

CSE 421 Introduction to Algorithms

Lecture 19 Winter 2024 Network Flow, Part 3

Midterm

Minimum	Median	Maximum	Mean	Std Dev 😯
16.5	49.75	77.0	49.98	13.96

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Worst Case Runtime for FF
- Improving Runtime bounds
 - Capacity Scaling
 - Fully Polynomial Time Algorithms
- Applications of Network Flow

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units of flow along path P in G

Ford Fulkerson Runtime

Cost per phase X number of phases

- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

 The worst case performance of the Ford-Fulkerson algorithm O(Cm)

Polynomial Time Algorithms

- Input of size n, runtime $T(n) = O(n^k)$
- Input size measures
 - Bits of input
 - Number of data items
- Maximum item magnitude C
 - O(Cn^k): Exponential
 - O(n^k log C): Polynomial
 - O(n^k): Fully polynomial

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
 - $-O(m^2log(C))$ time algorithm for network flow
- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow

Capacity Scaling Algorithm

 Choose Δ = 2^k such that all edges in G_R have capacity less than 2Δ

while $\Delta \ge 1$ while there is a path P in G_R with capacity Δ Add Δ units of flow along path P in G Update G_R $\Delta = \Delta / 2$

Edmonds-Karp: Easier analysis than Max Capacity First

Analysis

- If capacities are integers, then graph is disconnected when $\Delta = \frac{1}{2}$
- If largest edge capacity is C, then there are at most log C outer phases
- At the start of each outer phase, the flow is within 2mΔ of the maximum
 - So there are at most 2m inner phases for each Δ

Shortest Augmenting Path

- Find augmenting paths by BFS
- for k = 1 to n

while there is a path P in G_R of length k and capacity b > 0 Add b units of flow along path P in G Update G_R

- Need to show:
 - The length of the shortest augmenting path is non-decreasing
 - Each while loop finds at most m paths 11

Analysis

 Augmenting along shortest path from s to t does not decrease distance from s to t

Analysis

 The distance from s to t must increase in G_R after m augmentations by shortest paths

Improving the shortest augmenting path algorithm

- Find a blocking flow in one phase to increase the length of augmenting paths
 - Dinitz (Ефим Абрамович Диниц) Algorithm – O(n²m)
- Dynamic Trees to decrease cost per augmentation

– O(nm log n)

APPLICATIONS OF NETWORK FLOW

15

Problem Reduction

- Reduce Problem A to Problem B
 - Convert an instance of Problem A to an instance of Problem B
 - Use a solution of Problem B to get a solution to Problem A
- Practical
 - Use a program for Problem B to solve Problem A
- Theoretical
 - Show that Problem B is at least as hard as Problem A

Problem Reduction Examples

 Reduce the problem of finding the Maximum of a set of integers to finding the Minimum of a set of integers

Find the maximum of: 8, -3, 2, 12, 1, -6

Construct an equivalent minimization problem

Undirected Network Flow

- Undirected graph with edge capacities
- Flow may go either direction along the edges (subject to the capacity constraints)

Construct an equivalent flow problem

Bipartite Matching

 A graph G=(V,E) is bipartite if the vertices can be partitioned into disjoints sets X,Y

 A matching M is a subset of the edges that does not share any vertices

• Find a matching as large as possible

Application

- A collection of teachers
- A collection of courses
- And a graph showing which teachers can teach which courses

Converting Matching to Network Flow

Finding edge disjoint paths

Construct a maximum cardinality set of edge disjoint paths

Multi-source network flow

- Multi-source network flow
 - Sources $s_1, s_2, ..., s_k$
 - Sinks t_1, t_2, \ldots, t_j
- Solve with Single source network flow

Resource Allocation: Assignment of reviewers

- A set of papers P_1, \ldots, P_n
- A set of reviewers R₁, . . ., R_m
- Paper P_i requires A_i reviewers
- Reviewer R_j can review B_j papers
- For each reviewer $R_j,$ there is a list of paper L_{j1},\ldots,L_{jk} that R_j is qualified to review

Resource Allocation: Illegal Campaign Donations

- Candidates C_i, . . ., C_n
 Donate b_i to C_i
- With a little help from your friends
 - Friends F_1, \ldots, F_m
 - $-F_i$ can give a_{ij} to candidate C_j
 - You can give at most M_i to F_i