

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $\mathrm{c}(\mathrm{e}) \geq 0$
- Problem, assign flows $f(e)$ to the edges such that:
$-0 \leq f(e) \leq c(e)$
- Flow is conserved at vertices other than s and t
- Flow conservation: flow going into a vertex equals the flow going out
- The flow leaving the source is a large as possible

Augmenting Path Algorithm

- Augmenting path in residual graph
- Vertices $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{k}}$
- $\mathrm{v}_{1}=\mathrm{s}, \mathrm{v}_{\mathrm{k}}=\mathrm{t}$
- Possible to add b units of flow between v_{j} and v_{j+1} for $\mathrm{j}=1$... k-1

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Worst Case Runtime for FF
- Improving Runtime bounds
- Capacity Scaling
- Fully Polynomial Time Algorithms

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_{R}
- G: edge e from u to v with capacity c and flow f
$-G_{R}$: edge e' from u to v with capacity $c-f$
$-G_{R}$: edge e" from v to u with capacity f

Ford-Fulkerson Algorithm (1956)
while not done
Construct residual graph G_{R}
Find an s-t path P in G_{R} with capacity $b>0$
Add b units of flow along path P in G

Runtime Analysis

- Assume the capacities are integers*
- Let C be the sum of edge capacities leaving s
- The total flow F is at most C
- Every iteration increases flow by at least 1, so there are at most C iterations
- Cost per iteration is $\mathrm{O}(\mathrm{m}+\mathrm{n})$
- Runtime is $\mathrm{O}(\mathrm{C}(\mathrm{m}+\mathrm{n})$)

Flow Example

Cuts in a graph

- Cut: Partition of V into disjoint sets S , T with s in S and t in T .
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
- Sum of flows out of S minus sum of flows into S
- $\operatorname{Flow}(\mathrm{S}, \mathrm{T}) \leq \operatorname{Cap}(\mathrm{S}, \mathrm{T})$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$S=\{s, a, b, e, h\}, \quad T=\{c, f, i, d, g, t\}$

What is $\operatorname{Cap}(\mathrm{S}, \mathrm{T})$ and $\operatorname{Flow}(\mathrm{S}, \mathrm{T})$

$\mathrm{S}=\{\mathrm{s}, \mathrm{a}, \mathrm{b}, \mathrm{e}, \mathrm{h}\}, \quad \mathrm{T}=\{\mathrm{c}, \mathrm{f}, \mathrm{i}, \mathrm{d}, \mathrm{g}, \mathrm{t}\}$

$\operatorname{Cap}(S, T)=95$,
Flow(S,T) = $80-15=65$

Minimum value cut

Find a minimum value cut

Find a minimum value cut

Find a minimum value cut

Let S be the set of vertices in G_{R} reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v ?

Max Flow - Min Cut Theorem

- Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.
- If we want to find a minimum cut, we begin by looking for a maximum flow.

History

- Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Performance

- The worst case performance of the FordFulkerson algorithm is horrible

21

Better methods of finding augmenting paths

- Find the maximum capacity augmenting path
- $\mathrm{O}\left(\mathrm{m}^{2} \log (\mathrm{C})\right)$ time algorithm for network flow
- Find the shortest augmenting path
- O($\mathrm{m}^{2} \mathrm{n}$) time algorithm for network flow
- Find a blocking flow in the residual graph
- O(mnlog n) time algorithm for network flow

Ford Fulkerson Runtime

- Cost per phase X number of phases
- Phases
- Capacity leaving source: C
- Add at least one unit per phase
- Cost per phase
- Build residual graph: O(m)
- Find s-t path in residual: $O(m)$

Improving path selection

Polynomial Time Algorithms

- Input of size n, runtime $T(n)=O\left(n^{k}\right)$
- Input size measures
- Bits of input
- Number of data items
- Maximum item size C
- O($\left(\mathrm{n}^{k}\right)$: Exponential
- O($\mathrm{n}^{\mathrm{k}} \log \mathrm{C}$): Polynomial
- O(n^{k}): Fully polynomial

Capacity Scaling Algorithm

- Choose $\Delta=2^{k}$ such that all edges in G_{R} have capacity less than 2Δ
while $\Delta \geq 1$
while there is a path P in G_{R} with capacity Δ
Add Δ units of flow along path P in G Update G_{R}
$\Delta=\Delta / 2$

Analysis

- If capacities are integers, then graph is disconnected when $\Delta=1 / 2$
- If largest edge capacity is C , then there are at most $\log C$ outer phases
- At the start of each outer phase, the flow is within $2 \mathrm{~m} \Delta$ of the maximum
- So there are at most $2 m$ inner phases for each Δ

Shortest Augmenting Path

- Find augmenting paths by BFS
for $k=1$ to n
while there is a path P in G_{R} of length k and capacity $b>0$
Add b units of flow along path P in G Update G_{R}
- Need to show:
- The length of the shortest augmenting path is non-decreasing
- Each while loop finds at most m paths ${ }_{27}$

Analysis

- The distance from s to t must increase in G_{R} after m augmentations by shortest paths

Analysis

- Augmenting along shortest path from s to t does not decrease distance from s to t

Improving the shortest augmenting path algorithm

- Find a blocking flow in one phase to increase the length of augmenting paths
- Dinitz (Ефим Абрамович Диниц) Algorithm

Analysis
- The distance from s to t must increase in
G_{R} after m augmentations by shortest
paths

- $\mathrm{O}\left(\mathrm{n}^{2} \mathrm{~m}\right)$
- Dynamic Trees to decrease cost per augmentation
- O(nm $\log \mathrm{n})$

