

Cryptography

• Standard cryptography depends on

number theory problems being hard

– Keeping factorization secret

• Practical Quantum would break RSA

• Post-Quantum Cryptography

– Find other hard problems to base

cryptography on

8

Shortest Vector in a Lattice

• Given a set of vectors L,

what is the shortest non-

zero vector that can be

formed by integer linear

combinations of the vectors?

• The problem is NP-

Complete under randomized

polynomial time reductions

9

NP-Complete

P

Complexity Theory

• Computational requirements to recognize

languages

• Models of Computation

• Resources

• Hierarchies

10

Regular

Languages

Context Free

Languages

Decidable

Languages

All

Languages

Time complexity

• P: (Deterministic) Polynomial Time

• NP: Non-deterministic Polynomial Time

• EXP: Exponential Time

11

Space Complexity

• Amount of Space (Exclusive of Input)

• L: Logspace, problems that can be solved

in O(log n) space for input of size n

– Related to Parallel Complexity

• PSPACE, problems that can be required

in a polynomial amount of space

12

So what is beyond NP?

13

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=XU9flIOrWmTaFM&tbnid=W8hogqFNBI2XiM:&ved=0CAUQjRw&url=http://quashieart.blogspot.com/2010/05/on-beyond-zebra.html&ei=EoE6UaLMHInIyAGKwoCQDw&bvm=bv.43287494,d.aWc&psig=AFQjCNGmkUZqRw9FnONlRkfysCIwmuKeTw&ust=1362874997471973

NP vs. Co-NP

• Given a Boolean formula, is it true for

some choice of inputs

• Given a Boolean formula, is it true for all

choices of inputs

14

Problems beyond NP

• Exact TSP, Given a graph with edge

lengths and an integer K, does the

minimum tour have length K

• Minimum circuit, Given a circuit C, is it

true that there is no smaller circuit that

computes the same function a C

15

Polynomial Hierarchy

• Level 1

– X1 (X1), X1 (X1)

• Level 2

– X1X2 (X1,X2), X1X2 (X1,X2)

• Level 3

– X1X2X3 (X1,X2,X3), X1X2X3 (X1,X2,X3)

16

Polynomial Space

• Quantified Boolean Expressions
– X1X2X3...Xn-1Xn (X1,X2,X3…Xn-1Xn)

• Space bounded games
– Competitive Facility Location Problem

– N x N Chess

• Counting problems
– The number of Hamiltonian Circuits

PSpace-

Complete

P

Log

Space

17

18

N X N

Chess

Even Harder Problems
public int[] RecolorSwap(int[] coloring) {

int k = maxColor(coloring);

for (int v = 0; v < nVertices; v++) {
if (coloring[v] == k) {

int[] nbdColorCount = ColorCount(v, k, coloring);
List<Edge> edges1 = vertices[v].Edges;

foreach (Edge e1 in edges1) {
int w = e1.Head;
if (nbdColorCount[coloring[w]] == 1)

if (RecolorSwap(v, w, k, coloring))
break;

}
}

}
return coloring;

}

Is this code correct? 19

Halting Problem

• Given a program P that does not take any

inputs, does P eventually exit?

20

Impossibility of solving the

Halting Problem
Suppose Halt(P) returns true if P halts, and

false otherwise

Consider the program G:

What is Halt(G)?

21

Define G {

if (Halt(G)){

while (true) ;

}

else {

exit();

}

}

Undecidable Problems

• The Halting Problem is undecidable

• Impossible problems are hard . . .

22

