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Network Flow Definitions

• Flowgraph:  Directed graph with distinguished 

vertices s (source) and t (sink)

• Capacities on the edges,  c(e) ≥ 0

• Problem,  assign flows f(e) to the edges such 

that:

– 0 ≤ f(e) ≤ c(e)

– Flow is conserved at vertices other than s and t

• Flow conservation: flow going into a vertex equals the flow 

going out

– The flow leaving the source is a large as possible
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Residual Graph

• Flow graph showing the remaining capacity

• Flow graph G,  Residual Graph GR

– G: edge e from u to v with capacity c and flow f

– GR: edge e’ from u to v with capacity c – f

– GR: edge e’’ from v to u with capacity f
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Augmenting Path Algorithm

• Augmenting path in residual graph

– Vertices v1,v2,…,vk

• v1 = s,  vk = t

• Possible to add b units of flow between vj and vj+1

for j = 1 … k-1
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Ford-Fulkerson Algorithm (1956)

while not done

Construct residual graph GR

Find an s-t path P in GR with capacity b > 0

Add b units of flow along path P in G
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Runtime Analysis

• Assume the capacities are integers*

• Let C be the sum of edge capacities 

leaving s

• The total flow F is at most C

• Every iteration increases flow by at least 1, 

so there are at most C iterations

• Cost per iteration is O(m+n)

• Runtime is O(C(m+n))
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* This is actually a very important assumption, but we are not going to explore this rabbit hole



Flow Example
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Cuts in a graph

• Cut:  Partition of V into disjoint sets S, T with s in 
S and t in T.

• Cap(S,T): sum of the capacities of edges from   
S to T

• Flow(S,T): net flow out of S
– Sum of flows out of S minus sum of flows into S

• Flow(S,T) ≤ Cap(S,T)
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What is Cap(S,T) and Flow(S,T)
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What is Cap(S,T) and Flow(S,T)
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Minimum value cut
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Find a minimum value cut
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Find a minimum value cut
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Find a minimum value cut

s t

6:5

6:5

10:3

7:6

3:3

5:5

3:3 6:5

2:2 4:4
5:4

8:3
5

4:3

8

15



MaxFlow – MinCut Theorem

• There exists a flow which has the same value as 

the minimum cut

• Proof: Consider a flow where the residual graph 

has no s-t path with positive capacity

• Let S be the set of vertices in GR reachable from 

s with paths of positive capacity

s t
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Let S be the set of vertices in GR reachable 

from s with paths of positive capacity

s tu v

S T

What can we say about the flows and capacity 

between u and v? 17



Max Flow - Min Cut Theorem

• Ford-Fulkerson algorithm finds a flow 

where the residual graph is disconnected, 

hence FF finds a maximum flow.

• If we want to find a minimum cut, we begin 

by looking for a maximum flow.
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History 

• Ford / Fulkerson studied network flow in 

the context of the Soviet Rail Network
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Ford Fulkerson Runtime

• Cost per phase   X    number of phases

• Phases

– Capacity leaving source: C

– Add at least one unit per phase

• Cost per phase

– Build residual graph:  O(m)

– Find s-t path in residual:  O(m)
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Performance

• The worst case performance of the Ford-

Fulkerson algorithm is horrible
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Improving path selection
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Better methods of finding 

augmenting paths

• Find the maximum capacity augmenting 

path

– O(m2log(C)) time algorithm for network flow

• Find the shortest augmenting path

– O(m2n) time algorithm for network flow

• Find a blocking flow in the residual graph

– O(mnlog n) time algorithm for network flow
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Polynomial Time Algorithms

• Input of size n, runtime T(n) = O(nk)

• Input size measures

– Bits of input

– Number of data items

• Maximum item size C

– O(Cnk):  Exponential

– O(nk log C): Polynomial

– O(nk): Fully polynomial
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Capacity Scaling Algorithm

• Choose Δ = 2k such that all edges in GR

have capacity less than 2Δ

25

Edmonds-Karp: Easier analysis than Max Capacity First

while Δ ≥ 1

while there is a path P in GR with capacity Δ

Add Δ units of flow along path P in G

Update GR

Δ = Δ / 2



Analysis

• If capacities are integers, then graph is 

disconnected when Δ = ½

• If largest edge capacity is C, then there

are at most log C outer phases

• At the start of each outer phase, the flow is 

within 2mΔ of the maximum

– So there are at most 2m inner phases for

each Δ
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Shortest Augmenting Path

• Find augmenting paths by BFS

27

for k = 1 to n

while there is a path P in GR of length k and capacity b > 0

Add b units of flow along path P in G

Update GR

• Need to show:

• The length of the shortest augmenting 

path is non-decreasing

• Each while loop finds at most m paths



Analysis

• Augmenting along shortest path from s to t 

does not decrease distance from s to t
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Analysis

• The distance from s to t must increase in

GR after m augmentations by shortest

paths
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Improving the shortest 

augmenting path algorithm
• Find a blocking flow in one phase to 

increase the length of augmenting paths

– Dinitz (Ефим Абрамович Диниц) Algorithm

– O(n2m)

• Dynamic Trees to decrease cost per

augmentation

– O(nm log n)
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