

Announcements

- Homework 9, Due Friday, March 8
- Final exam,
- Monday, March 11, 2:30-4:20 pm PDT
- Comprehensive ($\sim 60 \%$ post midterm, $\sim 40 \%$ pre midterm)
- Old finals / answers on home page

Reducibility Among Combinatorial Problems

NP Complete Problems

1. Circuit Satisfiability
2. Formula Satisfiability a. 3-SAT
3. Graph Problems
a. Independent Set
b. Vertex Cover
c. Clique
4. Path Problems
a. Hamiltonian cycle
b. Hamiltonian path
c. Traveling Salesman
5. Partition Problems
a. Three dimensional matching
b. Exact cover
6. Graph Coloring
7. Number problems a. Subset sum
8. Integer linear programming
9. Scheduling with release times and deadlines

Hamiltonian Circuit Problem

- Hamiltonian Circuit - a simple cycle including all the vertices of the graph

Thm: Hamiltonian Circuit is NP Complete

- Reduction from 3-SAT

DHC $<_{p}$ UHC

10

Reduce Hamiltonian Circuit to Hamiltonian Path
G_{2} has a Hamiltonian Path iff G_{1} has a
Hamiltonian Circuit

Traveling Salesman Problem

- Given a complete graph with edge weights, determine the shortest tour that includes all of the vertices (visit each vertex exactly once, and get back to the starting point)

Find the minimum cost tour

Exact Cover (sets of size 3) XC3

```
Given a collection of sets of size 3 of a domain of
size 3N, is there a sub-collection of N sets that cover
the sets
```

(A, B, C), (D, E, F), (A, B, G),
(A, C, I), (B, E, G), (A, G, I),
(B, D, F), (C, E, I), (C, D, H),
(D, G, I), (D, F, H), (E, H, I),
(F, G, H), (F, H, I)

$$
3 D M<_{p} \text { XC3 }
$$

Number Problems

- Subset sum problem
- Given natural numbers w_{1}, \ldots, w_{n} and a target number W , is there a subset that adds up to exactly W?
- Subset sum problem is NP-Complete
- Subset Sum problem can be solved in $\mathrm{O}(\mathrm{nW})$ time

XC3 $<_{p}$ SUBSET SUM

Idea: Represent each set as a large integer, where the element x_{i} is encoded as D^{i} where D is an integer
$\left\{x_{3}, x_{5}, x_{9}\right\}=>D^{3}+D^{5}+D^{9}$
Does there exist a subset that sums to exactly
$D^{1}+D^{2}+D^{3}+\ldots+D^{n-1}+D^{n}$

Detail: How large is D ? We need to make sure that we do not have any carries, so we can choose $D=m+1$, where m is the number of sets.

Integer Linear Programming

- Linear Programming - maximize a linear function subject to linear constraints
- Integer Linear Programming - require an integer solution
- NP Completeness reduction from 3-SAT

Use 0-1 variables for x_{i} 's
Constraint for clause $x_{1} \vee \overline{x_{2}} \vee \overline{x_{3}}$
$x_{1}+\left(1-x_{2}\right)+\left(1-x_{3}\right)>0$

Scheduling with release times

 and deadlines- Tasks T_{1}, \ldots, T_{n} with release time r_{i}, deadline d_{i}, and work w_{i}
- Reduce from Subset Sum
- Given natural numbers w_{1}, \ldots, w_{n} and a target number K, is there a subset that adds up to exactly K ?
- Suppose the sum $w_{1}+\ldots+w_{n}=w$
- Task T_{i} has release time 0 and deadline $\mathrm{W}+1$
- Add an additional task with release time K , deadline $\mathrm{K}+1$ and work 1

