CSE 421
Introduction to Algorithms
Lecture 25
Coping with NP-Completeness

Announcements
• Today, Coping with NP-Completeness
 – Chapters 11 and 12
• Friday, Beyond NP-Completeness
 – Section 8.9, Chapter 9
• Homework 9, Due Friday, March 8
• Final exam,
 – Monday, March 11, 2:30-4:20 pm PDT
 – Comprehensive (~60% post midterm, ~40% pre midterm)
 – Old finals / answers on home page

Coping with NP-Completeness
• Approximation Algorithms
• Exact solution via Branch and Bound
• Local Search

Approximation Algorithms
• K-Approximation Algorithm
• Worst case ratio of solution and optimal as input size goes to infinity
• Minimization problems
 – Find a solution at most K times the optimum
• Maximization problems
 – Find a solution at most 1/K times the optimum

Vertex Cover
• A vertex cover is a subset of the vertices that is adjacent to every edge
• VC is NP-Complete

```
W = {};
E' = E
while E' is not empty
    Select e = (u,v) from E'
    Add u and v to W
    Remove all edges adjacent to u or v from E'
```
VC 2-Opt Bound

- When edge $e = (u,v)$ is selected, neither u nor v is in W
- At least one of u or v must be in the VC to cover e
- Thus, at least $\frac{1}{2}$ the vertices placed in W are necessary

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for $k=2$
- Open for k = constant
- NP-complete if k is part of the problem

Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Suppose the maximum height of a task is H
A partial round removes $< k$ elements
A full round removes k elements

2-Opt Proof for HLF

The number of partial rounds is at most H
Opt $\geq H$

The number of full rounds is at most N / k
Opt $\geq N / k$

Partial + Full $\leq H + N / K \leq 2$ Opt

MST Bound for TSP

Undirected graph satisfying triangle inequality

$\text{MST Cost} \leq \text{TSP Cost} \leq 2 \times \text{MST Cost}$

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality

1. Find MST
2. Add additional edges so that all vertices have even degree
3. Build Eulerian Tour

$3/2$ Approximation
Christofides Algorithm

First Fit Packing
- First Fit
 - Theorem: FF(I) is at most 17/10 Opt(I) + 2
- First Fit Decreasing
 - Theorem: FFD(I) is at most 11/9 Opt(I) + 4

Knapsack
- Items \(\{I_1, I_2, \ldots, I_n\} \)
 - Weights \(\{w_1, w_2, \ldots, w_n\} \), Values \(\{v_1, v_2, \ldots, v_n\} \)
 - Find set \(S \) of indices to maximize:
 - \(\sum_{i \in S} v_i \) such that \(\sum_{i \in S} w_i \leq K \)
- Dynamic Programming solution:
 - Find the smallest set of a given value
 - Runtime \(O(nV) \) where \(V \) is the sum of the values
- Goal – for any \(\epsilon > 0 \), we want a polynomial time algorithm that finds a solution of at least \((1-\epsilon) \) Opt

PTAS (Polynomial time approximation scheme)
- Idea for approximation algorithm*
- Scale values so that \(\frac{1}{2} \leq \text{Opt} \leq 1 \)
- Let \(\epsilon = 2^{-k} \)
- Round the values down to multiples of \(\epsilon^2 \)
- Solve the DP using \(\epsilon^2 \) values
- Runtime \(O(n\epsilon^2) \), Approximation \((1-\epsilon) \)

Bin Packing
- Given \(N \) items with weight \(w_i \), pack the items into as few unit capacity bins as possible
- Example: .3, .3, .3, .3, .4, .4

Branch and Bound
- Brute force search – tree of all possible solutions
- Branch and bound – compute a lower bound on all possible extensions
 - Prune sub-trees that cannot be better than optimal

*Some details omitted in dealing with very small items.
Branch and Bound for SAT

• Solving SAT by setting one variable at a time
• Setting a literal to 1 removes the clause
• Setting a literal to 0 removes the literal
 – Removing the last literal kills the subtree
• Heuristics for variable ordering
• Very important algorithms in practice, especially for software verification

Branch and Bound for TSP

• Enumerate all possible paths
• Lower bound, Current path cost plus MST of remaining points
• Euclidean TSP
 – Points on the plane with Euclidean Distance
 – Sample data set: State Capitals

Local Optimization

• Improve an optimization problem by local improvement
 – Neighborhood structure on solutions
 – Travelling Salesman 2-Opt (or K-Opt)
 – Independent Set Local Replacement

Enhancements to Local Search

• Randomized Local Search
 – Start from lots of places
• Metropolis Algorithm
 – Choose random neighbor
 • Move if cheaper
 • If worse, move with some probability
• Simulated Annealing
 – Like Metropolis, but adjust probabilities to simulate cooling