Algorithms vs. Lower bounds

- Algorithmic Theory
 - What we can compute
 - I can solve problem X with resources R
 - Proofs are almost always to give an algorithm that meets the resource bounds
- Lower bounds
 - How do we show that something can’t be done?

The Universe

- P: Class of problems that can be solved in polynomial time
 - Corresponds with problems that can be solved efficiently in practice
 - Right class to work with “theoretically”
Decision Problems

• Theory developed in terms of yes/no problems
 – Independent set
 • Given a graph G and an integer K, does G have an independent set of size at least K
 – Network Flow
 • Given a graph G with edge capacities, a source vertex s, and sink vertex t, and an integer K, does the graph have flow function with value at least K

What is NP?

• Problems solvable in non-deterministic polynomial time

• Problems where “yes” instances have polynomial time checkable certificates

Certificate examples

• Independent set of size K
 – The Independent Set
• Satisfiable formula
 – Truth assignment to the variables
• Hamiltonian Circuit Problem
 – A cycle including all of the vertices
• K-coloring a graph
 – Assignment of colors to the vertices

Definition of P

Decision problems with polynomial time algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>Description</th>
<th>Algorithm</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>MULTIPLE</td>
<td>Is x a multiple of y?</td>
<td>Grade school division</td>
<td>51, 17</td>
<td>51, 16</td>
</tr>
<tr>
<td>RELPRIME</td>
<td>Are x and y relatively prime?</td>
<td>Euclid's algorithm</td>
<td>34, 39</td>
<td>34, 51</td>
</tr>
</tbody>
</table>
| EDIT-DISTANCE| Is the edit distance between x and y less than 5?| Dynamic programming | neither | neith...
| LSOLVE | Is there a vector x that satisfies Ax = b? | Gaussian elimination | 5, 1 | 5, 1 |

Non-deterministic Computation

• Non-deterministic finite automata
 – Multiple different next states
 – Accept a string if some set of choices get to an accept state

• Non-deterministic computer
 – Add a non-deterministic GOTO statement (choose between multiple statements)
 – Accept if some computation reaches an accept state

Certifiers and Certificates: 3-Satisfiability

SAT: Does a given CNF formula have a satisfying formula
Certificate: An assignment of truth values to the n boolean variables
Certifier: Check that each clause has at least one true literal,

instance s

\[(x_1 \lor x_2 \lor x_3) \land (x_1 \lor x_2 \lor x_4) \land (x_1 \lor x_3 \lor x_4)\]

certificate 1

\[x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1\]
Certifiers and Certificates: Hamiltonian Cycle

Hamiltonian Cycle

Given an undirected graph $G = (V, E)$, does there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

Certifier. Check that the permutation contains each node in V exactly once, and that there is an edge between each pair of adjacent nodes in the permutation.

Polynomial time reductions

- **Y is Polynomial Time Reducible to X**
 - Solve problem Y with a polynomial number of computation steps and a polynomial number of calls to a black box that solves X
 - **Notations:** $Y \leq_p X$

Composability Lemma

- If $X \leq_p Y$ and $Y \leq_p Z$ then $X \leq_p Z$

Lemmas

- **Suppose $Y \leq_p X$.** If X can be solved in polynomial time, then Y can be solved in polynomial time.
- **Suppose $Y \leq_p X$.** If Y cannot be solved in polynomial time, then X cannot be solved in polynomial time.

NP-Completeness

- A problem X is NP-complete if
 - X is in NP
 - For every Y in NP, $Y \leq_p X$
- X is a “hardest” problem in NP
- If X is NP-Complete, Z is in NP and $X \leq_p Z$
 - Then Z is NP-Complete

Cook’s Theorem

- The Circuit Satisfiability Problem is NP-Complete
History

Jack Edmonds
- Identified NP

Steve Cook
- Cook’s Theorem – NP-Completeness

Dick Karp
- Identified the “standard” collection of NP-Complete Problems

Leonid Levin
- Independent discovery of NP-Completeness in USSR

P vs. NP Question

NP-Complete

NP

P

Populating the NP-Completeness Universe

- Circuit Sat \leq_p 3-SAT
- 3-SAT \leq_p Independent Set
- 3-SAT \leq_p Vertex Cover
- Independent Set \leq_p Clique
- 3-SAT \leq_p Hamiltonian Circuit
- Hamiltonian Circuit \leq_p Traveling Salesman
- 3-SAT \leq_p Integer Linear Programming
- 3-SAT \leq_p Graph Coloring
- 3-SAT \leq_p Subset Sum
- Subset Sum \leq_p Scheduling with Release times and deadlines

Sample Problems

- Independent Set
 - Graph $G = (V, E)$, a subset S of the vertices is independent if there are no edges between vertices in S
Vertex Cover

- **Vertex Cover**
 - Graph $G = (V, E)$, a subset S of the vertices is a vertex cover if every edge in E has at least one endpoint in S

Cook’s Theorem

- The Circuit Satisfiability Problem is NP-Complete
 - Circuit Satisfiability
 - Given a boolean circuit, determine if there is an assignment of boolean values to the input to make the output true

Circuit SAT

```
AND
AND
NOT
OR
AND
OR
NOT
AND
OR
NOT
AND
OR
AND
AND
NOT
OR
AND
NOT
OR
AND
AND
NOT
OR
AND
```

Proof of Cook’s Theorem

- Reduce an arbitrary problem Y in NP to X
- Let A be a non-deterministic polynomial time algorithm for Y
- Convert A to a circuit, so that Y is a Yes instance iff and only if the circuit is satisfiable