
CSE 421

Introduction to Algorithms

Lecture 25

Coping with NP-Completeness

1

Announcements

• Today, Coping with NP-Completeness
– Chapters 11 and 12

• Friday, Beyond NP-Completeness
– Section 8.9, Chapter 9

• Homework 9, Due Friday, March 8

• Final exam,
– Monday, March 11, 2:30-4:20 pm PDT

– Comprehensive (~60% post midterm, ~40% pre
midterm)

– Old finals / answers on home page

2

Coping with NP-Completeness

• Approximation Algorithms

• Exact solution via Branch and Bound

• Local Search

I can’t find an efficient algorithm, but neither can all these famous people.

3

http://www.google.com/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&cad=rja&docid=wAlWsu-D4FGYaM&tbnid=VGbphMWdKd1QoM:&ved=0CAUQjRw&url=http://inf421.wordpress.com/2011/10/20/usefulness-of-p-and-np/&ei=eNs4UaqLKYXOrQHzoICYBA&bvm=bv.43287494,d.aWM&psig=AFQjCNEoWp8txWo2oF-xJqcpCNapYshSpg&ust=1362767052234834

Approximation Algorithms

• K-Approximation Algorithm

• Worst case ratio of solution and optimal as

input size goes to infinity

• Minimization problems

– Find a solution at most K times the optimum

• Maximization problems

– Find a solution at most 1/K times the optimum

4

Vertex Cover

• A vertex cover is a subset of the vertices

that is adjacent to every edge

• VC is NP-Complete

W = {};

E’= E

while E’ is not empty

 Select e = (u,v) from E’

 Add u and v to W

 Remove all edges adjacent to u or v from E’

5

6

W = {};

E’= E

while E’ is not empty

 Select e = (u,v) from E’

 Add u and v to W

 Remove all edges adjacent to u or v from E’

VC 2-Opt Bound

• When edge e = (u,v) is selected, neither u

nor v is in W

• At least one of u or v must be in the VC to

cover e

• Thus, at least ½ the vertices placed in W

are necessary

7

Multiprocessor Scheduling

• Unit execution tasks

• Precedence graph

• K-Processors

• Polynomial time for

k=2

• Open for k = constant

• NP-complete if k is

part of the problem

8

Highest level first is 2-Optimal

Choose k items on the highest level

Claim: number of rounds is at least twice the

optimal.

Suppose the maximum height of a task is H

A partial round removes < k elements

A full round removes k elements

9

2-Opt Proof for HLF

The number of partial rounds is at most H

Opt ≥ H

The number of full rounds is at most N / k

Opt ≥ N / k

Partial + Full ≤ H + N / K ≤ 2 Opt

10

MST Bound for TSP

11

Undirected graph satisfying triangle inequality

MST Cost ≤ TSP Cost ≤ 2 MST Cost

3

5

1

4

4

4

5
2

4

5

3
2

3

6

3
6

3

5

1

4

4

4

5
2

4

5

3
2

3

6

3
6

Christofides TSP Algorithm

• Undirected graph satisfying triangle

inequality

3

5

1

4

4

4

5
2

4

5

3
2

3

6

3
6

1. Find MST

2. Add additional edges so that all

vertices have even degree

3. Build Eulerian Tour

3/2 Approximation

12

Christofides Algorithm
3

5

1

4

4

4

5
2

4

5

3
2

3

6

3
6

3

5

1

4

4

4

5
2

4

5

3
2

3

6

3
6

3

1

4

2

4 3
2

3

6

5

4

13

Bin Packing

• Given N items with weight wi, pack the

items into as few unit capacity bins as

possible

• Example: .3, .3, .3, .3, .4, .4

14

First Fit Packing

• First Fit

– Theorem: FF(I) is at most 17/10 Opt(I) + 2

• First Fit Decreasing

– Theorem: FFD(I) is at most 11/9 Opt (I) + 4

15

Knapsack

• Items {I1, I2, … In}
– Weights {w1, w2, …,wn}, Values {v1, v2, …, vn}

• Find set S of indices to maximize:
– SieSvi such that SieSwi ≤ K

• Dynamic Programming solution:
– Find the smallest set of a given value

– Runtime O(nV) where V is the sum of the values

• Goal – for any ε > 0, we want a polynomial time
algorithm that finds a solution of at least (1-ε) Opt

16

PTAS (Polynomial time

approximation scheme)
• Idea for approximation algorithm*

• Scale values so that ½ ≤ Opt ≤ 1

• Let ε = 2-k

• Round the values down to multiples of ε2

• Solve the DP using ε2 values

• Runtime O(nε2), Approximation (1-ε)

17
*Some details omitted in dealing with very small items.

Branch and Bound

• Brute force search – tree of all possible

solutions

• Branch and bound – compute a lower

bound on all possible extensions

– Prune sub-trees that cannot be better than

optimal

18

Branch and Bound for SAT

• Solving SAT by setting one variable at a

time

• Setting a literal to 1 removes the clause

• Setting a literal to 0 removes the literal

– Removing the last literal kills the subtree

• Heuristics for variable ordering

• Very important algorithms in practice,

especially for software verification

19

Branch and Bound for TSP

• Enumerate all possible paths

• Lower bound, Current path cost plus MST of remaining points

• Euclidean TSP
– Points on the plane with Euclidean Distance

– Sample data set: State Capitals

20

Local Optimization

• Improve an optimization problem by local

improvement

– Neighborhood structure on solutions

– Travelling Salesman 2-Opt (or K-Opt)

– Independent Set Local Replacement

21

Enhancements to Local Search

• Randomized Local Search

– Start from lots of places

• Metropolis Algorithm

– Choose random neighbor

• Move if cheaper

• If worse, move with some probability

• Simulated Annealing

– Like Metropolis, but adjust probabilities to

simulate cooling
22

	Slide 1: CSE 421 Introduction to Algorithms
	Slide 2: Announcements
	Slide 3: Coping with NP-Completeness
	Slide 4: Approximation Algorithms
	Slide 5: Vertex Cover
	Slide 6
	Slide 7: VC 2-Opt Bound
	Slide 8: Multiprocessor Scheduling
	Slide 9: Highest level first is 2-Optimal
	Slide 10: 2-Opt Proof for HLF
	Slide 11: MST Bound for TSP
	Slide 12: Christofides TSP Algorithm
	Slide 13: Christofides Algorithm
	Slide 14: Bin Packing
	Slide 15: First Fit Packing
	Slide 16: Knapsack
	Slide 17: PTAS (Polynomial time approximation scheme)
	Slide 18: Branch and Bound
	Slide 19: Branch and Bound for SAT
	Slide 20: Branch and Bound for TSP
	Slide 21: Local Optimization
	Slide 22: Enhancements to Local Search

