

CSE 421 Introduction to Algorithms

Lecture 19 Winter 2024 Network Flow, Part 3

1

Ford-Fulkerson Algorithm (1956) while not done Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units of flow along path P in G 3

- Find s-t path in residual: O(m)

4

- Bits of input
- Number of data items
- Maximum item size C
 - -O(Cn^k): Exponential
 - O(n^k log C): Polynomial
 - O(n^k): Fully polynomial

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - O(m²log(C)) time algorithm for network flow
- Find the shortest augmenting path

 O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph

 O(mnlog n) time algorithm for network flow

Capacity Scaling Algorithm

• Choose $\Delta = 2^k$ such that all edges in G_R have capacity less than 2Δ

while $\Delta \ge 1$

while there is a path P in G_R with capacity Δ Add Δ units of flow along path P in G Update G_R

 $\Delta = \Delta / 2$

Edmonds-Karp: Easier analysis than Max Capacity First

8

Analysis

- If capacities are integers, then graph is disconnected when $\Delta = \frac{1}{2}$
- If largest edge capacity is C, then there are at most log C outer phases
- At the start of each outer phase, the flow is within 2m∆ of the maximum
 - So there are at most 2m inner phases for each Δ

9

7

· Find augmenting paths by BFS

for k = 1 to n

while there is a path P in G_R of length k and capacity b > 0 Add b units of flow along path P in G Update G_R

- Need to show:
 - The length of the shortest augmenting path is non-decreasing
 - Each while loop finds at most m paths 10

10

Analysis • Augmenting along shortest path from s to t does not decrease distance from s to t

Analysis

• The distance from s to t must increase in G_R after m augmentations by shortest paths

12

12

Improving the shortest augmenting path algorithm

- Find a blocking flow in one phase to increase the length of augmenting paths
 - Dinitz (Ефим Абрамович Диниц) Algorithm – O(n²m)
- Dynamic Trees to decrease cost per augmentation
 - O(nm log n)

13

APPLICATIONS OF NETWORK FLOW

14

14

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

15

13

16

- A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y
- A matching M is a subset of the edges that does not share any vertices
- · Find a matching as large as possible

Application			
 A collection of teachers A collection of courses And a graph showing which teachers can teach which courses 			
RA	0	0	311
PB	0	0	331
ME	0	0	332
DG	0	0	401
AK	0	0	421
10			

19

Finding edge disjoint paths Construct a maximum cardinality set of edge disjoint paths

21

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n A set of reviewers R_1, \ldots, R_m Paper P_i requires A_i reviewers Reviewer R_j can review B_j papers
- For each reviewer $R_j,$ there is a list of paper L_{j1},\ldots,L_{jk} that R_j is qualified to review

- Candidates C_i, . . ., C_n - Donate b_i to C_i
- · With a little help from your friends
 - Friends F_1, \ldots, F_m
 - F_i can give a_{ii} to candidate C_i
 - You can give at most M_i to F_i