CSE 421 Introduction to Algorithms

Lecture 19
Winter 2024
Network Flow, Part 3

Midterm

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Worst Gase Runtime for FF
- Improving Runtime bounds
- Capacity Scaling
- Fully Polynomial Time Algorithms
- Applications of Network Flow

Ford-Fulkerson Algorithm (1956)

while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units of flow along path P in G

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
- Capacity leaving source: C
- Add at least one unit per phase
- Cost per phase
- Build residual graph: O(m)
- Find s-t path in residual: $O(m)$

Performance

- The worst case performance of the FordFulkerson algorithm O(Cm)

Polynomial Time Algorithms

- Input of size n , runtime $\mathrm{T}(\mathrm{n})=\mathrm{O}\left(\mathrm{n}^{\mathrm{k}}\right)$
- Input size measures
- Bits of input
- Number of data items
- Maximum item magnitude C
- O(Cnk): Exponential
- O(nk log C): Polynomial
- O(n^{k}): Fully polynomial

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph - O(mnlog n) time algorithm for network flow

Capacity Scaling Algorithm

- Choose $\Delta=2^{k}$ such that all edges in G_{R} have capacity less than 2Δ
while $\Delta \geq 1$
while there is a path P in G_{R} with capacity Δ
Add Δ units of flow along path P in G
Update G_{R}

$$
\Delta=\Delta / 2
$$

Analysis

- If capacities are integers, then graph is disconnected when $\Delta=1 / 2$
- If largest edge capacity is C , then there are at most $\log \mathrm{C}$ outer phases
- At the start of each outer phase, the flow is within $2 m \Delta$ of the maximum
- So there are at most 2 m inner phases for each Δ

Shortest Augmenting Path

- Find augmenting paths by BFS
for $k=1$ to n
while there is a path P in G_{R} of length k and capacity $b>0$
Add b units of flow along path P in G
Update G_{R}
- Need to show:
- The length of the shortest augmenting path is non-decreasing
- Each while loop finds at most m paths

Analysis

- Augmenting along shortest path from s to t does not decrease distance from s to t

Analysis

- The distance from s to t must increase in G_{R} after m augmentations by shortest paths

Improving the shortest augmenting path algorithm

- Find a blocking flow in one phase to increase the length of augmenting paths
- Dinitz (Ефим Абрамович Диниц) Algorithm - O($n^{2} \mathrm{~m}$)
- Dynamic Trees to decrease cost per augmentation
- O(nm $\log \mathrm{n})$

APPLICATIONS OF NETWORK FLOW

Problem Reduction

- Reduce Problem A to Problem B
- Convert an instance of Problem A to an instance of Problem B
- Use a solution of Problem B to get a solution to Problem A
- Practical
- Use a program for Problem B to solve Problem A
- Theoretical
- Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

- Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: $8,-3,2,12,1,-6$

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

- A graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is bipartite if the vertices can be partitioned into disjoints sets X, Y
- A matching M is a subset of the edges that does not share any vertices
- Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

	\bigcirc	$\bigcirc 311$
PB	\bigcirc	O 331
ME	\bigcirc	- 332
dg	\bigcirc	O 401
	\bigcirc	O 421

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Multi-source network flow

- Multi-source network flow
- Sources $\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{k}}$
- Sinks $\mathrm{t}_{1}, \mathrm{t}_{2}, \ldots, \mathrm{t}_{\mathrm{j}}$
- Solve with Single source network flow

Resource Allocation:

Assignment of reviewers

- A set of papers $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{n}}$
- A set of reviewers R_{1}, \ldots, R_{m}
- Paper P_{i} requires A_{i} reviewers
- Reviewer R_{j} can review B_{j} papers
- For each reviewer $R_{i j}$, there is a list of paper $L_{j 1}, \ldots, L_{j k}$ that R_{j} is qualified to review

Resource Allocation:

Illegal Campaign Donations

- Candidates $\mathrm{C}_{\mathrm{i}}, \ldots, \mathrm{C}_{\mathrm{n}}$
- Donate b_{i} to C_{i}
- With a little help from your friends
- Friends F_{1}, \ldots, F_{m}
- F_{i} can give $a_{i j}$ to candidate C_{j}
- You can give at most M_{i} to F_{i}

