CSE 421
Introduction to Algorithms
Lecture 25
Coping with NP-Completeness
Announcements

• Today, Coping with NP-Completeness
 – Chapters 11 and 12
• Friday, Beyond NP-Completeness
 – Section 8.9, Chapter 9
• Homework 9, Due Friday, March 8
• Final exam,
 – Monday, March 11, 2:30-4:20 pm PDT
 – Comprehensive (~60% post midterm, ~40% pre midterm)
 – Old finals / answers on home page
Coping with NP-Completeness

- Approximation Algorithms
- Exact solution via Branch and Bound
- Local Search

I can’t find an efficient algorithm, but neither can all these famous people.
Approximation Algorithms

• K-Approximation Algorithm
• Worst case ratio of solution and optimal as input size goes to infinity
• Minimization problems
 – Find a solution at most K times the optimum
• Maximization problems
 – Find a solution at most 1/K times the optimum
Vertex Cover

• A vertex cover is a subset of the vertices that is adjacent to every edge
• VC is NP-Complete

W = {}; E' = E
while E' is not empty
 Select e = (u,v) from E'
 Add u and v to W
 Remove all edges adjacent to u or v from E'
\[W = \{\}; \]
\[E' = E \]

while \(E' \) is not empty

\[\text{Select } e = (u,v) \text{ from } E' \]
\[\text{Add } u \text{ and } v \text{ to } W \]
\[\text{Remove all edges adjacent to } u \text{ or } v \text{ from } E' \]
VC 2-Opt Bound

• When edge $e = (u,v)$ is selected, neither u nor v is in W

• At least one of u or v must be in the VC to cover e

• Thus, at least $\frac{1}{2}$ the vertices placed in W are necessary
Multiprocessor Scheduling

- Unit execution tasks
- Precedence graph
- K-Processors

- Polynomial time for \(k=2 \)
- Open for \(k = \text{constant} \)
- NP-complete if \(k \) is part of the problem
Highest level first is 2-Optimal

Choose k items on the highest level
Claim: number of rounds is at least twice the optimal.

Suppose the maximum height of a task is \(H \)
A partial round removes \(< k \) elements
A full round removes \(k \) elements
2-Opt Proof for HLF

The number of partial rounds is at most $H_{\text{opt}} \geq H$

The number of full rounds is at most N / k
$Opt \geq N / k$

Partial + Full $\leq H + N / K \leq 2 \cdot Opt$
MST Bound for TSP

Undirected graph satisfying triangle inequality

MST Cost \leq TSP Cost \leq 2 MST Cost
Christofides TSP Algorithm

1. Find MST
2. Add additional edges so that all vertices have even degree
3. Build Eulerian Tour

3/2 Approximation
Bin Packing

• Given N items with weight w_i, pack the items into as few unit capacity bins as possible

• Example: .3, .3, .3, .3, .4, .4
First Fit Packing

• First Fit
 – Theorem: FF(I) is at most $17/10 \text{ Opt}(I) + 2$

• First Fit Decreasing
 – Theorem: FFD(I) is at most $11/9 \text{ Opt}(I) + 4$
Knapsack

- Items \{I_1, I_2, \ldots I_n\}
 - Weights \{w_1, w_2, \ldots, w_n\}, Values \{v_1, v_2, \ldots, v_n\}
- Find set \mathcal{S} of indices to maximize:
 - \sum_{i \in \mathcal{S}} v_i \text{ such that } \sum_{i \in \mathcal{S}} w_i \leq K

- Dynamic Programming solution:
 - Find the smallest set of a given value
 - Runtime \(O(nV)\) where \(V\) is the sum of the values

- Goal – for any \(\varepsilon > 0\), we want a polynomial time algorithm that finds a solution of at least \((1-\varepsilon)\ Opt\)
PTAS (Polynomial time approximation scheme)

• Idea for approximation algorithm*
• Scale values so that $\frac{1}{2} \leq \text{Opt} \leq 1$
• Let $\varepsilon = 2^{-k}$
• Round the values down to multiples of ε^2
• Solve the DP using ε^2 values
• Runtime $O(n\varepsilon^2)$, Approximation $(1-\varepsilon)$

*Some details omitted in dealing with very small items.
Branch and Bound

• Brute force search – tree of all possible solutions
• Branch and bound – compute a lower bound on all possible extensions
 – Prune sub-trees that cannot be better than optimal
Branch and Bound for SAT

- Solving SAT by setting one variable at a time
- Setting a literal to 1 removes the clause
- Setting a literal to 0 removes the literal
 - Removing the last literal kills the subtree
- Heuristics for variable ordering
- Very important algorithms in practice, especially for software verification
Branch and Bound for TSP

- Enumerate all possible paths
- Lower bound, Current path cost plus MST of remaining points
- Euclidean TSP
 - Points on the plane with Euclidean Distance
 - Sample data set: State Capitals
Local Optimization

• Improve an optimization problem by local improvement
 – Neighborhood structure on solutions
 – Travelling Salesman 2-Opt (or K-Opt)
 – Independent Set Local Replacement
Enhancements to Local Search

• Randomized Local Search
 – Start from lots of places

• Metropolis Algorithm
 – Choose random neighbor
 • Move if cheaper
 • If worse, move with some probability

• Simulated Annealing
 – Like Metropolis, but adjust probabilities to simulate cooling