
CSE 421

Introduction to Algorithms

Lecture 25

Coping with NP-Completeness  
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Announcements

• Today, Coping with NP-Completeness
– Chapters 11 and 12

• Friday, Beyond NP-Completeness
– Section 8.9,  Chapter 9

• Homework 9,  Due Friday, March 8

• Final exam,  
– Monday, March 11, 2:30-4:20 pm PDT

– Comprehensive (~60% post midterm, ~40% pre 
midterm)

– Old finals / answers on home page
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Coping with NP-Completeness

• Approximation Algorithms

• Exact solution via Branch and Bound

• Local Search

I can’t find an efficient algorithm, but neither can all these famous people.
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Approximation Algorithms

• K-Approximation Algorithm

• Worst case ratio of solution and optimal as 

input size goes to infinity

• Minimization problems

– Find a solution at most K times the optimum

• Maximization problems

– Find a solution at most 1/K times the optimum
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Vertex Cover

• A vertex cover is a subset of the vertices 

that is adjacent to every edge

• VC is NP-Complete

W = {};

E’= E

while E’ is not empty

   Select e = (u,v) from E’

   Add u and v to W

   Remove all edges adjacent to u or v from E’
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VC 2-Opt Bound

• When edge e = (u,v) is selected, neither u 

nor v is in W

• At least one of u or v must be in the VC to 

cover e

• Thus, at least ½ the vertices placed in W 

are necessary
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Multiprocessor Scheduling

• Unit execution tasks

• Precedence graph

• K-Processors

• Polynomial time for 

k=2

• Open for k = constant

• NP-complete if k is 

part of the problem 
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Highest level first is 2-Optimal

Choose k items on the highest level

Claim: number of rounds is at least twice the 

optimal.

Suppose the maximum height of a task is H

A partial round removes < k elements

A full round removes k elements
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2-Opt Proof for HLF

The number of partial rounds is at most H

Opt ≥  H

The number of full rounds is at most N / k

Opt ≥  N / k

Partial + Full ≤  H + N / K ≤  2 Opt
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MST Bound for TSP
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Undirected graph satisfying triangle inequality

MST Cost ≤ TSP Cost ≤ 2 MST Cost
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Christofides TSP Algorithm

• Undirected graph satisfying triangle 

inequality
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1. Find MST

2. Add additional edges so that all 

vertices have even degree

3. Build Eulerian Tour

3/2 Approximation
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Christofides Algorithm
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Bin Packing

• Given N items with weight wi, pack the 

items into as few unit capacity bins as 

possible

• Example:  .3, .3, .3, .3, .4, .4
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First Fit Packing

• First Fit   

– Theorem:  FF(I) is at most 17/10 Opt(I) + 2

• First Fit Decreasing

– Theorem:  FFD(I) is at most 11/9 Opt (I) + 4
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Knapsack

• Items {I1, I2, … In}
– Weights {w1, w2, …,wn},  Values {v1, v2, …, vn}

• Find set S of indices to maximize:
– SieSvi such that SieSwi ≤ K

• Dynamic Programming solution: 
– Find the smallest set of a given value

– Runtime O(nV) where V is the sum of the values

• Goal – for any ε > 0, we want a polynomial time 
algorithm that finds a solution of at least (1-ε) Opt
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PTAS (Polynomial time 

approximation scheme)
• Idea for approximation algorithm*

• Scale values so that ½ ≤ Opt ≤ 1

• Let ε = 2-k

• Round the values down to multiples of ε2

• Solve the DP using ε2 values

• Runtime O(nε2),  Approximation (1-ε)
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Branch and Bound

• Brute force search – tree of all possible 

solutions

• Branch and bound – compute a lower 

bound on all possible extensions

– Prune sub-trees that cannot be better than 

optimal
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Branch and Bound for SAT

• Solving SAT by setting one variable at a 

time

• Setting a literal to 1 removes the clause

• Setting a literal to 0 removes the literal

– Removing the last literal kills the subtree

• Heuristics for variable ordering

• Very important algorithms in practice, 

especially for software verification
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Branch and Bound for TSP

• Enumerate all possible paths

• Lower bound,  Current path cost plus MST of remaining points

• Euclidean TSP
– Points on the plane with Euclidean Distance

– Sample data set: State Capitals
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Local Optimization

• Improve an optimization problem by local 

improvement

– Neighborhood structure on solutions

– Travelling Salesman 2-Opt (or K-Opt)

– Independent Set Local Replacement
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Enhancements to Local Search

• Randomized Local Search

– Start from lots of places

• Metropolis Algorithm

– Choose random neighbor 

• Move if cheaper

• If worse,  move with some probability 

• Simulated Annealing

– Like Metropolis, but adjust probabilities to 

simulate cooling
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