

Announcements

- · Homework 9, Due Friday, March 8
- · Final exam,
 - Monday, March 11, 2:30-4:20 pm PDT
 - Comprehensive (~60% post midterm, ~40% pre midterm)
 - Old finals / answers on home page

2

NP Complete Problems

- 1. Circuit Satisfiability
- Formula Satisfiabilitya. 3-SAT
- 3. Graph Problems
 - a. Independent Setb. Vertex Cover
 - c. Clique
- 4. Path Problems
- a. Hamiltonian cycle
- b. Hamiltonian path
- c. Traveling Salesman

- 5. Partition Problems
 - a. Three dimensional matching
 - b. Exact cover
- 6. Graph Coloring
- 7. Number problems a. Subset sum
- 8. Integer linear
- programming
- 9. Scheduling with release times and deadlines

5

Hamiltonian Circuit Problem

 Hamiltonian Circuit – a simple cycle including all the vertices of the graph

;

Number Problems

- Subset sum problem
 - Given natural numbers w_1, \ldots, w_n and a target number W, is there a subset that adds up to exactly W?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in O(nW) time

20

XC3 <p SUBSET SUM

Idea: Represent each set as a large integer, where the element x_i is encoded as D^i where D is an integer

$$\{x_3, x_5, x_9\} => D^3 + D^5 + D^9$$

Does there exist a subset that sums to exactly $D^1+D^2+D^3+\ldots+D^{n-1}+D^n$

Detail: How large is D? We need to make sure that we do not have any carries, so we can choose D=m+1, where m is the number of sets.

Integer Linear Programming

- Linear Programming maximize a linear function subject to linear constraints
- Integer Linear Programming require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_i's

Constraint for clause $x_1 \lor x_2 \lor x_3$

 $x_1 + (1 - x_2) + (1 - x_3) > 0$

22

Scheduling with release times and deadlines

- Tasks T_1, \dots, T_n with release time $r_i,$ deadline $d_i,$ and work w_i
- Reduce from Subset Sum
 - Given natural numbers w_1,\dots,w_n and a target number K, is there a subset that adds up to exactly K?
 - Suppose the sum w₁+...+ w_n = W
- Task T_i has release time 0 and deadline W+1
- Add an additional task with release time K, deadline K+1 and work 1

23