CSE 421 Introduction to Algorithms **Richard Anderson** Lecture 16 Shortest Paths with Dynamic Programming

Announcements

- Dynamic Programming Reading: – 6.8 Shortest Paths (Bellman-Ford)
- Network Flow Reading
 - 7.1-7.3, Network Flow Problem and Algorithms
 - -7.5-7.12, Network Flow Applications

Shortest Path Problem

- Dijkstra's Single Source Shortest Paths Algorithm
 - -O(m log n) time, positive cost edges
- Directed Acyclic Graphs

 O(n + m), Topological Sort + DP
- Bellman-Ford Algorithm
 - O(mn) time for graphs which can have negative cost edges

Lemma

• If a graph has no negative cost cycles, then the shortest paths are simple paths

• Shortest paths have at most n-1 edges

Shortest paths with a fixed number of edges

 Find the shortest path from s to w with exactly k edges

Express as a recurrence

Compute distance from starting vertex s

- $Opt_k(w) = min_x [Opt_{k-1}(x) + c_{xw}]$
- $Opt_0(w) = 0$ if w = s and infinity otherwise

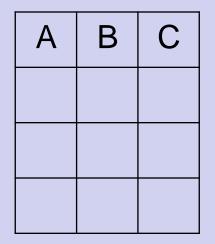
for each w M[0, w] = infinity; M[0, s] = 0;for i = 1 to n-1 for each w $M[i, w] = min_x(M[i-1,x] + cost[x,w]);$

for each w M[0, w] = infinity; M[0, s] = 0;for i = 1 to n-1 for each w $M[i, w] = min(M[i-1, w], min_x(M[i-1,x] + cost[x,w]));$

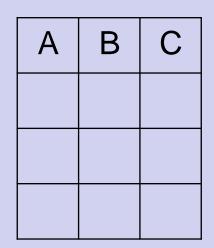
for each w M[w] = infinity; M[s] = 0;for i = 1 to n-1 for each w $M[w] = min(M[w], min_x(M[x] + cost[x,w]));$

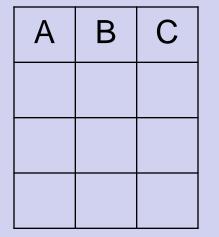
Example:

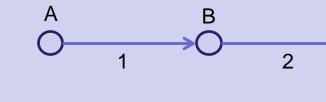




С







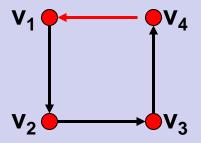
Correctness Proof for Algorithm 3

 Key lemma – at the end of iteration i, for all w, M[w] ≤ M[i, w];

for each w M[w] = infinity;M[s] = 0;for i = 1 to n-1for each w for each x if (M[w] > M[x] + cost[x,w])P[w] = x;M[w] = M[x] + cost[x,w] ;

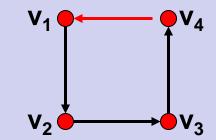
Theorem

If the pointer graph has a cycle, then the graph has a negative cost cycle



If the pointer graph has a cycle, then the graph has a negative cost cycle

- If P[w] = x then $M[w] \ge M[x] + cost(x,w)$
 - Equal when w is updated
 - M[x] could be reduced after update
- Let $v_1, v_2, \dots v_k$ be a cycle in the pointer graph with (v_k, v_1) the last edge added
 - Just before the update
 - $M[v_j] \ge M[v_{j+1}] + cost(v_{j+1}, v_j)$ for j < k
 - M[v_k] > M[v₁] + cost(v₁, v_k)
 - Adding everything up
 - $0 > cost(v_2, v_1) + cost(v_3, v_2) + ... + cost(v_1, v_k)$

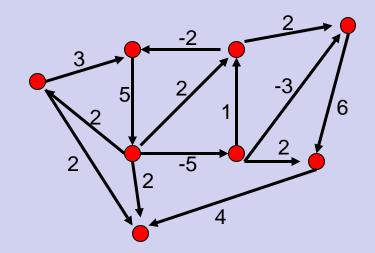


Negative Cycles

- If the pointer graph has a cycle, then the graph has a negative cycle
- Therefore: if the graph has no negative cycles, then the pointer graph has no negative cycles

Finding negative cost cycles

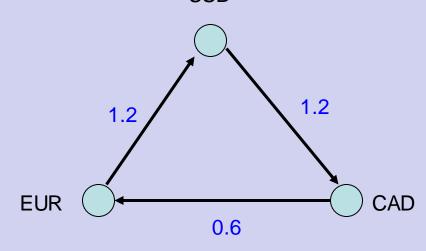
• What if you want to find negative cost cycles?



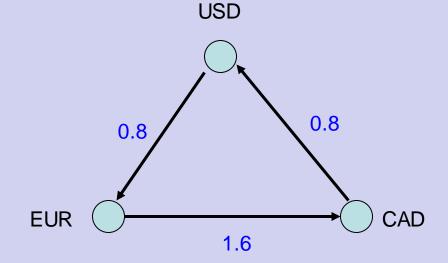
What about finding Longest Paths

• Can we just change Min to Max?

Foreign Exchange Arbitrage



	USD	EUR	CAD
USD		0.8	1.2
EUR	1.2		1.6
CAD	0.8	0.6	



18