

CSE 421 Introduction to Algorithms

Lecture 18 Winter 2024 Network Flow, Part 2

Outline

- Network flow definitions
- Flow examples
- Augmenting Paths
- Residual Graph
- Ford Fulkerson Algorithm
- Cuts
- Maxflow-MinCut Theorem
- Worst Case Runtime for FF
- Improving Runtime bounds
 - Capacity Scaling
 - Fully Polynomial Time Algorithms

Network Flow Definitions

- Flowgraph: Directed graph with distinguished vertices s (source) and t (sink)
- Capacities on the edges, $c(e) \ge 0$
- Problem, assign flows f(e) to the edges such that:
 - $-0 \le f(e) \le c(e)$
 - Flow is conserved at vertices other than s and t
 - Flow conservation: flow going into a vertex equals the flow going out
 - The flow leaving the source is a large as possible

Residual Graph

- Flow graph showing the remaining capacity
- Flow graph G, Residual Graph G_R
 - G: edge e from u to v with capacity c and flow f
 - $-G_R$: edge e' from u to v with capacity c -f
 - $-G_R$: edge e'' from v to u with capacity f

Augmenting Path Algorithm

- Augmenting path in residual graph
 - Vertices v_1, v_2, \dots, v_k

•
$$v_1 = s$$
, $v_k = t$

• Possible to add b units of flow between v_j and v_{j+1} for $j = 1 \dots k-1$

Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph G_R Find an s-t path P in G_R with capacity b > 0 Add b units of flow along path P in G

Runtime Analysis

- Assume the capacities are integers*
- Let C be the sum of edge capacities leaving s
- The total flow F is at most C
- Every iteration increases flow by at least 1, so there are at most C iterations
- Cost per iteration is O(m+n)
- Runtime is O(C(m+n))

* This is actually a very important assumption, but we are not going to explore this rabbit hole

7

Flow Example

Cuts in a graph

- Cut: Partition of V into disjoint sets S, T with s in S and t in T.
- Cap(S,T): sum of the capacities of edges from S to T
- Flow(S,T): net flow out of S
 - Sum of flows out of S minus sum of flows into S

• $Flow(S,T) \leq Cap(S,T)$

What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T = \{c, f, i, d, g, t\}$

What is Cap(S,T) and Flow(S,T)

 $S=\{s, a, b, e, h\}, T = \{c, f, i, d, g, t\}$

Cap(S,T) = 95, Flow(S,T) = 80 - 15 = 65 ¹¹

Minimum value cut

Find a minimum value cut

Find a minimum value cut

Find a minimum value cut

MaxFlow – MinCut Theorem

- There exists a flow which has the same value as the minimum cut
- Proof: Consider a flow where the residual graph has no s-t path with positive capacity
- Let S be the set of vertices in G_R reachable from s with paths of positive capacity

Let S be the set of vertices in G_R reachable from s with paths of positive capacity

What can we say about the flows and capacity between u and v?

Max Flow - Min Cut Theorem

 Ford-Fulkerson algorithm finds a flow where the residual graph is disconnected, hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin by looking for a maximum flow.

History

 Ford / Fulkerson studied network flow in the context of the Soviet Rail Network

Ford Fulkerson Runtime

Cost per phase X number of phases

- Phases
 - Capacity leaving source: C
 - Add at least one unit per phase
- Cost per phase
 - Build residual graph: O(m)
 - Find s-t path in residual: O(m)

Performance

• The worst case performance of the Ford-Fulkerson algorithm is horrible

Improving path selection

Better methods of finding augmenting paths

 Find the maximum capacity augmenting path

 $-O(m^2log(C))$ time algorithm for network flow

- Find the shortest augmenting path – O(m²n) time algorithm for network flow
- Find a blocking flow in the residual graph
 O(mnlog n) time algorithm for network flow

Polynomial Time Algorithms

- Input of size n, runtime $T(n) = O(n^k)$
- Input size measures
 - Bits of input
 - Number of data items
- Maximum item size C
 - O(Cn^k): Exponential
 - O(n^k log C): Polynomial
 - O(n^k): Fully polynomial

Capacity Scaling Algorithm

 Choose Δ = 2^k such that all edges in G_R have capacity less than 2Δ

while $\Delta \ge 1$

while there is a path P in G_R with capacity Δ Add Δ units of flow along path P in G Update G_R

 $\Delta = \Delta / 2$

Analysis

- If capacities are integers, then graph is disconnected when $\Delta = \frac{1}{2}$
- If largest edge capacity is C, then there are at most log C outer phases
- At the start of each outer phase, the flow is within 2mΔ of the maximum
 - So there are at most 2m inner phases for each Δ

Shortest Augmenting Path

Find augmenting paths by BFS

for k = 1 to n

while there is a path P in G_R of length k and capacity b > 0 Add b units of flow along path P in G Update G_R

- Need to show:
 - The length of the shortest augmenting path is non-decreasing
 - Each while loop finds at most m paths 27

Analysis

 Augmenting along shortest path from s to t does not decrease distance from s to t

Analysis

 The distance from s to t must increase in G_R after m augmentations by shortest paths

Improving the shortest augmenting path algorithm

- Find a blocking flow in one phase to increase the length of augmenting paths
 - Dinitz (Ефим Абрамович Диниц) Algorithm – O(n²m)
- Dynamic Trees to decrease cost per augmentation

– O(nm log n)