

1

Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

3

Vertex Cover

- A vertex cover is a subset of the vertices that is adjacent to every edge
- VC is NP-Complete
$\mathrm{w}=\{ \} ;$
$\mathrm{E}^{\prime}=\mathrm{E}$
while E^{\prime} is not empty
Select $e=(u, v)$ from E^{\prime}
Add u and v to w
Remove all edges adjacent to u or v from E^{\prime}

5

Announcements

- Today, Coping with NP-Completeness
- Chapters 11 and 12
- Friday, Beyond NP-Completeness
- Section 8.9, Chapter 9
- Homework 9, Due Friday, March 8
- Final exam,
- Monday, March 11, 2:30-4:20 pm PDT
- Comprehensive ($\sim 60 \%$ post midterm, $\sim 40 \%$ pre midterm)
- Old finals / answers on home page

2

Approximation Algorithms

- K-Approximation Algorithm
- Worst case ratio of solution and optimal as input size goes to infinity
- Minimization problems
- Find a solution at most K times the optimum
- Maximization problems
- Find a solution at most $1 / \mathrm{K}$ times the optimum

4

6

VC 2-Opt Bound

- When edge $e=(u, v)$ is selected, neither u nor v is in W
- At least one of u or v must be in the VC to cover e
- Thus, at least $1 / 2$ the vertices placed in W are necessary

7

Highest level first is 2-Optimal

Choose k items on the highest level Claim: number of rounds is at least twice the optimal.

Suppose the maximum height of a task is H A partial round removes < k elements A full round removes k elements

9

MST Bound for TSP

Undirected graph satisfying triangle inequality MST Cost \leq TSP Cost ≤ 2 MST Cost

11

Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors
- Polynomial time for k=2
- Open for $\mathrm{k}=$ constant

- NP-complete if k is part of the problem

8

2-Opt Proof for HLF

The number of partial rounds is at most H Opt $\geq \mathrm{H}$

The number of full rounds is at most N / k Opt $\geq \mathrm{N} / \mathrm{k}$

Partial + Full $\leq \mathrm{H}+\mathrm{N} / \mathrm{K} \leq 2$ Opt

10

Christofides TSP Algorithm

- Undirected graph satisfying triangle inequality

1. Find MST
2. Add additional edges so that all 2. vertices have even degree
3. Build Eulerian Tour

3/2 Approximation

13

First Fit Packing

- First Fit

- Theorem: $\mathrm{FF}(\mathrm{I})$ is at most $17 / 10 \operatorname{Opt}(\mathrm{I})+2$
- First Fit Decreasing
- Theorem: FFD(I) is at most 11/9 Opt (I) + 4

15

PTAS (Polynomial time approximation scheme)

- Idea for approximation algorithm*
- Scale values so that $1 / 2 \leq \mathrm{Opt} \leq 1$
- Let $\varepsilon=2^{-k}$
- Round the values down to multiples of ε^{2}
- Solve the DP using ε^{2} values
- Runtime $O\left(n \varepsilon^{2}\right)$, Approximation ($1-\varepsilon$)

Bin Packing

- Given N items with weight w_{i}, pack the items into as few unit capacity bins as possible
- Example: .3, .3, .3, .3, .4, . 4

14

Knapsack

- Items $\left\{\mathrm{I}_{1}, \mathrm{I}_{2}, \ldots \mathrm{I}_{n}\right\}$
- Weights $\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$, Values $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$
- Find set S of indices to maximize:
- $\Sigma_{\text {is }} \mathrm{v}_{\mathrm{i}}$ such that $\Sigma_{\mathrm{ies}} \mathrm{w}_{\mathrm{i}} \leq K$
- Dynamic Programming solution:
- Find the smallest set of a given value
- Runtime $\mathrm{O}(\mathrm{nV})$ where V is the sum of the values
- Goal - for any $\varepsilon>0$, we want a polynomial time algorithm that finds a solution of at least ($1-\varepsilon$) Opt

16

Branch and Bound

- Brute force search - tree of all possible solutions
- Branch and bound - compute a lower bound on all possible extensions
- Prune sub-trees that cannot be better than optimal

Branch and Bound for SAT

- Solving SAT by setting one variable at a time
- Setting a literal to 1 removes the clause
- Setting a literal to 0 removes the literal - Removing the last literal kills the subtree
- Heuristics for variable ordering
- Very important algorithms in practice, especially for software verification

19

Local Optimization

- Improve an optimization problem by local improvement
- Neighborhood structure on solutions
- Travelling Salesman 2-Opt (or K-Opt)
- Independent Set Local Replacement

Branch and Bound for TSP

- Enumerate all possible paths
- Lower bound, Current path cost plus MST of remaining points
- Euclidean TSP
- Points on the plane with Euclidean Distance
- Sample data set: State Capitals

20

Enhancements to Local Search

- Randomized Local Search
- Start from lots of places
- Metropolis Algorithm
- Choose random neighbor
- Move if cheaper
- If worse, move with some probability
- Simulated Annealing
- Like Metropolis, but adjust probabilities to simulate cooling

