CSE 421
Introduction to Algorithms
Lecture 19
Winter 2024
Network Flow, Part 3

Outline
- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford-Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Worst Case Runtime for FF
- Improving Runtime bounds
 - Capacity Scaling
 - Fully Polynomial Time Algorithms

Ford-Fulkerson Algorithm (1956)
while not done
 Construct residual graph G_R
 Find an s-t path P in G_R with capacity $b > 0$
 Add b units of flow along path P in G

Ford Fulkerson Runtime
- Cost per phase x number of phases
- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: $O(m)$
 - Find s-t path in residual: $O(m)$

Performance
- The worst case performance of the Ford-Fulkerson algorithm $O(Cm)$

Polynomial Time Algorithms
- Input of size n, runtime $T(n) = O(n^k)$
- Input size measures
 - Bits of input
 - Number of data items
- Maximum item size C
 - $O(Cn^k)$: Exponential
 - $O(n^k \log C)$: Polynomial
 - $O(n^k)$: Fully polynomial
Better methods of finding augmenting paths
• Find the maximum capacity augmenting path
 – $O(m^2 \log(C))$ time algorithm for network flow
• Find the shortest augmenting path
 – $O(m^2 n)$ time algorithm for network flow
• Find a blocking flow in the residual graph
 – $O(mn \log n)$ time algorithm for network flow

Capacity Scaling Algorithm
• Choose $\Delta = 2^k$ such that all edges in G_R have capacity less than 2Δ

 while $\Delta \geq 1$

 while there is a path P in G_R with capacity Δ
 Add Δ units of flow along path P in G
 Update G_R

 $\Delta = \Delta / 2$

Edmonds-Karp: Easier analysis than Max Capacity First

Analysis
• If capacities are integers, then graph is disconnected when $\Delta = \frac{1}{2}$
• If largest edge capacity is C, then there are at most $\log C$ outer phases
• At the start of each outer phase, the flow is within $2m\Delta$ of the maximum
 – So there are at most $2m$ inner phases for each Δ

Shortest Augmenting Path
• Find augmenting paths by BFS

 for $k = 1$ to n

 while there is a path P in G_R of length k and capacity $b > 0$
 Add b units of flow along path P in G
 Update G_R

• Need to show:
 • The length of the shortest augmenting path is non-decreasing
 • Each while loop finds at most m paths

Analysis
• Augmenting along shortest path from s to t does not decrease distance from s to t

Analysis
• The distance from s to t must increase in G_R after m augmentations by shortest paths
Improving the shortest augmenting path algorithm

• Find a blocking flow in one phase to increase the length of augmenting paths
 – Dinitz (Ефим Абрамович Диниц) Algorithm
 – $O(n^2m)$
• Dynamic Trees to decrease cost per augmentation
 – $O(nm \log n)$

APPLICATIONS OF NETWORK FLOW

Problem Reduction

• Reduce Problem A to Problem B
 – Convert an instance of Problem A to an instance of Problem B
 – Use a solution of Problem B to get a solution to Problem A
• Practical
 – Use a program for Problem B to solve Problem A
• Theoretical
 – Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

• Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

 Find the maximum of: 8, -3, 2, 12, 1, -6

 Construct an equivalent minimization problem

Undirected Network Flow

• Undirected graph with edge capacities
• Flow may go either direction along the edges (subject to the capacity constraints)

Bipartite Matching

• A graph $G=(V,E)$ is bipartite if the vertices can be partitioned into disjoints sets X,Y

 • A matching M is a subset of the edges that does not share any vertices
 • Find a matching as large as possible
Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

RA 311
PB 331
ME 332
DG 401
AK 421

Converting Matching to Network Flow

Multi-source network flow

- Multi-source network flow
 - Sources s_1, s_2, \ldots, s_k
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R_1, \ldots, R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer R_j, there is a list of paper L_{j1}, \ldots, L_{jk} that R_j is qualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_1, \ldots, C_n
 - Donate b_i to C_i
- With a little help from your friends
 - Friends F_1, \ldots, F_m
 - F_i can give a_{ij} to candidate C_j
 - You can give at most M_i to F_i